226
Views
0
CrossRef citations to date
0
Altmetric
Review

Liposomes for Cardiovascular Targeting

, &
Pages 501-514 | Published online: 29 Mar 2012

References

  • Chazov EI , AlexeevAV, AntonovASet al. Endothelial cell culture on fibrillar collagen: model to study platelet adhesion and liposome targeting to intercellular collagen matrix. Proc. Natl Acad. Sci. USA 78(9), 5603–5607 (1981).
  • Klibanov AL , MuzykantovVR, IvanovNN, TorchilinVP. Evaluation of quantitative parameters of the interaction of antibody-bearing liposomes with target antigens. Anal. Biochem.150(2), 251–257 (1985).
  • Jennings RB , SchaperJ, HillML, SteenbergenC Jr, Reimer KA. Effect of reperfusion late in the phase of reversible ischemic injury. Changes in cell volume, electrolytes, metabolites, and ultrastructure. Circ. Res.56(2), 262–278 (1985).
  • Bloemen PG , HenricksPA, Van Bloois L et al. Adhesion molecules: a new target for immunoliposome-mediated drug delivery. FEBS Lett.357(2), 140–144 (1995).
  • Das M , DasDK. Lipid raft in cardiac health and disease. Curr. Cardiol. Rev.5(2), 105–111 (2009).
  • Gunawan RC , AugusteD. Immunoliposomes that target endothelium in vitro are dependent on lipid raft formation. Mol. Pharm.7(5), 1569–1575 (2010).
  • Bendas G , KrauseA, SchmidtR, VogelJ, RotheU. Selectins as new targets for immunoliposome-mediated drug delivery. A potential way of anti-inflammatory therapy. Pharm. Acta Helv.73(1), 19–26 (1998).
  • Bendas G , KrauseA, BakowskyU, VogelJ, RotheU. Targetability of novel immunoliposomes prepared by a new antibody conjugation technique. Intl J. Pharm.181(1), 79–93 (1999).
  • Kessner S , KrauseA, RotheU, BendasG. Investigation of the cellular uptake of E-selectin-targeted immunoliposomes by activated human endothelial cells. Biochim. Biophys. Acta1514(2), 177–190 (2001).
  • Bendas G , RotheU, ScherphofGL, KampsJA. The influence of repeated injections on pharmacokinetics and biodistribution of different types of sterically stabilized immunoliposomes. Biochim. Biophys. Acta1609(1), 63–70 (2003).
  • Khaw BA , NarulaJ, KankeMet al. Application of monoclonal antibodies in cardiovascular diseases: atherosclerosis and pulmonary emboli imaging. J. Nucl. Biol. Med. 36(Suppl. 2), 35–40 (1992).
  • Knight LC . Antifibrin antibody for detection of deep vein thrombosis. In: Monoclonal Antibodies in Cardiovascular Diseases. Khaw BA, Narula J, Strauss HW (Eds). Lea and Febiger, Malvern, PA, USA. 171–186 (1994).
  • Tekabe Y , EinsteinAJ, JohnsonLL, KhawBA. Targeting very small model lesions pretargeted with bispecific antibody with 99mTc-labeled high-specific radioactivity polymers. Nucl. Med. Commun.31(4), 320–327 (2010).
  • Narula J , PetrovA, PakKY, DitlowC, ChenF, KhawBA. Noninvasive detection of atherosclerotic lesions by 99mTc-based immunoscintigraphic targeting of proliferating smooth muscle cells. Chest111(6), 1684–1690 (1997).
  • Carrio I , PieriPL, NarulaJet al. Noninvasive localization of human atherosclerotic lesions with indium 111-labeled monoclonal Z2D3 antibody specific for proliferating smooth muscle cells. J. Nucl. Cardiol. 5(6), 551–557 (1998).
  • Erdogan S , OzerAY, BilgiliH. In vivo behaviour of vesicular urokinase. Intl J. Pharm.295(1–2), 1–6 (2005).
