165
Views
0
CrossRef citations to date
0
Altmetric
Review

Hydrogels in Mucosal Delivery

, , , &
Pages 535-555 | Published online: 29 Mar 2012

References

  • Prego C , GarciaM, TorresD, AlonsoMJ. Transmucosal macromolecular drug delivery. J. Control. Release101(1–3), 151–162 (2005).
  • Furubayashi T , InoueD, KamaguchiA, HigashiY, SakaneT. Influence of formulation viscosity on drug absorption following nasal application in rats. Drug Metab. Pharmacokinet.22(3), 206–211 (2007).
  • Duan XP , MaoSR. New strategies to improve the intranasal absorption of insulin. Drug Discov. Today15(11–12), 416–427 (2010).
  • Wu J , WeiW, Wang L-Y, Su Z-G, Ma G-H. A thermosensitive hydrogel based on quaternized chitosan and poly(ethylene glycol) for nasal drug delivery system. Biomaterials28(13), 2220–2232 (2007).
  • Luppi B , BigucciF, CerchiaraT, ZecchiV. Chitosan-based hydrogels for nasal drug delivery: from inserts to nanoparticles. Exp. Opin. Drug Deliv.7(7), 811–828 (2010).
  • Tandel H , FlorenceK, MisraA. Protein and peptide delivery through respiratory pathway. In: Challenges in Delivery of Therapeutic Genomics and Proteomics. Misra A (Ed.). Elsevier, London, UK, 429–479 (2011).
  • Sudhakar Y , KuotsuK, BandyopadhyayAK. Buccal bioadhesive drug delivery - a promising option for orally less efficient drugs. J. Control. Release114(1), 15–40 (2006).
  • Salamat-Miller N , ChittchangM, JohnstonTP. The use of mucoadhesive polymers in buccal drug delivery. Adv. Drug Deliv. Rev.57(11), 1666–1691 (2005).
  • Rossi S , MarcielloM, BonferoniMCet al. Thermally sensitive gels based on chitosan derivatives for the treatment of oral mucositis. Eur. J. Pharm. Biopharm. 74(2), 248–254 (2010).
  • Nafee NA , IsmailFA, BoraieNA, MortadaLM. Mucoadhesive buccal patches of miconazole nitrate: in vitro/in vivo performance and effect of ageing. Intl J. Pharm.264(1–2), 1–14 (2003).
  • Guo B -L, Gao Q-Y. Preparation and properties of a pH/temperature-responsive carboxymethyl chitosan/poly(N-isopropylacrylamide)semi-IPN hydrogel for oral delivery of drugs. Carbohydr. Res.342(16), 2416–2422 (2007).
  • He CB , CuiFY, YinLC, QianF, TangC, YinCH. A polymeric composite carrier for oral delivery of peptide drugs: bilaminated hydrogel film loaded with nanoparticles. Eur. Polym. J.45, 368–376 (2009).
  • Bernkop-Schnurch A , KrajicekME. Mucoadhesive polymers as platforms for peroral peptide delivery and absorption: synthesis and evaluation of different chitosan-EDTA conjugates. J. Control. Release50(1–3), 215–223 (1998).
  • Valenta C . The use of mucoadhesive polymers in vaginal delivery. Adv. Drug Deliv. Rev.57(11), 1692–1712 (2005).
  • Perioli L , AmbrogiV, VeneziaL, PaganoC, RicciM, RossiC. Chitosan and a modified chitosan as agents to improve performances of mucoadhesive vaginal gels. Colloids Surf. B Biointerfaces66(1), 141–145 (2008).
  • Bonferoni MC , SandriG, RossiS, FerrariF, GibinS, CaramellaC. Chitosan citrate as multifunctional polymer for vaginal delivery – evaluation of penetration enhancement and peptidase inhibition properties. Eur. J. Pharm. Sci.33(2), 166–176 (2008).
  • Du P lessis L, Kotze A, Junginger H. Nasal and rectal delivery of insulin with chitosan and N-trimethyl chitosan chloride. Drug Deliv.17(6), 399–407 (2010).
  • Cao Y , ZhangC, ShenW, ChengZ, YuL, PingQ. Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. J. Control. Release120(3), 186–194 (2007).
  • Hosny K . Preparation and evaluation of thermosensitive liposomal hydrogel for enhanced transcorneal permeation of ofloxacin. AAPS Pharm. Sci. Technol.10(4), 1336–1342 (2009).
  • Baudner BC , O‘HaganDT. Bioadhesive delivery systems for mucosal vaccine delivery. J. Drug Target.18(10), 752–770 (2010).
