938
Views
0
CrossRef citations to date
0
Altmetric
Review

Size Matters: Gold Nanoparticles in Targeted Cancer Drug Delivery

, , &
Pages 457-478 | Published online: 29 Mar 2012

References

  • Knop K , HoogenboomR, FischerD, SchubertUS. Poly(ethylene glycol) in drug delivery. pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. Engl.49(36), 6288–6308 (2010).
  • Peer D , KarpJM, HongS, FarokhzadOC, MargalitR, LangerR. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol.2(12), 751–760 (2007).
  • Davis ME , ChenZ, ShinDM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov.7(9), 771–782 (2008).
  • Shi J , VotrubaAR, FarokhzadOC, LangerR. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett.10(9), 3223–3230 (2010).
  • Petros RA , DesimoneJM. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov.9(8), 615–627 (2010).
  • Kim BYS , RutkaJT, ChanWCW. Nanomedicine. N. Engl. J. Med.363(25), 2434–2443 (2010).
  • Jain RK , StylianopoulosT. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol.7(11), 653–664 (2010).
  • Dreaden EC , MackeyMA, HuangX, KangB, El-SayedMA. Beating cancer in multiple ways using nanogold. Chem. Soc. Rev.40(7), 3391–3404 (2011).
  • Dreaden EC , AlkilanyAM, HuangX, MurphyCJ, El-SayedMA. The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev.41, 2740–2779 (2012).
  • Torchilin VP , LukyanovAN. Peptide and protein drug delivery to and into tumors: challenges and solutions. Drug Discov. Today8(6), 259–266 (2003).
  • Bae Y , KataokaK. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv. Drug Deliv. Rev.61(10), 768–784 (2009).
  • Oerlemans C , BultW, BosM, StormG, NijsenJFW, HenninkWE. Polymeric Micelles in anticancer therapy: targeting, imaging and triggered release. Pharm. Res.27(12), 2569–2589 (2010).
  • Lukyanov AN , TorchilinVP. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv. Drug Deliv. Rev.56(9), 1273–1289 (2004).
  • Zhang L , ChanJM, GuFXet al. Self-assembled lipid–polymer hybrid nanoparticles. a robust drug delivery platform. ACS Nano 2(8), 1696–1702 (2008).
  • Torchilin VP . Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov.4(2), 145–160 (2005).
  • Kaasgaard T , AndresenTL. Liposomal cancer therapy: exploiting tumor characteristics. Expert Opin. Drug Deliv.7(2), 225–243 (2010).
  • Astruc D , BoisselierE, OrnelasC. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev.110(4), 1857–1959 (2010).
  • Medina SH , El-SayedMEH. Dendrimers as carriers for delivery of chemotherapeutic agents. Chem. Rev.109(7), 3141–3157 (2009).
  • Mintzer MA , GrinstaffMW. Biomedical applications of dendrimers: a tutorial. Chem. Soc. Rev.40(1), 173–190 (2011).
  • Ghosh P , HanG, DeM, KimCK, RotelloVM. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev.60(11), 1307–1315 (2008).
  • Giljohann DA , SeferosDS, DanielWL, MassichMD, PatelPC, MirkinCA. Gold nanoparticles for biology and medicine. Angew. Chem. Int. Ed. Engl.49(19), 3280–3294 (2010).
  • Lal S , ClareSE, HalasNJ. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc. Chem. Res.41(12), 1842–1851 (2008).
  • Jokerst JV , GambhirSS. Molecular imaging with theranostic nanoparticles. Acc. Chem. Res.44(10), 1050–1060 (2011).
  • Trewyn BG , SlowingII, GiriS, Chen H-T, Lin VSY. Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release. Acc. Chem. Res.40(9), 846–853 (2007).
  • Bonacchi S , GenoveseD, JurisRet al. Luminescent silica nanoparticles. extending the frontiers of brightness. Angew. Chem. Int. Ed. Engl. 50(18), 4056–4066 (2011).
  • Xie J , HuangJ, LiX, SunS, ChenX. Iron oxide nanoparticle platform for biomedical applications. Curr. Med. Chem.16(10), 1278–1294 (2009).
  • Thakor AS , JokerstJ, ZavaletaC, MassoudTF, GambhirSS. Gold nanoparticles: a revival in precious metal administration to patients. Nano Lett.11(10), 4029–4036 (2011).
  • Harris JM , ChessRB. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov.2(3), 214–221 (2003).
  • Duncan R . Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer6(9), 688–701 (2006).