  • Erdogan S , OzerAY, VolkanB, CanerB, BilgiliH. Thrombus localization by using streptokinase containing vesicular systems. Drug Deliv.13(4), 303–309 (2006).
  • Alkan-Onyuksel H , DemosSM, LanzaGMet al. Development of inherently echogenic liposomes as an ultrasonic contrast agent. J. Pharm. Sci. 85(5), 486–490 (1996).
  • Hamilton A , HuangSL, WarnickDet al. Left ventricular thrombus enhancement after intravenous injection of echogenic immunoliposomes: studies in a new experimental model. Circulation 105(23), 2772–2778 (2002).
  • Demos SM , OnyukselH, GilbertJet al. In vitro targeting of antibody-conjugated echogenic liposomes for site-specific ultrasonic image enhancement. J. Pharm. Sci.86(2), 167–171 (1997).
  • Demos SM , DagarS, KlegermanM, NagarajA, McphersonDD, OnyukselH. In vitro targeting of acoustically reflective immunoliposomes to fibrin under various flow conditions. J. Drug Target.5(6), 507–518 (1998).
  • Demos SM , Alkan-OnyukselH, KaneBJet al. In vivo targeting of acoustically reflective liposomes for intravascular and transvascular ultrasonic enhancement. J. Am. Coll. Cardiol.33(3), 867–875 (1999).
  • Danila D , ParthaR, ElrodDB, LackeyM, CasscellsSW, ConyersJL. Antibody-labeled liposomes for CT imaging of atherosclerotic plaques: in vitro investigation of an anti-ICAM antibody-labeled liposome containing iohexol for molecular imaging of atherosclerotic plaques via computed tomography. Tex. Heart Inst. J.36(5), 393–403 (2009).
  • Mulder WJ , StrijkersGJ, GriffioenAWet al. A liposomal system for contrast-enhanced magnetic resonance imaging of molecular targets. Bioconjug. Chem. 15(4), 799–806 (2004).
  • Almer G , WernigK, Saba-LepekMet al. Adiponectin-coated nanoparticles for enhanced imaging of atherosclerotic plaques. Intl J. Nanomed. 6, 1279–1290 (2011).
  • Maiseyeu A , MihaiG, KampfrathTet al. Gadolinium-containing phosphatidylserine liposomes for molecular imaging of atherosclerosis. J. Lipid Res. 50(11), 2157–2163 (2009).
  • Lobatto ME , FayadZA, SilveraSet al. Multimodal clinical imaging to longitudinally assess a nanomedical anti-inflammatory treatment in experimental atherosclerosis. Mol. Pharm. 7(6), 2020–2029 (2010).
  • Kim H , MoodyMR, LaingSTet al. In vivo volumetric intravascular ultrasound visualization of early/inflammatory arterial atheroma using targeted echogenic immunoliposomes. Invest. Radiol.45(10), 685–691 (2010).
  • Kim TD , KambayashiJ, SakonM, TsujinakaT, OhshiroT, MoriT. Metabolism of liposome-encapsulated heparin. Thromb. Res.56(3), 369–376 (1989).
  • Passirani C , BarrattG, DevissaguetJP, LabarreD. Long-circulating nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate). Pharm. Res.15(7), 1046–1050 (1998).
  • Passirani C , FerrariniL, BarrattG, DevissaguetJP, LabarreD. Preparation and characterization of nanoparticles bearing heparin or dextran covalently-linked to poly(methyl methacrylate). J. Biomater. Sci. Polym. Ed.10(1), 47–62 (1999).
  • Jiao YY , UbrichN, HoffartVet al. Preparation and characterization of heparin-loaded polymeric microparticles. Drug Dev. Ind. Pharm. 28(8), 1033–1041 (2002).
  • Luo X , QiuD, HeB, WangL, LuoJ. Biodegradable heparin-loaded microspheres: carrier molecular composition and microsphere structure. Macromol. Biosci.6(5), 373–381 (2006).
  • Bai S , ThomasC, AhsanF. Dendrimers as a carrier for pulmonary delivery of enoxaparin, a low-molecular weight heparin. J. Pharm. Sci.96(8), 2090–2106 (2007).