  • Blanchette J , KavimandanN, PeppasNA. Principles of transmucosal delivery of therapeutic agents. Biomed. Pharmacother.58(3), 142–151 (2004).
  • Madsen F , EberthK, SmartJD. A rheological assessment of the nature of interactions between mucoadhesive polymers and a homogenised mucus gel. Biomaterials19, 1083–1092 (1998).
  • Andrews GP , LavertyTP, JonesDS. Mucoadhesive polymeric platforms for controlled drug delivery. Eur. J. Pharm. Biopharm.71(3), 505–518 (2009).
  • Sriamornsak P , WattanakornN. Rheological synergy in aqueous mixtures of pectin and mucin. Carbohyd. Polym.74, 474–481 (2008).
  • Vasir JK , TambwekarK, GargS. Bioadhesive microspheres as a controlled drug delivery system. Intl J. Pharm.255(1–2), 13–32 (2003).
  • Lee JW , ParkJH, RobinsonJR. Bioadhesive-based dosage forms: the next generation. J. Pharm. Sci.89, 850–866 (2000).
  • Ishida M , NambuN, NagaiT. Ointment-type oral mucosal dosage form of Carbopol containing prednisolone for treatment of aptha. Chem. Pharm. Bull.31, 1010–1014 (1983).
  • Hagesaether E , SandeSA. In vitro measurements of mucoadhesive properties of six types of pectin. Drug Dev. Ind. Pharm.33, 417–425 (2007).
  • Pilcer G , AmighiK. Formulation strategy and use of excipients in pulmonary drug delivery. Intl J. Pharm.392, 1–19 (2010).
  • Jintapattanakit A , MaoS, KisselT, JunyaprasertVB. Physicochemical properties and biocompatibility of N-trimethyl chitosan: effect of quaternization and dimethylation. Eur. J. Pharm. Biopharm.70(2), 563–571 (2008).
  • Duchene D , PonchelG. Principle and investigation of the bioadhesion mechanism of solid dosage forms. Biomaterials13(10), 709–714 (1992).
  • Xiang J , XiaolingL. Investigation of correlations between mucoadhesion and surface energy properties of mucoadhesives. J. Appl. Polym. Sci.102, 2608–2615 (2006).
  • Quraishi MS , JonesNS, MasonJ. The rheology of nasal mucus: a review. Clin. Otolaryngol. Allied Sci.23(5), 403–413 (1998).
  • Peppas NA , BuriPA. Surface interfacial and molecular aspects of polymer bioadhesion on soft tissues. J. Control. Release2, 257–275 (1985).
  • Solomonidou D , CremerK, KrummeM, KreuterJ. Effect of carbomer concentration and degree of neutralisation on the mucoadhesive properties of polymer films. J. Biomater. Sci. Polym. Ed.12, 1191–1205 (2001).
  • Madsen F , EberthK, SmartJD. A rheological examination of the mucoadhesive/mucus interaction: the effect of mucoadhesive type and concentration. J. Control. Release50, 167–178 (1998).
  • Smart JD , KellawayIW, WorthingtonHE. An in vitro investigation of mucosa-adhesive materials for use in controlled drug delivery. J. Pharm. Pharmacol.36, 295–299 (1984).
  • Mikos AG , PeppasNA. Systems for controlled release of drugs. Bioadhesive systems. STP Pharm. Sci.19, 705–715 (1986).
  • Leung SH , RobinsonJR. The contribution of anionic polymer structural features to mucoadhesion. J. Control. Release5, 223–230 (1988).
  • Wong C , YuenK, PehK. An in vitro method for buccal adhesion studies: importance of instrument variables. Intl J. Pharm.180, 47–57 (1999).
  • Majithiya RJ , GhoshPK, UmrethiaML, MurthyRSR. Thermoreversible-mucoadhesive gel for nasal delivery of sumatriptan. AAPS Pharm. Sci. Tech.7(3), 67 (2006).
  • Hassan EE , GalloJM. A simple rheological method for the in vitro assessment of mucin-polymer bioadhesive bond strength. Pharm. Res.7, 491–495 (1990).
  • Riley RG , SmartJD, TsibouklisJet al. An investigation of mucus/polymer theological synergism using synthesised and characterised poly(acrylic acid)s. Intl J. Pharm. 217(1–2), 87–100 (2001).
  • Mayol L , QuagliaF, BorzacchielloA, AmbrosioL, La Rotonda MI. A novel poloxamers/hyaluronic acid in situ forming hydrogel for drug delivery: rheological, mucoadhesive and in vitro release properties. Eur. J. Pharm. Biopharm.70(1), 199–206 (2008).
