109
Views
0
CrossRef citations to date
0
Altmetric
Review

Intracellular Nucleic Acid Interactions Facilitated By Quantum Dots: Conceptualizing Theranostics

, , &
Pages 479-499 | Published online: 29 Mar 2012

References

  • Dabbousi BO , Rodriguez-ViejoJ, MikulecFVet al. (CdSe)ZnS core–shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B. 101(46), 9463–9475 (1997).
  • Bruchez M , MoronneM, GinP, WeissS, AlivisatosAP. Semiconductor nanocrystals as fluorescent biological labels. Science281(5385), 2013–2016 (1998).
  • Chan WCW , NieS. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science281, 2016–2018 (1998).
  • Sapsford KE , PonsT, MedintzIL, MattoussiH. Biosensing with luminescent semiconductor quantum dots. Sensors6(8), 925–953 (2006).
  • Delehanty JB , BoenemanK, BradburneCE, RobertsonK, BongardJE, MedintzIL. Peptides for specific intracellular delivery and targeting of nanoparticles: implications for developing nanoparticle-mediated drug delivery. Therapeutic Delivery1(3), 411–433 (2010).
  • Kelkar SS , ReinekeTM. Theranostics: combining imaging and therapy. Bioconjug. Chem.22(10), 1879–1903 (2011).
  • Vladimir PT . Multifunctional nanocarriers. Adv. Drug Deliv. Rev.58(14), 1532–1555 (2006).
  • Hermanson GT . Bioconjugate Techniques. Academic Press, San Diego, CA, USA (2008).
  • Algar WR , TavaresAJ, KrullUJ. Beyond labels: a review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal. Chim. Acta673, 1–25 (2010).
  • Algar WR , PrasuhnDE, StewartMHet al. The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. Bioconjug. Chem. 22(5), 825–858 (2011).
  • Bawendi MG , SteigerwaldML, BrusLE. The quantum mechanics of larger semiconductor clusters (“quantum dots”). Annu. Rev. Phys. Chem.41(1), 477–496 (1990).
  • Alivisatos AP . Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem.100(31), 13226–13239 (1996).
  • Alivisatos AP . Semiconductor clusters, nanocrystals, and quantum dots. Science271(5251), 933–937 (1996).
  • Medintz IL , UyedaHT, GoldmanER, MattoussiH. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater.4, 435–446 (2005).
  • Michalet X , PinaudFF, BentolilaLAet al. Quantum dots for live cells, in vivo imaging and diagnostics. Science 307(5709), 538–544 (2005).
  • Klostranec JM , ChanWCW. Quantum dots in biological and biomedical research: recent progress and present challenges. Adv. Mater.18(15), 1953–1964 (2006).
  • Algar WR , SusumuK, DelehantyJB, MedintzIL. Semiconductor quantum dots in bioanalysis: crossing the valley of death. Anal. Chem.83(23), 8826–8837 (2011).
  • Delehanty JB , MattoussiH, MedintzIL. Delivering quantum dots into cells: strategies, progress and remaining issues. Anal. Bioanal. Chem.393(4), 1091–1105 (2009).
  • Pinaud F , ClarkeS, SittnerA, DahanM. Probing cellular events, one quantum dot at a time. Nat. Methods7, 275–285 (2010).
  • Putnam D . Polymers for gene delivery across length scales. Nat. Mater.5, 439–451 (2006).
  • Derfus AM , ChanWCW, BhatiaSN. Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv. Mater.16(12), 961–966 (2004).
  • Jaiswal JK , MattoussiH, MauroJM, SimonSM. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol.21(1), 47–51 (2003).
  • Chen FQ , GerionD. Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett.4(10), 1827–1832 (2004).
  • Dubertret B , SkouridesP, NorrisDJ, NoireauxV, BrivanlouAH, LibchaberA. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science298(5599), 1759–1762 (2002).
