482
Views
0
CrossRef citations to date
0
Altmetric
Review

Electrospun Nanofibers in Drug Delivery: Recent Developments and Perspectives

, , , , &
Pages 515-533 | Published online: 29 Mar 2012

References

  • Garcia-Bennett A , NeesM, FadeeB. In search of the holy grail: folate-targeted nanoparticles for cancer therapy. Biochem. Pharm.81(8), 976–984 (2011).
  • Vemula PK , BoilardE, SyedAet al. On-demand drug delivery from self-assembled nanofibrous gels: a new approach for treatment of proteolytic disease. J. Biomed. Mater. Res. 97(2), 103–110 (2011).
  • Forbes ZG , YellenBB, BarbeeKA, Friedman,G. An approach to targeted drug delivery based on uniform magnetic fields. IEEE Trans. Magn.39(5), 3372–3377 (2003).
  • Wolraich ML , GreenhillLL, PelhamWet al. Randomized, controlled trial of oros methylphenidate once a day in children with attention-deficit/hyperactivity disorder. Pediatrics 108(4), 883–892 (2001).
  • Swanson J . Compliance with stimulants for attention-deficit/hyperactivity disorder: issue and approaches for improvement. CNS Drugs17(2), 117–131 (2003).
  • Keith S . Advances in psychotropic formulations. Progress Neuropsychopharmacol. Biol. Psychiatry30(6), 996–1008 (2006).
  • Modi NB , LindemulderB, GuptaSK. Single- and multiple-dose pharmacokinetics of an oral once-a-day osmotic controlled-release OROS (methylphenidate HCl) formulation. J. Clin. Pharmacol.40(4), 379–388 (2000).
  • Merisko-Liversidge EM and Liversidge G. Drug nanoparticles: formulating poorly water-soluble compounds. Toxicol. Pathol.36(1), 43–48 (2008).
  • Leuner C , DressmanJ. Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm.50(1), 47–60 (2000).
  • Faller B . Improving solubility in lead optimization. Am. Pharm. Rev.7, 30–33 (2004).
  • Alsenz J , KansyM. High throughput solubility measurement in drug discovery and development. Adv. Drug Deliver Rev.59(7), 546–567 (2007).
  • Lipinski CA . Drug-like properties and the causes of poor solubility and poor permeability. J. Pharm. Toxicol. Methods44(1), 235–249 (2000).
  • Ku MS , DulinW. A biopharmaceutical classification-based right-first-time formulation approach to reduce human pharmacokinetic variability and project cycle time from first-in-human to clinical proof-of-concept. Pharm. Dev. Technol.16(1), 1–18 (2010).
  • Thayer AM . Custom manufacturers take on drug solubility issues to help pharmaceutical firms move products through development. Chem. Eng. News88, 13–18 (2011).
  • Yalkowsky SH , ValvaniSC. Solubility and partitioning. I. Solubility of nonelectrolytes in water. J. Pharm. Sci.69(8), 912–922 (1980).
  • Serajuddin ATM . Salt formation to improve drug solubility. Adv. Drug Deliv. Rev.59(7), 603–616 (2007).
  • Sweetana S , AkersMJ, Solubility principles and practices for parenteral dosage form development, PDA. J. Pharm. Sci. Tech.50(5), 330–342 (1996).
  • Kawabata Y , WadaK, NakataniM, YamadaS, OnoueS. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int. J. Pharm.420(1), 1–10 (2011).
  • Datta S , GrantDJW. Crystal structures of drugs: advances in determination, prediction and engineering. Nat. Rev. Drug Discov.3(1), 42–57 (2004).
  • Zhang GG , LawD, SchmittEA, QiuY. Phase transformation considerations during process development and manufacture of solid oral dosage forms. Adv. Drug Deliv. Rev.56(3), 371–390 (2004).
  • Hancock BC , ParksM. What is the true solubility advantage for amorphous pharmaceuticals? Pharm. Res.17(4), 397–404 (2000).
  • Yu L . Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv. Drug Deliv. Rev.48(1), 27–42 (2001).
  • Vasconcelos T , SarmentoB, CostaP. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov. Today12(23–24), 1068–1075 (2007).