  • Tamburic S , CraigDM. A comparison of different in vitro methods for measuring mucoadhesive performance. Eur. J. Pharm. Biopharm.44, 159–167 (1997).
  • Rossi S , BonferoniMC, LippoliGet al. Influence of mucin type on polymer-mucin rheological interactions. Biomaterials 16, 1073–1079 (1995).
  • Kocevar-Nared J , KristlJ, Smid-KorbarJ. Comparative rheological investigation of crude gastric mucin and natural gastric mucus. Biomaterials18, 677–681 (1997).
  • Batchelor HK , BanningD, DettmarPW, HampsonFC, JolliffeIG, CraigDQM. An in vitro mucosal model for prediction of the bioadhesion of alginate solutions to the oesophagus. Intl J. Pharm.238, 123–132 (2002).
  • Jabbari E , WisniewskiN, PeppasNA. Evidence of mucoadhesion by chain interpretation at a poly(acrylic acid)/mucin interface using ATR-FTIR spectroscopy. J. Control. Release26(2), 99–108 (1993).
  • Patel MM , SmartJD, NevellTG, EatonP, EwenRJ, TsibouklisJ. Mucin/poly(carboxylic acid) interactions: a spectroscopic investigation of mucoadhesion. Biomacromolecules4(5), 1184–1190 (2003).
  • Sriamornsak P , WattanakornN, NunthanidJ, PuttipipatkhachornS. Mucoadhesion of pectin as evidence by wettability and chain interpenetration. Carbohyd. Polym.74, 458–467 (2008).
  • Joergensen L , KlosgenB, SimonsenAC, BorchJ, HagesaetherE. New insights into the mucoadhesion of pectins by AFM roughness parameters in combination with SPR. Intl J. Pharm.411(1–2), 162–168 (2011).
  • Esposito P , ColomboI, LovrecichM. Investigation of surface properties of some polymers by thermodynamic and mechanical approach: possibility of predicting mucoadhesion and biocompatibility. Biomaterials15(3), 177–182 (1994).
  • Lehr C -M, Bouwstra JA, Bodde HE, Junginger HE. A surface energy analysis of mucoadhesion: contact angle measurements on polycarbophil and pig intestinal mucosa in physiologically relevant fluids. Pharm. Res.9(1), 70–75 (1992).
  • Takeuchi H , ThongborisuteJ, MatsuiY, SugiharaH, YamamotoH, KawashimaY. Novel mucoadhesion tests for polymers and polymer-coated particles to design optimal mucoadhesive drug delivery systems. Adv. Drug Deliv. Rev.57, 1583–1594 (2005).
  • Sajomsang W , RuktanonchaiUR, GonilP, NuchuchuaO. Mucoadhesive property and biocompatibility of methylated N-aryl chitosan derivatives. Carbohyd. Polym.78, 945–952 (2009).
  • Cleary J , BrombergL, MagnerE. Adhesion of polyether-modified poly(acrylic acid) to mucin. Langmuir20, 9755–9762 (2004).
  • Soane RJ , FrierM, PerkinsAC, JonesNS, DavisSS, IllumL. Evaluation of the clearance characteristics of bioadhesive systems in humans. Intl J. Pharm.178, 55–65 (1999).
  • Richardson JL , WhetstoneJ, FisherNFet al. Gamma scintigraphy as a novel method to study the distribution and retention of a bioadhesive vaginal delivery system in sheep. J. Control. Release 42, 133–142 (1996).
  • Albrecht K , GreindlM, KremserC, WolfC, DebbageP, Bernkop-SchnurchA. Comparative in vivo mucoadhesion studies of thiomer formulations using magnetic resonance imaging and fluorescence detection. J. Control. Release115, 78–84 (2006).
  • Donovan M , MengpingZ. Drug effects on in vivo nasal clearance in rats. Intl J. Pharm.116, 77–86 (1995).
  • Riley RG , SmartJD, TsibouklisJet al. The gastrointestinal transit profile of C14-labelled poly(acrylic acids): an in vivo study. Biomaterials 22(13), 1861–1867 (2001).
  • Roldo M , BarbuE, BrownJF, LaightDW, SmartJD, TsibouklisJ. Orally administered, colon-specific mucoadhesive azopolymer particles for the treatment of inflammatory bowel disease: an in vivo study. J. Biomed Mater. Res.79A(3), 706–715 (2006).
  • Maurya SK , PathakK, BaliV. Therapeutic potential of mucoadhesive drug delivery systems – an updated patent review. Recent Pat. Drug Deliv. Formul.4, 256–265 (2010).