  • Zhang Y , Yu L-C. Microinjection as a tool of mechanical delivery. Curr. Opin. Biotechnol.19(5), 506–510 (2008).
  • Biju V , ItohT, IshikawaM. Delivering quantum dots to cells: bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging. Chem. Soc. Rev.39(8), 3031–3056 (2010).
  • Chou LYT , MingK, ChanWCW. Strategies for the intracellular delivery of nanoparticles. Chem. Soc. Rev.40(1), 233–245 (2011).
  • Rosi NL , GiljohannDA, ThaxtonCS, Lytton-JeanAKR, HanMS, MirkinCA. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science312(5776), 1027–1030 (2006).
  • Giljohann DA , SeferosDS, PatelPC, MillstoneJE, RosiNL, MirkinCA. Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Lett.7(12), 3818–3821 (2007).
  • Lytton-Jean AKR , MirkinCA. A thermodynamic investigation into the binding properties of DNA functionalized gold nanoparticle probes and molecular fluorophore probes. J. Am. Chem. Soc.127(37), 12754–12755 (2005).
  • Seferos DS , PrigodichAE, GiljohannDA, PatelPC, MirkinCA. Polyvalent DNA nanoparticle conjugates stabilize nucleic acids. Nano Lett.9(1), 308–311 (2009).
  • Giljohann DA , SeferosDS, PrigodichAE, PatelPC, MirkinCA. Gene regulation with polyvalent siRNA–nanoparticle conjugates. J. Am. Chem. Soc.131(6), 2072–2073 (2009).
  • Prigodich AE , SeferosDS, MassichMD, GiljohannDA, LaneBC, MirkinCA. Nano-flares for mRNA regulation and detection. ACS Nano3(8), 2147–2152 (2009).
  • Seferos DS , GiljohannDA, HillHD, PrigodichAE, MirkinCA. Nano-flares: probes for transfection and mRNA detection in living cells. J. Am. Chem. Soc.129(50), 15477–15479 (2007).
  • Li Y , DuanX, JingL, YangC, QiaoR, GaoM. Quantum dot-antisense oligonucleotide conjugates for multifunctional gene transfection, mRNA regulation, and tracking of biological processes. Biomaterials32(7), 1923–1931 (2011).
  • Tan WB , JiangS, ZhangY. Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials28(8), 1565–1571 (2007).
  • Lee H , KimIK, ParkTG. Intracellular trafficking and unpacking of siRNA/quantum dot-PEI complexes modified with and without cell penetrating peptide: confocal and flow cytometric FRET analysis. Bioconjug. Chem.21(2), 289–295 (2010).
  • Zhao MX , LiJM, DuLYet al. Targeted cellular uptake and siRNA silencing by quantum-dot nanoparticles coated with beta-cyclodextrin coupled to amino acids. Chem. Eur. J. 17(18), 5170–5178 (2011).
  • Stephens DJ , PepperkokR. The many ways to cross the plasma membrane. Proc. Natl Acad. Sci. USA98(8), 4295–4298 (2001).
  • Kirchner C , LiedlT, KuderaSet al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 5(2), 331–338 (2005).
  • Medintz IL , PonsT, DelehantyJBet al. Intracellular delivery of quantum dot-protein cargos mediated by cell penetrating peptides. Bioconjug. Chem. 19(9), 1785–1795 (2008).
  • Boeneman K , DelehantyJB, SusumuK, StewartMH, MedintzIL. Intracellular bioconjugation of targeted proteins with semiconductor quantum dots. J. Am. Chem. Soc.132(17), 5975–5977 (2010).
  • Derfus AM , ChenAA, MinDH, RuoslahtiE, BhatiaSN. Targeted quantum dot conjugates for siRNA delivery. Bioconjug. Chem.18(5), 1391–1396 (2007).