  • Heeremans JL , PrevostR, BekkersMEet al. Thrombolytic treatment with tissue-type plasminogen activator (t-PA) containing liposomes in rabbits: a comparison with free t-PA. Thromb. Haemost. 73(3), 488–494 (1995).
  • Uesugi Y , KawataH, JoJ, SaitoY, TabataY. An ultrasound-responsive nano delivery system of tissue-type plasminogen activator for thrombolytic therapy. J. Control. Release147(2), 269–277 (2010).
  • Hua X , LiuP, GaoYHet al. Construction of thrombus-targeted microbubbles carrying tissue plasminogen activator and their in vitro thrombolysis efficacy: a primary research. J. Thromb. Thrombolysis 30(1), 29–35 (2010).
  • Villanueva FS , LuE, BowrySet al. Myocardial ischemic memory imaging with molecular echocardiography. Circulation 115(3), 345–352 (2007).
  • Klibanov AL . Microbubble contrast agents: targeted ultrasound imaging and ultrasound-assisted drug-delivery applications. Invest. Radiol.41(3), 354–362 (2006).
  • Lindner JR . Contrast ultrasound molecular imaging of inflammation in cardiovascular disease. Cardiovasc. Res.84(2), 182–189 (2009).
  • Smith AH , FujiiH, KuliszewskiMA, Leong-PoiH. Contrast ultrasound and targeted microbubbles: diagnostic and therapeutic applications for angiogenesis. J. Cardiovasc. Transl. Res.4(4), 404–415 (2011).
  • Tiukinhoy-Laing SD , HuangS, KlegermanM, HollandCK, McphersonDD. Ultrasound-facilitated thrombolysis using tissue-plasminogen activator-loaded echogenic liposomes. Thromb. Res.119(6), 777–784 (2007).
  • Tiukinhoy-Laing SD , BuchananK, ParikhDet al. Fibrin targeting of tissue plasminogen activator-loaded echogenic liposomes. J. Drug Target. 15(2), 109–114 (2007).
  • Laing ST , MoodyM, SmulevitzBet al. Ultrasound-enhanced thrombolytic effect of tissue plasminogen activator-loaded echogenic liposomes in an in vivo rabbit aorta thrombus model-brief report. Arterioscler. Thromb. Vac. Biol. 31(6), 1357–1359 (2011).
  • Perkins WR , VaughanDE, PlavinSRet al. Streptokinase entrapment in interdigitation-fusion liposomes improves thrombolysis in an experimental rabbit model. Thromb. Haemost. 77(6), 1174–1178 (1997).
  • Leach JK , O‘rearEA, PattersonE, MiaoY, JohnsonAE. Accelerated thrombolysis in a rabbit model of carotid artery thrombosis with liposome-encapsulated and microencapsulated streptokinase. Thromb. Haemost.90(1), 64–70 (2003).
  • Vaidya B , NayakMK, DashD, AgrawalGP, VyasSP. Development and characterization of site specific target sensitive liposomes for the delivery of thrombolytic agents. Intl J. Pharm.403(1–2), 254–261 (2011).
  • Lu CP , YangH, WangJ, DongXL. Thrombolysis of rabbit‘s pulmonary embolism with thrombus-targeted urokinase immune liposome. Zhonghua Xin Xue Guan Bing Za Zhi37(11), 1035–1038 (2009).
  • Meyenburg S , LilieH, PanznerS, RudolphR. Fibrin encapsulated liposomes as protein delivery system. Studies on the in vitro release behavior. J. Control. Release69(1), 159–168 (2000).
  • Gupta AS , HuangG, LestiniBJ, SagnellaS, Kottke-MarchantK, MarchantRE. RGD-modified liposomes targeted to activated platelets as a potential vascular drug delivery system. Thromb. Haemost.93(1), 106–114 (2005).
  • Huang G , ZhouZ, SrinivasanRet al. Affinity manipulation of surface-conjugated RGD peptide to modulate binding of liposomes to activated platelets. Biomaterials 29(11), 1676–1685 (2008).