  • Napier ME , DesimoneJM. Nanoparticle drug delivery platform. Polym. Rev.47(3), 321–327 (2007).
  • Hammond PT . Form and function in multilayer assembly: new applications at the nanoscale. Adv. Mater.16(15), 1271–1293 (2004).
  • Aggarwal S . What‘s fueling the biotech engine-2008. Nat. Biotechnol.27(11), 987–993 (2009).
  • Wang H , HuffTB, ZweifelDAet al. In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc. Natl Acad. Sci. USA102(44), 15752–15756 (2005).
  • Zavaleta CL , SmithBR, WaltonIet al. Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc. Natl Acad. Sci. USA. 106(32), 13511–13516 (2009).
  • Lu W , Huang,Q, Geng,KBet al. Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres. Biomaterials 31(9), 2617–2626 (2010).
  • Kim D , JeongYY, JonS. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano4(7), 3689–3696 (2010).
  • Von Maltzahn G , CentroneA, ParkJHet al. SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Adv. Mater. 21, 1–6 (2009).
  • Dreaden EC , MwakwariSC, SodjiQH, OyelereAK, El-SayedMA. Tamoxifen-poly(ethylene glycol)-thiol gold nanoparticle conjugates: enhanced potency and selective delivery for breast cancer treatment. Bioconjug. Chem.20(12), 2247–2253 (2009).
  • Giljohann DA , SeferosDS, PrigodichAE, PatelPC, MirkinCA. Gene regulation with polyvalent siRNA-nanoparticle conjugates. J. Am. Chem. Soc.131(6), 2072–2073 (2009).
  • Dhar S , DanielWL, GiljohannDA, MirkinCA, LippardSJ. Polyvalent oligonucleotide gold nanoparticle conjugates as delivery vehicles for platinum(IV) warheads. J. Am. Chem. Soc.131(41), 14652–14653 (2009).
  • Hainfeld JF , DilmanianFA, ZhongZ, SlatkinDN, Kalef-EzraJA, SmilowitzHM. Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys. Med. Biol.55(11), 3045–3046 (2010).
  • Chithrani DB , JelvehS, JalaliFet al. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat. Res. 173(6), 719–728 (2010).
  • Qian XM , PengXH, AnsariDOet al. In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags. Nat. Biotechnol.26(1), 83–90 (2008).
  • Jung Y , ReifR, ZengY, WangRK. Three-dimensional high-resolution imaging of gold nanorods uptake in sentinel lymph nodes. Nano Lett.11(7), 2938–2943 (2011).
  • Dickerson EB , DreadenEC, HuangXet al. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett. 269(1), 57–66 (2008).
  • Chen J , GlausC, LaforestRet al. Gold nanocages as photothermal transducers for cancer treatment. Small 6(7), 811–817 (2010).
  • Von Maltzahn G , Park J-H, Agrawal A et al. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res.69(9), 3892–3900 (2009).
  • Hirsch LR , StaffordRJ, BanksonJAet al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl Acad. Sci. USA 100(23), 13549–13554 (2003).
  • Yuan F , DellianM, FukumuraDet al. Vascular permeability in a human tumor xenograft. Molecular size dependence and cutoff size. Cancer Res. 55(17), 3752–3756 (1995).
  • Yuan F , LeunigM, HuangSK, BerkDA, PapahadjopoulosD, JainRK. Mirovascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res.54(13), 3352–3356 (1994).
  • Pluen A , BoucherY, RamanujanSet al. Role of tumor–host interactions in interstitial diffusion of macromolecules. Cranial vs subcutaneous tumors. Proc. Natl Acad. Sci. USA 98(8), 4628–4633 (2001).
  • Matsumura Y , MaedaH. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res.46(12), 6387–6392 (1986).
  • Maeda H . Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug. Chem.21(5), 797–802 (2010).
  • Kim CK , GhoshP, PagliucaC, Zhu Z-J, Menichetti S, Rotello VM. Entrapment of hydrophobic drugs in nanoparticle monolayers with efficient release into cancer cells. J. Am. Chem. Soc.131(4), 1360–1361 (2009).
  • Zhang X -Q, Xu X, Lam R, Giljohann D, Ho D, Mirkin CA. Strategy for increasing drug solubility and efficacy through covalent attachment to polyvalent DNA–nanoparticle conjugates. ACS Nano5(9), 6962–6970 (2011).
  • Lee SK , HanMS, AsokanS, TungCH. Effective gene silencing by multilayered siRNA-coated gold nanoparticles. Small7(3), 364–370 (2011).