  • Dodou D , BreedveldP, WieringaPA. Mucoadhesives in the gastrointestinal tract: revisiting the literature for novel applications. Eur. J. Pharm. Biopharm.60, 1–16 (2005).
  • Wichterle O , LimD. Hydrophilic gels for biological use. Nature185, 117–118 (1960).
  • Bhattarai N , GunnJ, ZhangM. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Delivery Rev.62(1), 83–99 (2010).
  • Kavanagh G , Ross-MurphySB. Rheological characterisation of polymer gels. Prog. Polym. Sci.23, 533–562 (1998).
  • Berger J , ReistM, MayerJM, FeltO, GurnyR. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur. J. Pharm. Biopharm.57, 35–52 (2004).
  • Hamidi M , AzadiA, RafieiP. Hydrogel nanoparticles in drug delivery. Adv. Drug Deliv. Rev.60(15), 1638–1649 (2008).
  • Dash M , ChielliniF, OttenbriteR, ChielliniE. Chitosan – a versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci.36, 981–1014 (2011).
  • Hunt N , SmithA, GbureckU, SheltonR, GroverL. Encapsulation of fibroblasts causes accelerated alginate hydrogel degradation. Acta Biomater.6, 3649–3656 (2010).
  • Boontheekul T , KongH, MooneyD. Controlling alginate gel degradation utilising partial oxidation and bimodal molecular weight distribution. Biomaterials26(15), 2455–2465 (2005).
  • Kong H , AlsbergE, KaiglerD, LeeK, MooneyD. Controlling degradation of hydrogels via the size of cross-linked junctions. Adv. Mater.16(21), 1917 (2004).
  • Lin C -C, Metters AT. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv. Drug Deliv. Rev.58(12–13), 1379–1408 (2006).
  • Lu S , MingzhuL, NiB. An injectable oxidised carboxymethylcellulose/N-succinyl-chitosan hydrogel. Chem. Eng. J.160, 779–787 (2010).
  • St‘astny M , PlocovaD, EtrychT, KovarM, UlbrichK, RihovaB. HPMA-hydrogels containing cytostatic drugs. Kinetics of the drug release and in vivo efficacy. J. Control. Release81(1–2), 101–111 (2002).
  • Konishi M , TabataY, KariyaMet al. In vivo anti-tumour effect of dual release of cisplatin and adriamycin from biodegradeable gelatin hydrogel. J. Control. Release103(1), 7–19 (2005).
  • Khutoryanskiy V . Hydrogen-bonded interpolymer complexes as materials for pharmaceutical applications. Intl J. Pharm.334(1–2), 15–26 (2007).
  • Chun C , LeeS, KimS, YangH, SongS. Thermosensitive poly(organophosphazene)–paclitaxel conjugate gels for antitumour applications. Biomaterials30, 2349–2360 (2009).
  • Benoit D , NuttelmanC, CollinsS, AnsethKS. Synthesis and characterisation of a fluvastatin-releasing hydrogel delivery system to modulate hMSC differentiation and function for bone regeneration. Biomaterials27, 6102–6110 (2006).
  • Hoare T , KohaneD. Hydrogels in drug delivery: progress and challenges. Polymer49, 1993–2007 (2008).
  • Nuttelman C , TripodiM, AnsethKS.Dexamethasone-functionalised gels induce osteogenic differentiation of encapsulated hMSCs. J. Biomed. Mater. Res.76, 183–195 (2006).
  • Shechter Y , MironchikM, RubinrautSet al. Reversible pegylation of insulin facilitates its prolonged action in vivo. Eur. J. Pharm. Biopharm. 70(1), 19–28 (2008).
  • Yamamoto A , HayakawaE, LeeVH. Insulin and proinsulin proteolysis in mucosal homogenates of the albino rabbit: implications in peptide delivery from nonoral routes. Life Sci.47(26), 2465–2474 (1990).
  • Shao Z , KrishnamoorthyR, MitraAK. Cyclodextrins as nasal absorption promoters of insulin: mechanistic evaluations. Pharm. Res.9(9), 1157–1163 (1992).
  • Fefelova N , NurkeevaZ, MunG, KhutoryanskiyV. Mucoadhesive interactions of amphiphilic cationic copolymers based on [2-(methacryloyloxy)ethyl]triethylammonium chloride. Intl J. Pharm.339, 25–32 (2007).
  • Roldo M , FatourosDG. Chitosan derivative based hydrogels as drug delivery platforms: applications in drug delivery and tissue engineering. In: Studies in Mechanobiology, Tissue Engineering and Biomaterials. Zilberman M (Ed.). Springer, Berlin, Germany (2011).