  • Freude B , MastersTN, RobicsekFet al. Apoptosis is initiated by myocardial ischemia and executed during reperfusion. J. Mol. Cell. Cardiol. 32(2), 197–208 (2000).
  • Scarabelli T , StephanouA, RaymentNet al. Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury. Circulation 104(3), 253–256 (2001).
  • Gottlieb RA , BurlesonKO, KlonerRA, BabiorBM, EnglerRL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J. Clin. Invest.94(4), 1621–1628 (1994).
  • Kajstura J , ChengW, ReissKet al. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab. Invest. 74(1), 86–107 (1996).
  • Nakagawa T , ShimizuS, WatanabeTet al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434(7033), 652–658 (2005).
  • Jennings RB , SommersHM, SmythGA, FlackHA, LinnH. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch. Pathol.70, 68–78 (1960).
  • Khaw BA , BellerGA, HaberE, SmithTW. Localization of cardiac myosin-specific antibody in myocardial infarction. J. Clin. Invest.58(2), 439–446 (1976).
  • Khaw BA , FallonJT, BellerGA, HaberE. Specificity of localization of myosin-specific antibody fragments in experimental myocardial infarction. Histologic, histochemical, autoradiographic and scintigraphic studies. Circulation60(7), 1527–1531 (1979).
  • Reimer KA , JenningsRB, TatumAH. Pathobiology of acute myocardial ischemia: metabolic, functional and ultrastructural studies. Am. J. Cardiol.52(2), 72A–81A (1983).
  • Braunwald E , KlonerRA. Myocardial reperfusion: a double-edged sword? J. Clin. Invest.76(5), 1713–1719 (1985).
  • Khaw BA , TorchilinVP, VuralI, NarulaJ. Plug and seal: prevention of hypoxic cardiocyte death by sealing membrane lesions with antimyosin-liposomes. Nat. Med.1(11), 1195–1198 (1995).
  • Khaw BA , VuralI, NarulaJ, HaiderN, TorchilinVP. Preservation of cardiocyte viability by immunoliposome-cell membrane sealing at 1, 2, 3, 4 and 5 days of hypoxia. Presented at: 23rd International Symposium of Controlled Release of Bioactive Materials. Kyoto, Japan, 11–12 July 1996.
  • Caride VJ , ZaretBL. Liposome accumulation in regions of experimental myocardial infarction. Science198(4318), 735–738 (1977).
  • Kayawake S , KakoKJ. Association of liposomes with the isolated perfused rabbit heart. Basic Res. Cardiol.77(6), 668–681 (1982).
  • Palmer TN , CaldecourtMA, KingabyRO. Liposomal drug delivery in chronic ischaemia. Biochem. Soc. Trans.12(2), 344–345 (1984).
  • Palmer TN , CarideVJ, CaldecourtMA, TwicklerJ, AbdullahV. The mechanism of liposome accumulation in infarction. Biochim. Biophys. Acta797(3), 363–368 (1984).
  • Torchilin VP , KhawBA, SmirnovVN, HaberE. Preservation of antimyosin antibody activity after covalent coupling to liposomes. Biochem. Biophys. Res. Commun.89(4), 1114–1119 (1979).
  • Klibanov AL , MaruyamaK, TorchilinVP, HuangL. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett.268(1), 235–237 (1990).
  • Torchilin VP . Targeting of thrombolytic agents: current state of knowledge and perspectives. Annu. NY Acad. Sci.667, 404–416 (1992).
  • Torchilin VP , NarulaJ, HalpernE, KhawBA. Poly(ethylene glycol)-coated anti-cardiac myosin immunoliposomes: factors influencing targeted accumulation in the infarcted myocardium. Biochim. Biophys. Acta1279(1), 75–83 (1996).
  • Khaw BA , KhudairiT. Dose-response to cytoskeletal-antigen specific immunoliposome therapy for preservation of myocardial viability and function in langendorff instrumented rat hearts. J. Liposome Res.17(2), 63–77 (2007).