  • Lu W , ZhangG, ZhangRet al. Tumor site–specific silencing of NF-κB p65 by targeted hollow gold nanosphere–mediated photothermal transfection. Cancer Res. 70(8), 3177–3188 (2010).
  • Guo S , HuangY, JiangQet al. Enhanced gene delivery and siRNA silencing by gold nanoparticles coated with charge-reversal polyelectrolyte. ACS Nano 4(9), 5505–5511 (2010).
  • Bard AJ , FaulknerLR. Electrochemical Methods: Fundamentals and Applications. (2nd Edition). John Wiley & Sons Inc., New York, NY, USA (2001).
  • Torchilin VP , RammohanR, WeissigV, LevchenkoTS. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc. Natl Acad. Sci. USA98(15), 8786–8791 (2001).
  • Park J , MattessichT, JaySM, AgawuA, SaltzmanWM, FahmyTM. Enhancement of surface ligand display on PLGA nanoparticles with amphiphilic ligand conjugates. J. Control. Release156(1), 109–115 (2011).
  • Tassa C , DuffnerJL, LewisTAet al. Binding affinity and kinetic analysis of targeted small molecule-modified nanoparticles. Bioconjug. Chem. 21(1), 14–19 (2009).
  • Jiang W , KimBYS, RutkaJT, ChanWCW. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol.3(3), 145–150 (2008).
  • Lu W , XiongC, ZhangGet al. Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analoge-conjugated hollow gold nanospheres. Clin. Cancer Res. 15(3), 876–886 (2009).
  • Gobin AM , LeeMH, HalasNJ, JamesWD, DrezekRA, WestJL. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett.7(7), 1929–1934 (2007).
  • Suneil J , JonathanAC, AlanRHet al. Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int. J. Radiat. Oncol. Biol. Phys. 79(2), 531–539 (2010).
  • Roa W , ZhangX, GuoLet al. Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle. Nanotechnol. 20(37), 375101 (2009).
  • Hainfeld JF , SlatkinDN, SmilowitzHM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol.49, N309–N315 (2004).
  • Tong L , HeW, ZhangYS, ZhengW, ChengJX. Visualizing systemic clearance and cellular level biodistribution of gold nanorods by intrinsic two-photon luminescence. Langmuir25(21), 12454–12459 (2009).
  • Park J , EstradaA, SharpKet al. Two-photon-induced photoluminescence imaging of tumors using near-infrared excited gold nanoshells. Opt. Express 16(3), 1590–1599 (2008).
  • Durr NJ , LarsonT, SmithDK, KorgelBA, SokolovK, Ben-YakarA. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett.7(4), 941–945 (2007).
  • Hainfeld JF , SlatkinDN, FocellaTM, SmilowitzHM. Gold nanoparticles: a new x-ray contrast agent. Brit. J. Radiol.79(939), 248–253 (2006).
  • Cai QY , KimSH, ChoiKSet al. Colloidal gold nanoparticles as a blood-pool contrast agent for x-ray computed tomography in mice. Invest. Radiol. 42(12), 797–806 (2007).
  • Sun IC , EunDK, NaJHet al. Heparin-coated gold nanoparticles for liver-specific CT imaging. Chem. Eur. J. 15(48), 13341–13347 (2009).
  • Kim D , ParkS, LeeJH, JeongYY, JonS. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo x-ray computed tomography imaging. J. Am. Chem. Soc.129(24), 7661–7665 (2007).
  • Galanzha EI , ShashkovEV, KellyT, KimJW, YangL, ZharovVP. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat. Nanotechnol.4(12), 855–860 (2009).
  • Rodriguez-Lorenzo L , KrpeticZ, BarbosaSet al. Intracellular mapping with SERS-encoded gold nanostars. Integr. Biol. 3(9), 922–926 (2011).
  • Mohs AM , ManciniMC, SinghalSet al. Hand-held spectroscopic device for in vivo and intraoperative tumor detection. Contrast enhancement, detection sensitivity, and tissue penetration. Anal. Chem. 82(21), 9058–9065 (2010).
  • Kneipp J , KneippH, WittigB, KneippK. One- and two-photon excited optical pH probing for cells using surface-enhanced raman and hyper-raman nanosensors. Nano Lett.7(9), 2819–2823 (2007).
  • Kang B , MackeyMA, El-SayedMA. Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J. Am. Chem. Soc.132(5), 1517–1519 (2010).
  • Kelly KL , CoronadoE, ZhaoLL, SchatzGC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B107(3), 668–677 (2002).