  • Boonyo W , JungingerHE, WaranuchN, PolnokA, PitaksuteepongT. Chitosan and trimethyl chitosan chloride (TMC) as adjuvants for inducing immune repsonses to ovalbumin in mice following nasal administration. J. Control. Release121(3), 168–175 (2007).
  • Snyman D , HammanJH, KotzeAF. Evaluation of the mucoadhesive properties of N-trimethyl chitosan chloride. Drug Dev. Ind. Pharm.29(1), 61–69 (2003).
  • Bernkop-Schnurch A , GaborF, SzostakM, LubitzW. An adhesive drug delivery system based on K99-fimbrae. Eur. J. Pharm. Sci.3, 293–299 (1995).
  • Roldo M , HornofM, CalicetiP, Bernkop-SchnurchA. Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery: synthesis and in vitro evaluation. Eur. J. Pharm. Biopharm.57(1), 115–121 (2004).
  • Sajeesh S , VauthierC, GueutinC, PonchelG, SharmaCP. Thiol functionalised polymethacrylic acid-based hydrogel microparticles for oral insulin delivery. Acta Biomater.6, 3072–3080 (2010).
  • Pritchard CD , O‘SheaTM, SiegwartDJet al. An injectable thiol-acrylate poly(ethylene glycol) hydrogel for sustained release of methylprednisolone sodium succinate. Biomaterials 32, 587–597 (2011).
  • Aimetti AA , MachenAJ, AnsethKS. Poly(ethylene glycol) hydrogels formed by thiol-ene photopolymerisation for enzyme-responsive protein delivery. Biomaterials30(30), 6048–6054 (2009).
  • Jiang L , GaoL, XW, TangL, MaJ. The application of mucoadhesive polymers in nasal drug delivery. Drug Dev. Ind. Pharm.36(3), 323–336 (2010).
  • Nazar H , FatourosDG, Van Der Merwe SM et al. Thermosensitive hydrogels for nasal drug delivery: The formulation and characterisation of systems based on N-trimethyl chitosan chloride. Eur. J. Pharm. Biopharm.77(2), 225–232 (2011).
  • Khan S , PatilK, BobadeN, YeoleP, GaikwadR. Formulation of intranasal mucoadhesive temperature-mediated in situ gel containing ropinirole and evaluation of brain targeting efficiency in rats. J. Drug Targeting18(3), 223–234 (2010).
  • Ved P , KimK. Poly(ethylene oxide/propylene oxide) copolymer thermo-reversible gelling system for the enhancement of intranasal zidovudine delivery to the brain. Intl J. Pharm.411, 1–9 (2011).
  • Nguyen M , LeeD. Bioadhesive PAA-PEG-PAA triblock copolymer hydrogels for dryg delivery in oral cavity. Macromol. Res.18(3), 284–288 (2010).
  • Shastri D , PrajapatiS, PatelL. Thermoreversible mucoadhesive opthalmic in situ hydrogel: design and optimisation using a combination of polymers. Acta Pharm.60, 349–360 (2010).
  • Gupta P , VermaniK, GargS. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today7(10), 569–579 (2002).
  • Sharma G , SrikanthM, UhumwanghoM, Phani Kumar K, Ramana Murthy K. Recent trends in pulsatile drug delivery systems – a review. Intl J. Drug Deliv.2, 200–212 (2010).
  • Qi W , YanX, DuanL, YangY, LiJ. Glucose-sensitive microcapsules from gluteraldehyde cross-linked hemoglobin and glucose oxidase. Biomacromolecules10(5), 1212–1216 (2009).
  • Yin R , WangK, HanJ, NieJ. Photo-crosslinked glucose-sensitive hydrogels based on methacrylate modified dextran-concanavalin and PEG dimethacrylate. Carbohyd. Polym.82, 412–418 (2010).
  • Jin X , ZhangX, WuZet al. Amphiphilic random glycopolymer based on phenylboronic acid: synthesis, characterisation, and potential as glucose-sensitive matrix. Biomacromolecules 10(6), 1337–1345 (2009).
  • Jason D , MatthewR, SantoshkumarKet al. Glucose responsive hydrogel networks based on protein recognition. Macromol. Biosci. 9(9), 864–868 (2009).
  • Roy D , CambreJ, SumerlinB. Future perspectives and recent advances in stimuli-responsive materials. Prog. Polym. Sci.35, 278–301 (2010).
  • Miyata T , AsamiN, UragamiT. A reversibly antigen-responsive hydrogel. Nature399, 766–769 (1999).