  • Gupta P , KakumanuVK, BansalAK. Stability and solubility of celecoxib–PVP amorphous dispersions: a molecular perspective. Pharm. Res.21(10), 1762–1769 (2004).
  • Bhattacharya S , SuryanarayananR. Local mobility in amorphous pharmaceuticals-characterization and implications on stability. J. Pharm. Sci.98(9), 2935–2953 (2009).
  • Chaumeil JC . Micronisation: a method of improving the bioavailability of poorly soluble drugs. Methods Find. Exp. Clin. Pharmacol.20(3), 211–215 (1998).
  • Blagden de Matas M , GavanPT, YorkP. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv. Drug Deliv. Rev.59(7), 617–630 (2007).
  • Shariare MH , de Matas M, York P, Shao Q. The impact of material attributes and process parameters on the micronisation of lactose monohydrate. Int. J. Pharm., 408(1–2), 58–66 (2011).
  • Xu R . Progress in nanoparticles characterization: sizing and zeta potential measurement. Particuology6(7), 112–115 (2008).
  • Merisko-Liversidge E , LiversidgeGL. Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv. Drug Deliv. Rev.63(6), 427–440 (2011).
  • Krishnaiah YSR . Pharmaceutical technologies for enhancing oral bioavailability of poorly soluble drugs. J. Bioequiv. Bioavail.2(2), 28–36 (2010).
  • Bottomley K , Nanotechnology for drug delivery: a validated technology? Drug Deliv. Rep.20–21 (2006).
  • Verma S , GokhaleR, BurgessDJ. A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. Int. J. Pharm.380(1–2), 216–222 (2009).
  • Patravale VB , DateAA, Kulkarni,RM. Nanosuspensions: a promising drug delivery strategy. J. Pharm. Pharmacol.56(7), 827–840 (2004).
  • Strickley RG . Solubilising excipients in oral and injectable formulations. Pharm. Res.21(2), 201–230 (2004).
  • Miyako Y , KhalefN, MatsuzakiK, PinalR. Solubility enhancement of hydrophobic compounds by cosolvents: role of solute hydrophobicity on the solubilization effect. Int. J. Pharm.393(1–2), 48–54 (2010).
  • Rubino JT . Cosolvents and cosolvency. In: Encyclopedia of Pharmaceutical Technology (2nd Edition). Swarbrick J, Boylan JC (Eds). Marcel Dekker Inc, NY, USA (1990).
  • Florence AT , AttwoodD. Physicochemical Principles of Pharmacy (4th Edition). Pharmaceutical Press, London, UK (2011).
  • Jain S , JainP, UmamaheshwariRB, JainNK. Transfersomes-a novel vesicular carrier for enhanced transdermal delivery: development, characterization, and performance evaluation. Drug Dev. Ind. Pharm.29(9), 1013–1026. (2003).
  • Gregor C . Lipid vesicles and other colloids as drug carriers on the skin. Adv. Drug Deliv. Rev.56(5), 675–711 (2004).
  • zur Mühlen A , SchwarzC, MehnertW. Solid lipid nanoparticles (SLN) for controlled drug delivery-drug release and release mechanism. Eur. J. Pharm. Biopharm.45(2), 149–155 (1998).
  • Loftsson T , BrewsterME, MassonM, Role of cyclodextrins in improving oral drug delivery. Am. J. Drug Deliv.2(4), 175–261 (2004).
  • Davis ME , BrewsterME, Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug Discov.3(12), 1023–1035 (2004).
  • Sekiguchi K , ObiN. Studies on absorption of eutectic mixture. II. Absorption of fused conglomerates of chloramphenicol and urea in rabbits. Chem. Pharm. Bull.12, 134–144 (1964).
  • Vippagunta SR , WangZ, HornungS, KrillSL. Factors affecting the formation of eutectic solid dispersions and their dissolution behavior. J. Pharm. Sci.96(2), 294–304 (2006).
  • Shamblin SL , ZografiG. The effects of absorbed water on the properties of amorphous mixtures containing sucrose. Pharm. Res.16(7), 1119–1124 (1999).
  • Alonzo DE , ZhangGGZ, ZhouD, GaoY, TaylorLS. Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm. Res.27(4), 608–618 (2010).