  • Khaw BA , DasilvaJ, HartnerWC. Cytoskeletal-antigen specific immunoliposome-targeted in vivo preservation of myocardial viability. J. Control. Release120(1–2), 35–40 (2007).
  • Scott RC , WangB, NallamothuRet al. Targeted delivery of antibody conjugated liposomal drug carriers to rat myocardial infarction. Biotechnol. Bioeng. 96(4), 795–802 (2007).
  • Wang B , ScottRC, PattilloCB, PrabhakarpandianB, SundaramS, KianiMF. Modeling oxygenation and selective delivery of drug carriers post-myocardial infarction. Adv. Exp. Med. Biol.614, 333–343 (2008).
  • Scott RC , RosanoJM, IvanovZet al. Targeting VEGF-encapsulated immunoliposomes to MI heart improves vascularity and cardiac function. FASEB J. 23(10), 3361–3367 (2009).
  • Nguyen PD , O‘rearEA, JohnsonAE, PattersonE, WhitsettTL, BhaktaR. Accelerated thrombolysis and reperfusion in a canine model of myocardial infarction by liposomal encapsulation of streptokinase. Circ. Res.66(3), 875–878 (1990).
  • Leach JK , PattersonE, O‘rearEA. Improving thrombolysis with encapsulated plasminogen activators and clinical relevance to myocardial infarction and stroke. Clin. Hemorheol. Microcirc.30(3–4), 225–228 (2004).
  • Tang CS , SuJY, LiZPet al. Possibility of targeting treatment for ischemic heart disease with liposome (I). Sci. China B. 36(5), 590–598 (1993).
  • Tang CS , SuJY, LiZPet al. Possibility of targeting treatment for ischemic heart disease with liposome (II). Sci. China B. 36(7), 809–816 (1993).
  • Suzuki K , SawaY, IchikawaH, KanedaY, MatsudaH. Myocardial protection with endogenous overexpression of manganese superoxide dismutase. Annu. Thorac. Surg.68(4), 1266–1271 (1999).
  • Jadot G , MichelsonAM. Comparative anti-inflammatory activity of different superoxide dismutases and liposomal SOD in ischemia. Free Radic. Res. Commun.3(6), 389–394 (1987).
  • Phelan AM , LangeDG. Ischemia/reperfusion-induced changes in membrane fluidity characteristics of brain capillary endothelial cells and its prevention by liposomal-incorporated superoxide dismutase. Biochim. Biophys. Acta1067(1), 97–102 (1991).
  • Bkaily G , SperelakisN, ElishalomY, BarenholzY. Effect of Na+- or Ca2+-filled liposomes on electrical activity of cultured heart cells. Am. J. Physiol.245(5 Suppl. 1), H756–H761 (1983).
  • Han YY , HuangL, JacksonEK, DubeyRK, GillepsieDG, CarcilloJA. Liposomal ATP or NAD+ protects human endothelial cells from energy failure in a cell culture model of sepsis. Res. Commun. Mol. Pathol. Pharmacol.110(1–2), 107–116 (2001).
  • Xu GX , XieXH, LiuFYet al. Adenosine triphosphate liposomes: encapsulation and distribution studies. Pharm. Res. 7(5), 553–557 (1990).
  • Verma DD , LevchenkoTS, BernsteinEA, TorchilinVP. ATP-loaded liposomes effectively protect mechanical functions of the myocardium from global ischemia in an isolated rat heart model. J. Control. Release108(2–3), 460–471 (2005).
  • Verma DD , HartnerWC, LevchenkoTS, BernsteinEA, TorchilinVP. ATP-loaded liposomes effectively protect the myocardium in rabbits with an acute experimental myocardial infarction. Pharm. Res.22(12), 2115–2120 (2005).
  • Verma DD , LevchenkoTS, BernsteinEA, MongaytD, TorchilinVP. ATP-loaded immunoliposomes specific for cardiac myosin provide improved protection of the mechanical functions of myocardium from global ischemia in an isolated rat heart model. J. Drug Target.14(5), 273–280 (2006).