  • Kurisawa M , YuiN. Dual-stimuli-responsive drug release from interpenetrating polymer network-structured hydrogels of gelatin and dextran. J. Control. Release54, 191–200 (1998).
  • Wang L , LiuM, GaoC, MaL, CuiD. A pH-, thermo-, and glucose-, triple-responsive hydrogels: Synthesis and controlled drug delivery. React. Func. Polym.70, 159–167 (2010).
  • Gutowska A , BarkJS, KwonIC, BaeYH, ChaY, KimSW. Squeezing hydrogels for controlled drug delivery. J. Control. Release48(2–3), 141–148 (1997).
  • Koutsopoulos S , UnsworthLD, NagaiY, ZhangS. Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold. Proc. Natl Acad. Sci. USA106(12), 4623–4628 (2009).
  • Nagai Y , UnsworthLD, KoutsopoulosS, ZhangS. Slow release of molecules in self-assembling peptide nanofiber scaffold. J. Control. Release115, 18–25 (2006).
  • Altunbas A , LeeSJ, RajasekaranSA, SchneiderJP, PochanDJ. Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials32(25), 5906–5914 (2011).
  • Renliang H , WeiQ, LibinF, SuR, HeZ. Self assembling peptide polysaccharide hybrid hydrogel as a potential carrier for drug delivery. Soft Matter7(13), 6222–6230 (2011).
  • Zhang S . Emerging biological materials through molecular self-assembly. Biotechnol.Adv.20, 321–339 (2002).
  • Wang W , WangH, RenCet al. A saccharide-based supramolecular hydrogel for cell culture. Carbohyd. Res. 346, 1013–1017 (2011).
  • Chen J , ParkK. Synthesis and characterisation of superporous hydrogel composites. J. Control. Release65, 73–82 (2000).
  • Dorkoosh FA , BrusseJ, VerhoefJC, BorchardG, Rafiee-TehraniM, JungingerHE. Preparation and NMR characterisation of superporous hydrogels (SPH) and SPH composities. Polymer41, 8213–8220 (2000).
  • Tang C , YinC, PeiY, ZhangM, WuL. New superporous hydrogels composites based on aqueous carbopol solution (SPHCcs): synthesis, characterisation and in vitro bioadhesive force studies. Eur. Polym. J.41(3), 557–562 (2005).
  • Yin L , FeiL, CuiF, TangC, YinC. Superporous hydrogels containing poly(acrylic acid-co-acrylamide)/O-carboxymethyl chitosan intepenetrating polymer networks. Biomaterials28, 1258–1266 (2007).
  • Dorkoosh FA , VerhoefJC, BorchardG, Rafiee-TehraniM, JungingerHE. Development and characterisation of a novel peroral peptide drug delivery system. J. Control. Release71, 307–318 (2001).
  • Dorkoosh FA , BorchardG, Rafiee-TehraniM, VerhoefJC, JungingerHE. Evaluation of superporous hydrogel (SPH) and SPH composite in porcine intestine ex vivo: assessment of drug transport, morphology effect, and mechanical fixation to intestinal wall. Eur. J. Pharm. Biopharm.53, 161–166 (2002).
  • Kim D , ParkK. Swelling and mechanical properties of superporous hydrogels of poly(acrylamide-co-acrylic acid/polyethylenimine interpenetrating polymer networks. Polymer45, 189–196 (2004).
  • Yin L , DingJ, ZhangJ, HeC, TangC, YinC. Polymer integrity related absorption mechanism of superporous hydrogel containing intepenetrating polymer networks for oral delivery of insulin. Biomaterials31, 3347–3356 (2010).
  • Verestiuc L , NastasescuO, BarbuE, SarvaiyaI, GreenKL, TsibouklisJ. Functionalised chitosan-NIPAM/HEMA hybrid polymer network as inserts for ocular drug delivery: synthesis, in vitro assessment and in vivo evaluation. J. Biomed. Mater. Res.77A(4), 726–735 (2006).
  • Pelton R . Temperature-sensitive aqueous microgels. Adv. Coll. Interface Sci.85, 1–35 (2000).
  • Malsten M , BysellH, Hansson,P. Biomacromolecules in microgels – opportunities and challenges for drug delivery. Curr. Opin. Coll. Interface Sci.15, 435–444 (2010).
  • Yallapu MM , JaggiM, ChauhanSC. Design and engineering of nanogels for cancer treatment. Drug Discov. Today16(9/10), 457–463 (2011).
  • Vinogradov SV . Polyplex nanogel formulations for frug delivery of cytotoxic nucleoside analogs. J. Control. Release107, 143–157 (2005).