  • Dannenfelser RM , HeH, JoshiY, BatemanS, SerajuddinAT. Development of clinical dosage forms for a poorly water soluble drug I: application of polyethylene glycol-polysorbate 80 solid dispersion carrier system. J. Pharm. Sci.93(5), 1165–1175 (2004).
  • Yoshioka S , StellaVJ. Stability of Drugs and Dosage Forms. Kluwer Academic/Plenum Publishers, New York, NY, USA (2002).
  • Reneker DH , YarinAL, ZussmanE, XuH. Advances in Applied Mechanics. Aref H, Van Der Giessen (Eds). Elsevier/Academic Press, London, UK (2011).
  • Reneker D . Yarin A. Electrospinning jets and polymer nanofibers. Polymer49, 2387–2845 (2008).
  • Rutledge G , FridrikhS, Formation of fibers by electrospinning. Adv. Drug Deliv. Rev.59(14), 1384–1391 (2007).
  • Cui W , LiX, ZhouS. Weng J. Investigation on process parameters of electrospinning system through orthogonal experiment design. J. Appl. Polym. Sci.103(5), 3105–3112 (2007).
  • Zhang HL . Effects of electrospinning parameters on morphology and diameter of electrospun PLGA/MWNTs fibers and cytocompatibility in vitro. J. Bioact. Compat. Polym.26(6), 590–606 (2011).
  • Jacobs V , PatanaikA, AnandjiwalaRD, MaazaM. Optimization of electrospinning parameters for chitosan nanofibers. Curr. Nanosci.6(6), 396–401 (2011).
  • Ho-Wang T , MinW. An investigation into the influence of electrospinning parameters on the diameter and alignment of poly(hydroxybutyrate-co-hydroxyvalerate) fibers. J. Appl. Polym. Sci.120(3), 1694–1706 (2011).
  • Shin Y , HohmanM, BrennerM, RutledgeG. Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer42(9), 9955–9967 (2001).
  • Reneker D , YarinA, FongH, KoombhongseS, Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phys.87(9), 4531–4548 (2000).
  • Wang C , ChengY, Hsu,C, ChienH, TsouS. How to manipulate the electrospinning jet with controlled properties to obtain uniform fibers with smallest diameter? A brief discussion of solution electrospinning process. J. Polymer Res.18(1), 111–123 (2011).
  • Haghi A , Zaikov.G. Advances in Nanofiber Research. iSmithers, Akron, OH, USA, 31–34 (2011).
  • Wang T , KumarS. Electrospinning of polyacrylonitrile nanofibers J. Appl. Polym. Sci.102(43), 1023–1029 (2006).
  • Baker S , Atkin,N, GunningN, GranvilleK, WilsonK, WilsonS, SouthgateJ. Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies. Biomaterials27(16), 3136–3146 (2006).
  • Dreitzel J , KleinmayerJ, HarrisD, Beck Tan N, The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer42, 261–272 (2001).
  • Li D , XiaY. Fabrication of titania nanofibers by electrospinning, Nano Lett.3(4), 555–560 (2003).
  • Loscertales I , BarreroA, GuerreroI, CortijoR, MarquezM, Ganan-CalvoA. Micro/nano encapsulation via electrified coaxial liquid jets. Science295(5560), 1695–1698 (2002).
  • Li D , XiaY, Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett.4(5), 933–938 (2004).
  • Chakraborty S , LiaoIC, AdlerA, LeongKW. Electrohydrodynamics: a facile technique to fabricate drug delivery systems. Adv. Drug Deliv. Rev.61(12), 1043–1054 (2009).
  • Huang LY , YuDG, Branford-WhiteC, ZhuLM. Sustained release of ethyl cellulose micro-particulate drug delivery systems using electrospraying. J. Mater. Sci.47, 1372–1377 (2012).
  • Yu DG , ZhangXF, ShenXX, Branford-WhiteC, ZhuLM. Ultrafine ibuprofen-loaded polyvinylpyrrolidone fiber mats using electrospinning. Polym. Int.58(9), 1010–1013 (2009).
  • Yu DG , ShenXX, Branford-WhiteC, WhiteK, ZhuLM, BlighSWA. Oral fast-dissolving drug delivery membranes prepared from electrospun polyvinylpyrrolidone ultrafine fibers. Nanotechnology20(5), 055104 (2009).