  • Khaw BA , NarulaJ, VuralI, TorchilinVP. Cytoskeleton-specific immunoliposomes: sealing of hypoxic cells and intracellular delivery of DNA. Intl J. Pharm.162(1), 71–76 (1998).
  • Khaw BA , DasilvaJ, VuralI, NarulaJ, TorchilinVP. Intracytoplasmic gene delivery for in vitro transfection with cytoskeleton-specific immunoliposomes. J. Control. Release75(1–2), 199–210 (2001).
  • Ko YT , HartnerWC, KaleA, TorchilinVP. Gene delivery into ischemic myocardium by double-targeted lipoplexes with anti-myosin antibody and TAT peptide. Gene Ther.16(1), 52–59 (2009).
  • Tanabe K , SerruysPW, DegertekinMet al. Fate of side branches after coronary arterial sirolimus-eluting stent implantation. Am. J. Cardiol. 90(9), 937–941 (2002).
  • Grube E , SilberS, HauptmannKEet al. TAXUS I: six- and twelve-month results from a randomized, double-blind trial on a slow-release paclitaxel-eluting stent for de novo coronary lesions. Circulation 107(1), 38–42 (2003).
  • Liistro F , StankovicG, Di Mario C et al. First clinical experience with a paclitaxel derivate-eluting polymer stent system implantation for in-stent restenosis: immediate and long-term clinical and angiographic outcome. Circulation105(16), 1883–1886 (2002).
  • Antimisiaris SG , KoromilaG, MichanetzisG, MissirlisYF. Liposome coated stents: a method to deliver drugs to the site of action and improve stent blood-compatibility. J. Liposome Res.16(3), 303–309 (2006).
  • Kallinteri P , AntimisiarisSG, KarnabatidisD, KalogeropoulouC, TsotaI, SiablisD. Dexamethasone incorporating liposomes: an in vitro study of their applicability as a slow releasing delivery system of dexamethasone from covered metallic stents. Biomaterials23(24), 4819–4826 (2002).
  • Koromila G , MichanetzisGP, MissirlisYF, AntimisiarisSG. Heparin incorporating liposomes as a delivery system of heparin from PET-covered metallic stents: effect on haemocompatibility. Biomaterials27(12), 2525–2533 (2006).
  • Brito LA , ChandrasekharS, LittleSR, AmijiMM. In vitro and in vivo studies of local arterial gene delivery and transfection using lipopolyplexes-embedded stents. J. Biomed. Mater. Res. A93(1), 325–336 (2010).
  • Sharif F , HynesSO, MccullaghKJet al. Gene-eluting stents: non-viral, liposome-based gene delivery of eNOS to the blood vessel wall in vivo results in enhanced endothelialization but does not reduce restenosis in a hypercholesterolemic model. Gene Ther. 19(3), 321–328 (2011).
  • Whelan RS , KaplinskiyV, KitsisRN. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu. Rev. Physiol.17(72), 19–44 (2010).
  • Lammers T , AimeS, HenninkWE, StormG, KiesslingF. Theranostic nanomedicines. Acc. Chem. Res.44(10), 1029–1038 (2011).
  • Mccarthy JR . Multifunctional agents for concurrent imaging and therapy in cardiovascular disease. Adv. Drug Deliv. Rev.62(11), 1023–1030 (2010).
  • Voinea M , ManduteanuI, DragomirE, CapraruM, SimionescuM. Immunoliposomes directed toward VCAM-1 interact specifically with activated endothelial cells – a potential tool for specific drug delivery. Pharm. Res.22(11), 1906–1917 (2005).
  • Saito A , ShimizuH, DoiYet al. Immunoliposomal drug-delivery system targeting lectin-like oxidized low-density lipoprotein receptor-1 for carotid plaque lesions in rats. J. Neurosurg. 115(4), 720–727 (2011).
  • Herbst SM , KlegermanME, KimHet al. Delivery of stem cells to porcine arterial wall with echogenic liposomes conjugated to antibodies against CD34 and intercellular adhesion molecule-1. Mol. Pharm. 7(1), 3–11 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.