  • Qi LF , GaoXH. Quantum dot–amphipol nanocomplex for intracellular delivery and real-time imaging of siRNA. ACS Nano2(7), 1403–1410 (2008).
  • Yezhelyev MV , QiL, O‘reganRM, NieS, GaoX. Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging. J. Am. Chem. Soc.130(28), 9006–9012 (2008).
  • Chen X -C, Deng Y-L, Lin Y et al. Quantum dot-labeled aptamer nanoprobes specifically targeting glioma cells. Nanotechnology19(23), 235105 (2008).
  • Dwarakanath S , BrunoJG, ShastryAet al. Quantum dot-antibody and aptamer conjugates shift fluorescence upon binding bacteria. Biochem. Biophys. Res. Commun. 325(3), 739–743 (2004).
  • Zhang J , JiaX, LvXJ, DengYL, XieHY. Fluorescent quantum dot-labeled aptamer bioprobes specifically targeting mouse liver cancer cells. Talanta81(1–2), 505–509 (2010).
  • Walther C , MeyerK, RennertR, NeundorfI. Quantum dot–carrier peptide conjugates suitable for imaging and delivery applications. Bioconjug. Chem.19(12), 2346–2356 (2008).
  • Liu Y , MounkesLC, LiggittHDet al. Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery. Nat. Biotechnol. 15(2), 167–173 (1997).
  • Felgner PL , GadekTR, HolmMet al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 84(21), 7413–7417 (1987).
  • Chen AA , DerfusAM, KhetaniSR, BhatiaSN. Quantum dots to monitor RNAi delivery and improve gene silencing. Nucleic Acids Res.33(22), e190 (2005).
  • Massignani M , CantonI, SunTet al. Enhanced fluorescence imaging of live cells by effective cytosolic delivery of probes. PLoS One 5(5), e10459 (2010).
  • Chen HH , HoYP, JiangX, MaoHQ, WangTH, LeongKW. Simultaneous non-invasive analysis of DNA condensation and stability by two-step QD-FRET. Nano Today4(2), 125–134 (2009).
  • Roy K , MaoHQ, HuangSK, LeongKW. Oral gene delivery with chitosan–DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat. Med.5(4), 387–391 (1999).
  • Jiang X , DaiH, KeCYet al. PEG-b-PPA/DNA micelles improve transgene expression in rat liver through intrabiliary infusion. J. Control. Release 122(3), 297–304 (2007).
  • Mao HQ , RoyK, Troung-LeVLet al. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J. Control. Release 70(3), 399–421 (2001).
  • Remaut K , LucasB, RaemdonckK, BraeckmansK, DemeesterJ, De Smedt SC. Protection of oligonucleotides against enzymatic degradation by pegylated and nonpegylated branched polyethyleneimine. Biomacromolecules8(4), 1333–1340 (2007).
  • Srinivasan C , LeeJ, PapadimitrakopoulosF, SilbartLK, ZhaoMH, BurgessDJ. Labeling and intracellular tracking of functionally active plasmid DNA with semiconductor quantum dots. Mol. Ther.14(2), 192–201 (2006).
  • Boussif O , LezoualchF, ZantaMAet al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl Acad. Sci. USA 92(16), 7297–7301 (1995).
  • Lee H , JeongJH, ParkTG. A new gene delivery formulation of polyethylenimine/DNA complexes coated with PEG conjugated fusogenic peptide. J. Control. Release76(1–2), 183–192 (2001).
  • Derossi D , CalvetS, TrembleauA, BrunissenA, ChassaingG, ProchiantzA. Cell internalization of the third helix of the antennapedia homeodomain is receptor-independent. J. Biol. Chem.271(30), 18188–18193 (1996).
  • Kerkis A , Hayashi MaF, Yamane T, Kerkis I. Properties of cell penetrating peptides (CPPs). IUBMB Life58(1), 7–13 (2006).
  • Wagstaff KM , JansDA. Protein transduction: cell penetrating peptides and their therapeutic applications. Curr. Med. Chem.13(12), 1371–1387 (2006).