  • Greczynski G , SalaneckWR. Photoelectron spectroscopy of hybrid interfaces for light emitting diodes: Influence of the substrate work function. Appl. Phys. Lett.79(19), 3185–3187 (2001).
  • Hartland GV . Optical studies of dynamics in noble metal nanostructures. Chem. Rev.111(6), 3858–3887 (2011).
  • Dreaden EC , El-SayedMA, El-SayedIH. Nanotechnology and nanostructures applied to head and neck cancer. In: Nanomedicine and Cancer. Preedy VR, Srirajaskanthan R (Eds). Science Publishers, Enfield, UK (2011).
  • Weissleder R . A clearer vision for in vivo imaging. Nat. Biotechnol.19(4), 316–317 (2001).
  • Ntziachristos V , YodhAG, SchnallM, ChanceB. Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc. Natl Acad. Sci. USA97(6), 2767–2772 (2000).
  • Wust P , HildebrandtB, SreenivasaGet al. Hyperthermia in combined treatment of cancer. Lancet Oncol. 3(8), 487–497 (2002).
  • Bert H , PeterW, OlafAet al. The cellular and molecular basis of hyperthermia. Clin. Rev. Oncol./Hematol. 43(1), 33–56 (2002).
  • Huff TB , TongL, ZhaoY, HansenMN, ChengJX, WeiA. Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine (Lond.)2(1), 125–132 (2007).
  • Kampinga HH . Cell biological effects of hyperthermia alone or combined with radiation or drugs: a short introduction to newcomers in the field. Int J. Hyperther.22(3), 191–196 (2006).
  • Nel AE , MädlerL, VelegolDet al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8(7), 543–557 (2009).
  • Tarazona-Vasquez F , BalbuenaPB. Complexation of the lowest generation poly(amidoamine)-NH2 dendrimers with metal ions, metal atoms, and Cu(II) hydrates: an ab initio study. J. Phys. Chem. B108(41), 15992–16001 (2004).
  • Turkevich J , StevensonPC, HillierJ. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. (11), 55–75 (1951).
  • Frens G . Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature241(105), 20–22 (1973).
  • Ulman A . Formation and structure of self-assembled monolayers. Chem. Rev.96(4), 1533–1554 (1996).
  • Ostwald W . Lehrbuch der Allgemeinen Chemie. Wilhelm Engelmann, Leipzig, Germany (1896).
  • Polte JR , AhnerTT, DelissenFet al. Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. J. Am. Chem. Soc. 132(4), 1296–1301 (2010).
  • Ojea-Jimènez I , BastúsNG, PuntesV. Influence of the sequence of the reagents addition in the citrate-mediated synthesis of gold nanoparticles. J. Phys. Chem. C115(32), 15752–15757 (2011).
  • Xia H , BaiS, HartmannJR, WangD. Synthesis of monodisperse quasi-spherical gold nanoparticles in water via silver(i)-assisted citrate reduction. Langmuir26(5), 3585–3589 (2009).
  • Rodríguez-González B , MulvaneyP, Liz-MarzánLM. An electrochemical model for gold colloid formation via citrate reduction. Z. Phys. Chem.221(3), 415–426 (2007).
  • Kimling J , MaierM, OkenveB, KotaidisV, BallotH, PlechA. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B110(32), 15700–15707 (2006).
  • Brust M , WalkerM, BethellD, SchiffrinDJ, WhymanR. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. Chem. Commun. (7), 801–802 (1994).
  • Holgate CS , JacksonP, CowenPN, BirdCC. Immunogold-silver staining: new method of immunostaining with enhanced sensitivity. J. Histochem. Cytochem.31(7), 938–944 (1983).
  • Hainfeld JF , DilmanianFA, SlatkinDN, SmilowitzHM. Radiotherapy enhancement with gold nanoparticles. J. Pharm. Pharmacol.60(8), 977–985 (2008).
  • Pan Y , NeussS, LeifertAet al. Size-dependent cytotoxicity of gold nanoparticles. Small 3(11), 1941–1949 (2007).
  • Jana NR , GearheartL, MurphyCJ. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B105(19), 4065–4067 (2001).
  • Nikoobakht B , El-SayedMA. Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method. Chem. Mater.15(10), 1957–1962 (2003).
  • Pérez-Juste J , Liz-MarzánLM, CarnieS, ChanDYC, MulvaneyP. Electric-field-directed growth of gold nanorods in aqueous surfactant solutions. Adv. Funct. Mater.14(6), 571–579 (2004).
  • Murphy CJ , ThompsonLB, ChernakDJet al. Gold nanorod crystal growth. From seed-mediated synthesis to nanoscale sculpting. Curr. Opin. Colloid Interface Sci. 16(2), 128–134 (2011).