  • Yu DG , Branford-WhiteC, ShenXX, ZhangXF, ZhuLM. Solid dispersions of ketoprofen in drug-loaded electrospin nanofibers. J. Dispers. Sci. Technol.31(7), 902–908 (2010).
  • Kenawy ER , Abdel-HayFI, El-NewehyME, WnekGE. Processing of polymer nanofibers through electrospinning as drug delivery systems. Mater. Chem. Phys.113(1), 296–302 (2009).
  • Meng ZX , ZhengW, LiL, ZhengYF. Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold. Mater. Chem. Phys.125, 505–611 (2011).
  • Yang DJ , Xiong C-D, Govender T, Wang YZ. Preparation and drug-delivery potential of metronidazole-loaded PELA tri-block copolymeric electrospun membranes. J. Biomater. Sci. Polym.20(9), 1321–1334 (2009).
  • Yu DG , YangJM, Branford-WhiteC, LuP, ZhangL, ZhuLM. Third generation solid dispersions of ferulic acid in electrospun composite nanofibers. Int. J. Pharm.400, 158–164 (2010).
  • Han J , ChenTX, Branford-WhiteCJ, ZhuLM. Electrospun shikonin-loaded PCL/PTMC composite fiber mats with potential biomedical applications. Int. J. Pharm.382(1–2), 215–221 (2009).
  • Peng JR , QianZY, WangBet al. Preparation and release characteristics of quercetin loaded poly(lactic acid) ultrafine fibers. J. Nanosci. Nanotechnol. 11(4), 3659–3668 (2011).
  • Yu DG , GaoLD, WhiteK, Branford-WhiteC, LuWY, ZhuLM. Multicomponent amorphous nanofibers electrospun from hot aqueous solutions of a poorly soluble drug. Pharm. Res.27(11), 2466–2477 (2010).
  • Huang LY , YuDG, ZhuLM, Branford-WhiteCJ, WhiteK. Preparation of fast-dissolving ursolic acid nanofiber membranes using electrospinning. Presented at: 5th International Conference on Bioinformatics and Biomedical Engineering. Wuhan, China, 10–12 May 2011.
  • Quan J , YuY, Branford-WhiteCet al. Preparation of ultrafine fast-dissolving feruloyl-oleyl-glycerol-loaded polyvinylpyrrolidone fiber mats via electrospinning. Colloids Surf. 88(Suppl. B), 304–309 (2011).
  • Xu JQ , JiaoYP, ShaoXH, ZhouCR. Controlled dual release of hydrophobic and hydrophilic drugs from electrospun poly (L-lactic acid) fiber mats loaded with chitosan microspheres. Mater. Lett.65(17–18), 2800–2803 (2011).
  • Xu X , ChenX, WangZ, JingX. Ultrafine PEG–PLA fibers loaded with both paclitaxel and doxorubicin hydrochloride and their in vitro cytotoxicity. Eur. J. Pharm. Biopharm.72(1), 18–25 (2009).
  • Nagy ZK , Nyúl1K, WagnerI, MolnárK, MarosiG. Electrospun water soluble polymer mat for ultrafast release of Donepezil HCl. Express Polym. Lett.4(12), 763–772 (2010).
  • Chen P , WuQS, DingYP, ChuM, HuangZM, HuW. A controlled release system of titanocene dichloride by electrospun fiber and its anti-tumor activity in vitro. Eur. J. Pharm. Biopharm.76(3), 413–420 (2010).
  • Xu XL , ChenXS, XuXYet al. BCNU-loaded PEG-PLLA ultrafine fibers and their in vitro antitumor activity against glioma C6 cells. J. Control. Release 114(3), 307–316 (2006).
  • Park Y , KangE, KwonOJet al. Ionically crosslinked Ad/chitosan nanocomplexes processed by electrospinning for targeted cancer gene therapy. J. Control. Release 148(1), 75–82 (2010).
  • Shen XX , YuDG, ZhuLMet al. Electrospun diclofenac sodium loaded Eudragit® L 100–155 nanofibers for colon-targeted drug delivery. Int. J. Pharm. 408(1–2), 200–207 (2011).
  • Park CG , KimE, ParkM, ParkJH, ChoyYB. A nanofibrous sheet-based system for linear delivery of nifedipine. J. Control. Release149(3), 250–257 (2011).