  • Drin G , DéménéH, TemsamaniJ, BrasseurR. Translocation of the pAntp peptide and its amphipathic analogue AP-2AL. Biochemistry40(6), 1824–1834 (2001).
  • Sebbage V . Cell-penetrating peptides and their therapeutic applications. Biosci. Horiz.2(1), 64–72 (2009).
  • Bao G , RheeWJ, TsourkasA. Fluorescent probes for live-cell RNA detection. Annu. Rev. Biomed. Eng.11, 25–47 (2009).
  • Jiang GX , SushaAS, LutichAA, StefaniFD, FeldmannJ, RogachAL. Cascaded FRET in conjugated polymer/quantum dot/dye-labeled DNA complexes for DNA hybridization detection. ACS Nano3(12), 4127–4131 (2009).
  • Cissell KA , ShresthaS, DeoSK. MicroRNA detection: challenges for the analytical chemist. Anal. Chem.79(13), 4754–4761 (2007).
  • Alexander JC , PanditA, BaoG, ConnollyD, RochevY. Monitoring mRNA in living cells in a 3D in vitro model using TAT-peptide linked molecular beacons. Lab Chip11(22), 3908–3914 (2011).
  • Chan PM , YuenT, RufF, Gonzalez-MaesoJ, SealfonSC. Method for multiplex cellular detection of mRNAs using quantum dot fluorescent in situ hybridization. Nucleic Acids Res.33(18), e161 (2005).
  • Yeh HY , YatesMV, MulchandaniaA, ChenW. Molecular beacon-quantum dot–Au nanoparticle hybrid nanoprobes for visualizing virus replication in living cells. Chem. Commun.46(22), 3914–3916 (2010).
  • Wu SM , ZhaX, ZhangZLet al. Quantum-dot-labeled DNA probes for fluorescence in situ hybridization (FISH) in the microorganism Escherichia coli. ChemPhysChem 7(5), 1062–1067 (2006).
  • Xiao Y , BarkerPE. Semiconductor nanocrystal probes for human metaphase chromosomes. Nucleic Acids Res.32(3), e28 (2004).
  • Pathak S , Choi S-K, Arnheim N, Thompson ME. Hydroxylated quantum dots as luminescent probes for in situ hybridization. J. Am. Chem. Soc.123(17), 4103–4104 (2001).
  • Feinberg AP , IrizarryRA, FradinDet al. Personalized epigenomic signatures that are stable over time and covary with body mass index. Sci. Transl. Med. 2(49), 49–67 (2010).
  • Machida EO , BrockMV, HookerCMet al. Hypermethylation of ASC/TMS1 is a sputum marker for late-stage lung cancer. Cancer Res. 66(12), 6210–6218 (2006).
  • Bailey VJ , EaswaranH, ZhangYet al. MS-qFRET: a quantum dot-based method for analysis of DNA methylation. Genome Res. 19, 1455–1461 (2009).
  • Zamore PD , TuschlT, SharpPA, BartelDP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell101(1), 25–33 (2000).
  • Novina CD , SharpPA. The RNAi revolution. Nature430(6996), 161–164 (2004).
  • Kronke J , KittlerR, BuchholzFet al. Alternative approaches for efficient inhibition of hepatitis C virus RNA replication by small interfering RNAs. J. Virol. 78(7), 3436–3446 (2004).
  • Tiscornia G , SingerO, IkawaM, VermaIM. A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc. Natl Acad. Sci. USA100(4), 1844–1848 (2003).
  • Qin XF , AnDS, ChenISY, BaltimoreD. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc. Natl Acad. Sci. USA100(1), 183–188 (2003).
  • Tomar RS , MattaH, ChaudharyPM. Use of adeno-associated viral vector for delivery of small interfering RNA. Oncogene22(36), 5712–5715 (2003).
