316
Views
0
CrossRef citations to date
0
Altmetric
Review

Micro- and nano-fabricated Implantable drug-delivery Systems

&
Pages 1457-1467 | Published online: 04 Dec 2012

References

  • Frost and Sullivan. Growth Opportunities in the Drug Discovery and Diagnostic Technologies Market (2006).
  • Kalorama Research. Drug Delivery Markets. (2009).
  • Lawson EF , WallaceMS. Advances in intrathecal drug delivery. Curr. Opin Anaesthesiol.25(5), 572–576 (2012).
  • Pasquier E , KavallarisM, AndreN. Metronomic chemotherapy: new rationale for new directions. Nat. Rev. Clin. Oncol.7(8), 455–465 (2010).
  • Maas J , KammW, HauckG. An integrated early formulation strategy–from hit evaluation to preclinical candidate profiling. Eur. J. Pharm. Biopharm.66(1), 1–10 (2007).
  • Neervannan S . Preclinical formulations for discovery and toxicology: physicochemical challenges. Expert Opin. Drug Metab. Toxicol.2(5), 715–731 (2006).
  • Turner PV , BrabbT, PekowC, VasbinderMA. Administration of substances to laboratory animals: routes of administration and factors to consider. J. Am. Assoc. Lab. Anim. Sci.50(5), 600–613 (2011).
  • Turner PV , PekowC, VasbinderMA, BrabbT. Administration of substances to laboratory animals: equipment considerations, vehicle selection, and solute preparation. J. Am. Assoc. Lab. Anim. Sci.50(5), 614–627 (2011).
  • Tan T , WattsSW, DavisRP. Drug delivery: enabling technology for drug discovery and development. iPRECIO® micro infusion pump: programmable, refillable and implantable. Front. Pharmacol.2(44), (2011).
  • Paolino D , SinhaP, FrestaM, FerrariM. Drug delivery systems. In: Encyclopedia of Medical Devices and Instrumentation (2nd Edition). Webster JG (Ed.). John Wiley & Sons, Inc., Hoboken, NJ, USA (2006).
  • Fisher DM , KelletN, LenhardtR. Pharmacokinetics of an implanted osmotic pump delivering sufentanil for the treatment of chronic pain. Anesthesiology99(4), 929–937 (2003).
  • Desai TA , HansfordD, FerrariM. Characterization of micromachined silicon membranes for immunoisolation and bioseparation applications. J. Memb. Sci.159(1–2), 221–231 (1999).
  • Desai TA , HansfordDJ, KulinskyLet al. Nanopore technology for biomedical applications. Biomed. Microdevices 2(1), 11–40 (1999).
  • Leoni L , BoiarskiA, DesaiTA. Characterization of nanoporous membranes for immunoisolation: diffusion properties and tissue effects. Biomed. Microdevices4(2), 131–139 (2002).
  • Azam A , LaflinKE, JamalM, FernandesR, GraciasDH. Self-folding micropatterned polymeric containers. Biomed. Microdevices13(1), 51–58 (2011).
  • Santini JT , CimaMJ, LangerR. A controlled-release microchip. Nature397(6717), 335–338 (1999).
  • Santini JT Jr, Richards AC, Scheidt RA, Cima MJ, Langer RS. Microchip technology in drug delivery. Ann. Med.32(6), 377–379 (2000).
  • Maloney JM , UhlandSA, PolitoBF, SheppardNF Jr, Pelta CM, Santini JT Jr. Electrothermally activated microchips for implantable drug delivery and biosensing. J. Control. Release109(1–3), 244–255 (2005).
  • Prescott JH , LipkaS, BaldwinSet al. Chronic, programmed polypeptide delivery from an implanted, multireservoir microchip device. Nat. Biotechnol. 24(4), 437–438 (2006).
  • Farra R , SheppardNF Jr, Mccabe L et al. First-in-human testing of a wirelessly controlled drug delivery microchip. Sci. Transl. Med.4(122), 122ra121 (2012).