  • Suganya S , RamTS, LakshmiBS, GiridevVR. Herbal drug incorporated antibacterial nanofibrous mat fabricated by electrospinning: an excellent matrix for wound dressings. J. Appl. Polym. Sci.121(5), 2893–2899 (2011).
  • Kontogiannopoulosa KN , AssimopoulouaAN, TsivintzelisI, PanayiotoubC, PapageorgiouaVP. Electrospun fiber mats containing shikonin and derivatives with potential biomedical applications. Int. J. Pharm.409(1-2), 216–228 (2011).
  • Wu XM , Branford-WhiteC, Yu D-G, Chatterton N, Zhu L-M, Preparation of Core–shell PAN nanofibers encapsulated α-tocopherol acetate and ascorbic acid 2-phosphate for photoprotection. Colloids Surf. B82(1), 247–252 (2011).
  • Lu Y , JiangH, TuK, WangL. Mild immobilization of diverse macromolecular bioactive agents onto multifunctional fibrous membranes prepared by coaxial electrospinning. Acta Biomater.5(5), 1562–1574 (2009).
  • Roshkova R , ManolovaN, GardevaEet al. Antitumor activity of quaternized chitosan-based electrospun implants against Graffi myeloid tumor. Int. J. Pharm. 400, 221–233 (2010).
  • Huang HH , HeCL, WangSH, MoXM. Preparation of core-shell biodegradable microfibers for long term drug delivery. J. Biomed. Mater. Res.400(1–2), 1243–1251 (2009).
  • Xu X , GuoG, FanY. Fabrication and characterisation of dense zirconia and zirconia-ceramic nanofibers. J. Nanosci. Nanotechnol.10(9), 5672–5679 (2010).
  • Yang F , BothSK, YangX, WalboomersXF, JansenJA. Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application. Acta Biomater.5(9), 3295–3304 (2009).
  • Gao Y , SagiS, ZhangLFet al. Electrospun nano-scaled glass fiber reinforcement of bis-GMA/TEGDMA dental composites. J. Appl. Polym. Sci. 48(9), 2063–2070 (2008).
  • Koepsell L , RemundT, BaoJ, NeufeldD, FongH, DengY. Tissue engineering of annulus fibrosus using electrospun fibrous scaffolds with aligned polycaprolactone fibers. J. Biomed. Mater. Res.99(4), 564–575 (2011).
  • Lee CH , LimYC, FarsonDF, PowellHM, LannuttiJJ. Vascular wall engineering via femtosecond laser ablation: scaffolds with self containing smooth muscle cell populations. Annu. Biomed. Eng.39(12), 3031–3041 (2011).
  • Sharma S , MohantyS, GuptaD, JassalM, AgrawalAK, TandonR. Cellular response of limbal epithelial cells on electrospun poly-epsilon-caprolactone nanofibrous scaffolds for ocular surface bioengineering: a preliminary in vitro study. Mol. Vis.17, 2898–2910 (2011).
  • Wu SC , ChangWH, DongGC, ChenKY, ChenYS, YaoCH. Cell adhesion and proliferation enhancement by gelatin nanofiber scaffolds. J. Bioact. Compat. Polym.27(1), 565–577 (2011).
  • Ma GP , FangDW, LiuY, ZhuXD, NieJ. Electrospun sodium alginate/poly(ethylene oxide) core-shell nanofibers scaffolds with potential for tissue engineering applications. Carbohydr. Polym.87, 737–743 (2011).
  • Yu DG , ZhuLM, Branford-WhiteC, BlighSWA, WhiteK. Coaxial electrospinning with organic solvent for controlling the size of self-assembled nanoparticles. Chem. Commun.47(4), 1216–1218 (2011).
  • Yu DG , Branford-WhiteC, WilliamsGRet al. Self-assembled liposomes from amphiphilic electrospun nanofibers. Soft Matter 7(18), 8239–8247 (2011).
  • Lichtenhalter FW , ImmelS. Cyclodextrins, cyclomannins and cyclogalactins with five and six (1–4)-linked sugar units: a comparative assessment of their conformations and hydrophobicity potential profiles. Tetrahedron: Asymmetry, 5(11), 2045-2600 (1994).

Patents

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.