  • Xia TA , KovochichM, LiongMet al. Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 3(10), 3273–3286 (2009).
  • Thomas M , LuJJ, GeQ, ZhangCC, ChenJZ, KlibanovAM. Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc. Natl Acad. Sci. USA102(16), 5679–5684 (2005).
  • Jung JJ , SolankiA, MemoliKAet al. Selective inhibition of human brain tumor cells through multifunctional quantum-dot-based siRNA delivery. Angew. Chem. Int. Ed. Engl. 49(1), 103–107 (2010).
  • Xie J , ChenK, Lee H-Y et al. Ultrasmall c(RGDyK)-coated Fe3O4 nanoparticles and their specific targeting to integrin αvβ3-rich tumor cells. J. Am. Chem. Soc.130(24), 7542–7543 (2008).
  • Berry CC . Intracellular delivery of nanopartides via the HIV-1 tat peptide. Nanomedicine3(3), 357–365 (2008).
  • Kida S , MaedaM, HojoK, EtoY, NakagawaS, KawasakiK. Studies on heterobifunctional cross-linking reagents, 6-maleimidohexanoic acid active esters. Chem. Pharm. Bull.55(4), 685–687 (2007).
  • Kamruzzahan ASM , EbnerA, WildlingLet al. Antibody linking to atomic force microscope tips via disulfide bond formation. Bioconjug. Chem. 17(6), 1473–1481 (2006).
  • Bagalkot V , ZhangL, Levy-NissenbaumEet al. Quantum dot–aptamer conjugates for synchronous cancer imaging, therapy and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 7(10), 3065–3070 (2007).
  • Brody EN , GoldL. Aptamers as therapeutic and diagnostic agents. J. Biotechnol.74(1), 5–13 (2000).
  • Fan P , SuriAK, FialaR, LiveD, PatelDJ. Molecular recognition in the FMN–RNA aptamer complex. J. Mol. Biol.258(3), 480–500 (1996).
  • Hollingsworth MA , SwansonBJ. Mucins in cancer: protection and control of the cell surface. Nat. Rev. Cancer4(1), 45–60 (2004).
  • Savla R , TaratulaO, GarbuzenkoO, MinkoT. Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J. Control. Release153(1), 16–22 (2011).
  • Bae Y , AlaniAWG, RockichNC, LaiTSZC, KwonGS. Mixed pH-sensitive polymeric micelles for combination drug delivery. Pharm. Res.27(11), 2421–2432 (2010).
  • Yuan Q , YeudallWA, YangH. PEGylated polyamidoamine dendrimers with bis-aryl hydrazone linkages for enhanced gene delivery. Biomacromolecules11(8), 1940–1947 (2010).
  • Kale AA , TorchilinVP. Environment-responsive multifunctional liposomes. In: Liposomes: Methods and Protocols, Volume 1: Pharmaceutical Nanocarriers. Weissig V (Ed.). Humana Press, NY, USA, 213–242 (2010).
  • Aryal S , Hu C-MJ, Zhang L. Polymer–cisplatin conjugate nanoparticles for acid-responsive drug delivery. ACS Nano4(1), 251–258 (2010).
  • Banerjee SS , Chen D-H. Multifunctional pH-sensitive magnetic nanoparticles for simultaneous imaging, sensing and targeted intracellular anticancer drug delivery. Nanotechnology19(50), 505104 (2008).
  • Hardman R . A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect.114(2), 165–172 (2006).
  • Lovric J , BazziHS, CuieY, FortinGRA, WinnikFM, MaysingerD. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J. Mol. Med.83(5), 377–385 (2005).
  • Hauck TS , AndersonRE, FischerHC, NewbiggingS, ChanWCW. In vivo quantum-dot toxicity assessment. Small6(1), 138–144 (2010).