  • Rahimi S , SarrafEH, WongGK, TakahataK. Implantable drug delivery device using frequency-controlled wireless hydrogel microvalves. Biomed. Microdevices.13(2), 267–277 (2011).
  • Ahmed A , BonnerC, DesaiTA. Bioadhesive microdevices with multiple reservoirs: a new platform for oral drug delivery. J. Control. Release81(3), 291–306 (2002).
  • Richards G rayson AC, Choi IS, Tyler BM et al. Multi-pulse drug delivery from a resorbable polymeric microchip device. Nat. Mater.2(11), 767–772 (2003).
  • Richards G rayson AC, Cima MJ, Langer R. Molecular release from a polymeric microreservoir device: influence of chemistry, polymer swelling, and loading on device performance. J. Biomed. Mater. Res. A69(3), 502–512 (2004).
  • Chung AJ , HuhYS, EricksonD. A robust, electrochemically driven microwell drug delivery system for controlled vasopressin release. Biomed. Microdevices11(4), 861–867 (2009).
  • Elman NM , Ho Duc HL, Cima MJ. An implantable MEMS drug delivery device for rapid delivery in ambulatory emergency care. Biomed. Microdevices11(3), 625–631 (2009).
  • Li PY , GivradTK, HolschneiderDP, MaarekJM, MengE. A Parylene MEMS electrothermal valve. J. Microelectromech. Syst.18(6), 1184–1197 (2009).
  • Li PY , GivradTK, SheybaniR, HolschneiderDP, MaarekJMI, MengE. A low power, on demand electrothermal valve for wireless drug delivery applications. Lab Chip10(1), 101–110 (2010).
  • Pirmoradi FN , JacksonJK, BurtHM, ChiaoM. On-demand controlled release of docetaxel from a battery-less MEMS drug delivery device. Lab Chip11(16), 2744–2752 (2011).
  • Su YC , LinLW. A water-powered micro drug delivery system. J. Microelectromech. Syst.13(1), 75–82 (2004).
  • Su YC , LinLW, PisanoAP. A water-powered osmotic microactuator. J. Microelectromech. Syst.11(6), 736–742 (2002).
  • Li YH , SuYC. Miniature osmotic actuators for controlled maxillofacial distraction osteogenesis. J. Micromech. Microeng.20(6), (2010).
  • Ryu WH , HuangZN, PrinzFB, GoodmanSB, FaschingR. Biodegradable micro-osmotic pump for long-term and controlled release of basic fibroblast growth factor. J. Control. Release124(1–2), 98–105 (2007).
  • Evans AT , ChiravuriS, GianchandaniYB. Transdermal power transfer for recharging implanted drug delivery devices via the refill port. Biomed. Microdevices12(2), 179–185 (2010).
  • Evans AT , ChiravuriS, GianchandaniYB. A multidrug delivery system using a piezoelectrically actuated silicon valve manifold with embedded sensors. J. Microelectromech. Syst.20(1), 231–238 (2011).
  • Evans AT , ParkJM, ChiravuriS, GianchandaniYB. A low power, microvalve regulated architecture for drug delivery systems. Biomed. Microdevices12(1), 159–168 (2010).
  • Ackerman LL , FollettKA, RosenquistRW. Long-term outcomes during treatment of chronic pain with intrathecal clonidine or clonidine/opioid combinations. J. Pain Symptom Manage.26(1), 668–677 (2003).
  • Rainov NG , HeideckeV, BurkertW. Long-term intrathecal infusion of drug combinations for chronic back and leg pain. J. Pain Symptom Manage.22(4), 862–871 (2001).
  • Yun KS , ChoIJ, BuJU, KimCJ, YoonE. A surface-tension driven micropump for low-voltage and low-power operations. J. Microelectromech. Syst.11(5), 454–461 (2002).