  • Shin Y , ChangJH, LiuJ, WillifordR, Shin Y-K, Exarhos GJ. Hybrid nanogels for sustainable positive thermosensitive drug release. J. Control. Release73, 1–6 (2001).
  • Nukolova NV , OberoiHS, CohenSM, KabanovAV, BronichTK. Folate-decorated nangels for targeted therapy of overian cancer. Biomaterials32, 5417–5426 (2011).
  • Li N , WangJ, YangX, LiL. Novel nanogels as drug delivery systems for poorly soluble anticancer drugs. Coll. Surf. B. Biointerfaces83, 237–244 (2011).
  • Kettel M , DierkesF, SchasferK, MoellerM, PichA. Aqueous nanogels modified with cyclodextrin. Polymer52, 1917–1924 (2011).
  • Barbu E , VerestiucL, IancuM, JatariuA, LunguA, TsibouklisJ. Hybrid polymeric hydrogels for ocular drug delivery: nanoparticulate systems from copolymers of acrylic acid-functionalised chitosan and N-isopropylacrylamide or 2-hydroxyethyl methacrylate. Nanotechnology doi:10.1088/09574484/20/22/225108 (2009).
  • Ludwig A . The use of mucoadhesive polymers in ocular drug delivery. Adv. Drug Deliv. Rev.57, 1595–1639 (2005).
  • Fujishima H , TodaI, YamadaM, SatoN, TsubotaK. Corneal temperature in patients with dry eye evaluated by infrared radiation thermometry. Br. J. Opthalmol.80(1), 29–32 (1996).
  • Nicolazzo JA , ReedBL, FinninBC. Buccal penetration enhancers – how do they really work? J. Control. Release105, 1–15 (2005).
  • Spierings TA , PetersMC, PlasschaertAJ. Surface temperature of oral tissues. A review. J. Biol. Buccale12(2), 91–99 (1984).
  • Aframan DJ , DavidowitzT, BenolielR. The distribution of oral mucosal pH values in healthy saliva secretors. Oral Dis.12(4), 420–423 (2006).
  • Pires A , FortunaA, AlvesG, FalcaoA. Intranasal drug delivery: how, why and what for? J. Pharm. Sci.12(3), 288–311 (2009).
  • Mygind N , DahlR. Anatomy, physiology and function of the nasal cavities in health and disease. Adv. Drug Deliv. Rev.29, 3–12 (1998).
  • Elad D , WolfM, KeckT. Air-conditioning in the human nasal cavity. Respir. Physiol. Neurobiol.163, 121–127 (2008).
  • Borrill Z , StarkeyC, VestboJ, SinghD. Reproducibility of exhaled breath condensate pH in chronic obstructive pulmonary disease. Eur. Respir. J.25, 269–274 (2005).
  • Cole P . Respiratory mucosal vascular responses, air conditioning and thermoregulation. J. Laryngol. Otol.68(5), 1–10 (1954).
  • Das Neves J , BahiaMF. Gels as vaginal drug delivery systems. Intl J. Pharm.318, 1–14 (2006).
  • Valenta C . The use of mucoadhesive polymers in vaginal delivery. Adv. Drug Deliv. Rev.57, 1692–1712 (2005).
  • Rashad AL , TofflerWL, WolfNet al. Vaginal P02 in healthy women and in women infected with Trichomonas vaginalis: potential implications for metronidazole therapy. Am. J. Obstet. Gynecol. 166, 620–624 (1992).
  • Aungst B . Oral mucosal permeation enhancement: possibilities and limitations. In: Oral Mucosal Delivery. Rathbone MJ (Ed.). Marcel Dekker, New York, NY, USA (1996).
  • Chien Y . Oral drug delivery and delivery systems. In: Novel Drug Delivery Systems. Chien Y (Ed.). Marcel Dekker, New York, NY, USA (1991).
  • Lee V . Enzymatic barriers to peptide and protein absorption and the use of penetration enhancers to modify absorption. In: Delivery Systems for Peptide Drugs. Davis SS, Illum I, Tomlison E (Eds). Plenum Press, New York, NY, USA (1989).
  • Yu J , ChienYW. Pulmonary drug delivery: physiological and mechanistic aspects. Crit. Rev. Ther. Drug Carr. Syst.14, 395–453 (1997).
  • Byron PR . Respiratory Drug Delivery. Byron PR (Ed.). CRC Press, Boca Raton, FL, USA (1990).
  • Morimoto K , TakeedaT, NakamotoY. Effective vaginal absorption of insulin in diabetic rats and rabbits using polyacrylic acid aqueous gel bases. Intl J. Pharm.12, 107–111 (1982).