  • Fischer HC , LiuL, PangKS, ChanWCW. Pharmacokinetics of nanoscale quantum dots: in vivo distribution, sequestration, and clearance in the rat. Adv. Funct. Mater.16(10), 1299–1305 (2006).
  • Yang RH , ChangLW, WuJPet al. Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ. Health Perspect. 115(9), 1339–1343 (2007).
  • Yong KT , RoyI, DingH, BergeyEJ, PrasadPN. Biocompatible near-infrared quantum dots as ultrasensitive probes for long-term in vivo imaging applications. Small5(17), 1997–2004 (2009).
  • Shuhendler AJ , PrasadP, ChanHKCet al. Hybrid quantum dot-fatty ester stealth nanoparticles: toward clinically relevant in vivo optical imaging of deep tissue. ACS Nano 5(3), 1958–1966 (2011).
  • Nel A , XiaT, MadlerL, LiN. Toxic potential of materials at the nanolevel. Science311(5761), 622–627 (2006).
  • Lin CH , ChangLW, ChangHet al. The chemical fate of the Cd/Se/Te-based quantum dot 705 in the biological system: toxicity implications. Nanotechnology 20(21), 215101 (2009).
  • Klaassen CD , LiuJ, ChoudhuriS. Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu. Rev. Pharmacol. Toxicol.39, 267–294 (1999).
  • Sigel A , SigelH, SigelRKO. Metallothioneins and related chelators. In: Metal Ions in Life Sciences. Sigel A, Sigel H, Sigel RKO (Eds). RSC Publishing, Cambridge, UK (2009).
  • Soo Choi H , LiuW, MisraPet al. Renal clearance of quantum dots. Nat. Biotechnol. 25(10), 1165–1170 (2007).
  • Kim S , LimYT, SolteszEGet al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 22(1), 93–97 (2004).
  • Frangioni JV , Kim S-W, Ohnishi S, Kim S, Bawendi MG. Sentinel lymph node mapping with type II quantum dots. Methods Mol. Biol.374, 147–159 (2007).
  • Cho SJ , MaysingerD, JainM, RoderB, HackbarthS, WinnikFM. Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir23(4), 1974–1980 (2007).
  • Algar WR , KrullUJ. Towards multi-colour strategies for the detection of oligonucleotide hybridization using quantum dots as energy donors in fluorescence resonance energy transfer (FRET). Anal. Chim. Acta581(2), 193–201 (2007).
  • Medintz IL , BertiL, PonsTet al. A reactive peptidic linker for self-assembling hybrid quantum dot-DNA bioconjugates. Nano Lett. 7(6), 1741–1748 (2007).
  • Parak WJ , GerionD, ZanchetDet al. Conjugation of DNA to silanized colloidal semiconductor nanocrystalline quantum dots. Chem. Mater. 14(5), 2113–2119 (2002).
  • Prasuhn DE , Blanco-CanosaJB, VoraGJet al. Combining chemoselective ligation with polyhistidine-driven self-assembly for the modular display of biomolecules on quantum dots. ACS Nano 4(1), 267–278 (2010).
  • Boeneman K , DeschampsJR, Buckhout-WhiteSet al. Quantum dot DNA bioconjugates: attachment chemistry strongly influences the resulting composite architecture. ACS Nano 4(12), 7253–7266 (2010).
  • Han H , ZylstraJ, MayeMM. Direct attachment of oligonucleotides to quantum dot interfaces. Chem. Mater.23(22), 4975–4981 (2011).
  • Mitchell GP , MirkinCA, LetsingerRL. Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc.121(35), 8122–8123 (1999).
  • Zhou DJ , PiperJD, AbellC, KlenermanD, KangDJ, YingLM. Fluorescence resonance energy transfer between a quantum dot donor and a dye acceptor attached to DNA. Chem. Commun. (38), 4807–4809 (2005).
  • Gill R , WillnerI, ShwekyI, BaninU. Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage. J. Phys. Chem. B109(49), 23715–23719 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.