  • Bourouina T , BosseboeufA, GrandchampJP. Design and simulation of an electrostatic micropump for drug-delivery applications. J. Micromech. Microeng.7(3), 186–188 (1997).
  • Yih TC , WeiC, HammadB. Modeling and characterization of a nanoliter drug-delivery MEMS micropump with circular bossed membrane. Nanomedicine1(2), 164–175 (2005).
  • Teymoori MM , Abbaspour-SaniE. Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications. Sens. Actuators. A Phys.117(2), 222–229 (2005).
  • Lin Q , YangBZ, XieJ, TaiYC. Dynamic simulation of a peristaltic micropump considering coupled fluid flow and structural motion. J. Micromech. Microeng.17(2), 220–228 (2007).
  • Xie J , ShihJ, LinQA, YangBZ, TaiYC. Surface micromachined electrostatically actuated micro peristaltic pump. Lab Chip4(5), 495–501 (2004).
  • Schneeberger N , AllendesR, BianchiFet al. Drug delivery micropump with built-in monitoring. Procedia Chemistry 1(1), 1339–1342 (2009).
  • Esashi M , ShojiS, NakanoA. Normally closed microvalve and micropump fabricated on a silicon wafer. Sens. Actuators.20(1–2), 163–169 (1989).
  • Maillefer D , Van Lintel H, Rey-Mermet G, Hirschi R. A high-performance silicon micropump for an implantable drug delivery system. Presented at: Micro Electro Mechanical Systems 1999. Orlando, FL, USA, 17–21 January 1999.
  • Mescher M , AbeT, BrunettB, MetlaH, SchlesingerTE, ReedM. Piezoelectric lead-zirconate-titanate actuator films for microelectromechanical system applications. Presented at: Micro Electro Mechanical Systems 1995. Amsterdam, The Netherlands, 29 January – 2 February 1995.
  • Cao L , MantellS, PollaD. Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology. Sens. Actuators. A Phys.94(1–2), 117–125 (2001).
  • Su GG , PidapartiRM. Drug Particle delivery investigation through a valveless micropump. J. Microelectromech. Syst.19(6), 1390–1399 (2010).
  • Su GG , PidapartiRM. Transport of drug particles in micropumps through novel actuation. Microsyst. Technol.16(4), 595–606 (2010).
  • Kan JW , YangZG, PengTJ, ChengGM, WuB. Design and test of a high-performance piezoelectric micropump for drug delivery. Sens. Actuators. A Phys.121(1), 156–161 (2005).
  • Cui QF , LiuCL, ZhaXF. Study on a piezoelectric micropump for the controlled drug delivery system. Microfluid. Nanofluidics3(4), 377–390 (2007).
  • Geipel A , GoldschmidtboeingF, JantscheffP, EsserN, MassingU, WoiasP. Design of an implantable active microport system for patient specific drug release. Biomed. Microdevices10(4), 469–478 (2008).
  • Geipel A , GoldschmidtoingF, DollAet al. An implantable active microport based on a self-priming high-performance two-stage micropump. Sens. Actuators. A. Phys. 145, 414–422 (2008).
  • Li PY , SheybaniR, GutierrezC, KuoJTW, MengE. A parylene bellows electrochemical actuator. J. Microelectromech. Syst.19, 215–228 (2010).
  • Li PY , ShihJ, LoRet al. An electrochemical intraocular drug delivery device. Sensors and Actuators A Phys. 143(1), 41–48 (2008).
  • Saati S , LoR, LiPY, MengE, VarmaR, HumayunMS. Mini drug pump for ophthalmic use. Trans. Am. Ophthalmol. Soc.107, 60–71 (2009).
  • Saati S , LoR, LiPY, MengE, VarmaR, HumayunMS. Mini drug pump for ophthalmic use. Curr. Eye Res.35(3), 192–201 (2010).