  • Yu-Kyoung O , Jeong-SookP, HoY, Chong-KookK. Enhanced mucosal and systemic immune responses to a vaginal vaccine coadministered with RANTES expressing plasmid DNA using in situ-gelling mucoadhesive delivery system. Vaccine21, 1980–1988 (2003).
  • Ghelardi E , TavantiA, LupettiAet al. Control of Candida albicans murine vaginitis by topical administration of polycarbophil-econazole complex. Antimicrob. Agents Chemother. 42(9), 2434–2436 (1998).
  • Zaki NM , AwadGA, MortadaND, Abd Elhady SS. Enhanced bioavailability of metoclopramide HCl by intranasal administration of a mucoadhesive in situ gel with modulated rheological and mucociliary transport properties. Eur. J. Pharm. Sci.32, 296–307 (2007).
  • Cassidy J , BernerB, ChanKet al. Human transbuccal absorption of diclofenac sodium from a prototype hydrogel delivery device. Pharm. Res. 10(1), 126–129 (1993).
  • Lindell K , EngstromS. In vitro release of timolol maleate from an in situ gelling polymer system. Intl J. Pharm.95(1–3), 219–228 (1993).
  • Dhiman M , YedurkarP, SawantKK. Formulation, characterisation and in vitro evaluation of bioadhesive gels containing 5-fluorouracil. Pharm. Dev. Tech.13(1), 15–25 (2008).
  • Ozsoy Y , TuncelT, CanA, AkevN, BirteksozS, GercekerA. In vivo studies on nasal preparations of ciprofloxacin hydrochloride. Pharmazie55(8), 607–609 (2000).
  • Mayol L , BiondiM, QuagliaFet al. Injectable thermally responsive mucoadhesive gel for sustained protein delivery. Biomacromolecules 12, 28–33 (2011).
  • Khan F , TareRS, OreffoROC, BradleyM. Versatile biocompatible polymer hydrogels: scaffolds for cell growth. Angew. Chem. Int. Ed. Engl.121(5), 996–1000 (2009).
  • Bhattarai N , RamayHR, GunnJ, MatsenFA, ZhangM. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J. Control. Release103(3), 609–624 (2005).
  • Azab AK , DovinerV, OrkinBet al. Biocompatibility evaluation of cross-linked chitosan hydrogels after subcutaneous and intraperitoneal implantation in the rat. J. Biomed. Mater. Res. 83A(2), 412–422 (2007).
  • Patel VR , AmijiM. Preparation and characterisation of freeze-dried chitosan-poly(ethylene oxide) hydrogels for site-specific antibiotic delivery to the stomach. Pharm. Res.13(4), 588–593 (1996).
  • Varshosaz J , SadraiH, HeidariA. Nasal delivery of insulin using bioadhesive chitosan gels. Drug Deliv.13(1), 31–38 (2006).
  • Chelladurai S , MishraM, MishraB. Design and evaluation of bioadhesive in situ nasal gel of ketorolac tromethamine. Chem. Pharm. Bull.56(11), 1596–1599 (2008).
  • Rasool N , YasinT, HengJYY, AkhterZ. Synthesis and characterisation of novel pH-, ionic strength and temperature- sensitive hydrogel for insulin delivery. Polymer51, 1687–1693 (2010).
  • Takatsuka S , KitazawaT, MoritaT, HorikiriY, YoshinoH. Enhancement of intestinal absorption of poorly absorbed hydrophilic compounds by simultaneous use of mucolytic agent and non-ionic surfactant. Eur. J. Pharm. Biopharm.62, 52–58 (2006).
  • Nicolazzo JA , ReedBL, FinninBC. Assessment of the effects of sodium dodecyl sulfate on the buccal permeability of caffeine and estradiol. J. Pharm. Sci.93, 431–440 (2004).
  • Froebe CL , SimionFA, RheinRH, CaganRH, KligmanA. Stratum corneum lipid removal by surfactants: relation to in vitro irritation. Dermatologica181, 277–283 (1990).
  • Kotze AF , LuessenHL, DeleeuwBJ, DeboerBG, VerhoefJC, JungingerHE. N-trimethyl chitosan chloride as a potential absorption enhancer across mucosal surfaces: In vitro evaluation in intestinal epithelial cells (Caco-2). Pharm. Res.14(9), 1197–1202 (1997).
  • Morishita M , MorishitaI, TakayamaK, MachidaY, NagaiT. Site-dependent effect of aprotinin, sodium caprate, Na2EDTA and sodium glycocholate on intestinal absorption of insulin. Biol. Pharm. Bull.16, 68–72 (1993).

Patents

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.