  • Gensler H , SheybaniR, LiPY, Lo Mann R, Meng E. An implantable MEMS micropump system for drug delivery in small animals. Biomed. Microdevices14(3), 483–496 (2012).
  • Gensler H , SheybaniR, Li Py et al. Implantable mems drug delivery devices for cancer radiation reduction. Presented at: MEMS 2010. Hong Kong, China, 24–28 January 2010.
  • Sheybani R , GenslerH, MengE. Rapid and repeatable bolus drug delivery enabled by high efficiency electrochemical bellows actuators. Presented at: Transducers 2011. Beijing, China, 5–9 June 2011.
  • Sheybani R , MengE. High efficiency wireless electrochemical actuators: design, fabrication and characterization by electrochemical impedance spectroscopy. Presented at: Micro Electro Mechanical Systems 2011. Cancun, Mexico, 23–27 January 2011.
  • Sheybani R , MengE. High Efficiency MEMS Electrochemical actuators and electrochemical impedance spectroscopy characterization. J. Microelectromech. Syst.21(5), 1197–1208 (2012).
  • Jeong OC , TangSS. Fabrication of a thermopneumatic microactuator with a corrugated p + silicon diaphragm. Sens. Actuators.80(1), 62–67 (2000).
  • Ha S -M, Cho W, Ahn Y. Disposable thermo-pneumatic micropump for bio lab-on-a-chip application. Microelectron. Eng.86(4–6), 1337–1339 (2009).
  • Mousoulis C , OchoaM, PapageorgiouD, ZiaieB. A skin-contact-actuated micropump for transdermal drug delivery. Biomed. Eng.58(5), 1492–1498 (2011).
  • Cooney CG , ToweBC. A thermopneumatic dispensing micropump. Sens. Actuators. A Phys.116(3), 519–524 (2004).
  • Spieth S , SchumacherA, HoltzmanTet al. An intra-cerebral drug delivery system for freely moving animals. Biomed. Microdevices 14(5), 799–809 (2012).
  • Benard WL , KahnH, HeuerAH, HuffMA. Thin-film shape-memory alloy actuated micropumps. J. Microelectromech. Syst.7(2), 245–251 (1998).
  • Reynaerts D , PeirsJ, VanbrusselH. An implantable drug-delivery system based on shape memory alloy micro-actuation. Sens. Actuators. A Phys.61(1–3), 455–462 (1997).
  • Woias P . Micropumps - past, progress and future prospects. Sens. Actuators. B Chem.105(1), 28–38 (2005).
  • Tsai NC , SueCY. Review of MEMS-based drug delivery and dosing systems. Sens. Actuators. A Phys.134(2), 555–564 (2007).
  • Amirouche F , ZhouY, JohnsonT. Current micropump technologies and their biomedical applications. Microsyst. Technol.15(5), 647–666 (2009).
  • Laser DJ , SantiagoJG. A review of micropumps. J. Micromech. Microeng.14(6), R35–R64 (2004).
  • Madou MJ . Fundamentals of microfabrication and nanotechnology. In: Solid-State Physics, Fluidics, and Analytical Techniques in Micro- and Nanotechnology (3rd edition). CRC Press, Boca Raton, FL, USA (2011).
  • Ameri H , ChaderGJ, KimJG, SaddaSR, RaoNA, HumayunMS. The effects of intravitreous bevacizumab on retinal neovascular membrane and normal capillaries in rabbits. Invest. Ophthalmol. Vis. Sci.48(12), 5708–5715 (2007).
  • Saati S , AgrawalRN, LouieS, ChaderGJ, HumayunMS. Effect of multiple injections of small divided doses vs single injection of intravitreal bevacizumab on retinal neovascular model in rabbits. Graefes. Arch. Clin. Exp. Ophthalmol.248(4), 457–466 (2009).
  • Samel B , GrissP, StemmeG. A thermally responsive PDMS composite and its microfluidic applications. J. Microelectromech. Syst.16(1), 50–57 (2007).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.