  • Ha TH , KooHJ, ChungBH. Shape-controlled syntheses of gold nanoprisms and nanorods influenced by specific adsorption of halide ions. J. Phys. Chem. C111(3), 1123–1130 (2006).
  • Mcintosh CM , EspositoEA, BoalAK, SimardJM, MartinCT, RotelloVM. Inhibition of DNA Transcription using cationic mixed monolayer protected gold clusters. J. Am. Chem. Soc.123(31), 7626–7629 (2001).
  • Liu X , DaiQ, AustinLet al. A One-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J. Am. Chem. Soc. 130(9), 2780–2782 (2008).
  • Torchilin VP , RammohanR, WeissigV, LevchenkoTS. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc. Natl Acad. Sci. USA98(15), 8786–8791 (2001).
  • Park J , MattessichT, JaySM, AgawuA, SaltzmanWM, FahmyTM. Enhancement of surface ligand display on PLGA nanoparticles with amphiphilic ligand conjugates. J. Control. Release156(1), 109–115 (2011).
  • Phadtare S , KumarA, VinodVPet al. Direct assembly of gold nanoparticle ‘shells‘ on polyurethane microsphere ‘cores‘ and their application as enzyme immobilization templates. Chem. Mater. 15(10), 1944–1949 (2003).
  • Nuzzo RG , ZegarskiBR, DuboisLH. Fundamental studies of the chemisorption of organosulfur compounds on gold(III). Implications for molecular self-assembly on gold surfaces. J. Am. Chem. Soc.109(3), 733–740 (1987).
  • Owens I DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm.307(1), 93–102 (2006).
  • Tong L , HeW, ZhangY, ZhengW, ChengJX. Visualizing systemic clearance and cellular level biodistribution of gold nanorods by intrinsic two-photon luminescence. Langmuir25(21), 12454–12459 (2009).
  • Paciotti GF , KingstonDGI, TamarkinL. Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Dev. Res.67(1), 47–54 (2006).
  • Longmire M , ChoykePL, KobayashiH. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Future Med. Nanomed.3(5), 703–717 (2008).
  • Akiyama Y , MoriT, KatayamaY, NidomeT. The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice. J. Control. Release139(1), 81–84 (2009).
  • De Jong WH , HagensWI, KrystekP, BurgerMC, SipsAJ, GeertsmaRE. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials29(12), 1912–1919 (2008).
  • Terentyuk GS , MaslyakovaGN, SuleymanovaLVet al. Circulation and distribution of gold nanoparticles and induced alterations of tissue morphology at intravenous particle delivery. J. Biophotonics 2(5), 292–302 (2009).
  • Perrault SD , WalkeyC, JenningsT, FischerHC, ChanWCW. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett.9(5), 1909–1915 (2009).
  • Oh E , DelehantyJB, SapsfordKEet al. Cellular uptake and fate of pegylated gold nanoparticles is dependent on both cell-penetration peptides and particle size. ACS Nano 5(8), 6434–6448 (2011).
  • Salem AK , SearsonPC, LeongKW. Multifunctional nanorods for gene delivery. Nat. Mater.2(10), 668–671 (2003).
  • Chen CC , LinYP, WangCWet al. DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
  • Park J -H, Von Maltzahn G, Ong LL et al. Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery. Adv. Mater.22(8), 880–885 (2010).
  • Park J -H, Von Maltzahn G, Xu MJ et al. Cooperative nanomaterial system to sensitize, target, and treat tumors. Proc. Natl Acad. Sci. USA107(3), 981–986 (2010).
  • Wang LM , LiYF, ZhouLJet al. Characterization of gold nanorods in vivo by integrated analytical techniques. their uptake, retention, and chemical forms. Anal. Bioanal. Chem. 396(3), 1105–1114 (2010).
  • Niidome T , YamagataM, OkamotoYet al. PEG-modified gold nanorods with a stealth character for in vivo applications. J. Control. Release 114(3), 343–347 (2006).
  • Huang X , PengX, WangY, ShinDM, El-SayedMA, NieS. A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands. ACS Nano4(10), 5887–5896 (2010).
  • Chauhan VP , PopovićZ, ChenOet al. Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew. Chem. Int. Ed. Engl. 50(48), 11417–11420 (2011).
  • Maeda H , WuJ, SawaT, MatsumuraY, HoriK. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release65(1–2), 271–284 (2000).
  • Chithrani BD , GhazaniAA, ChanWCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett.6(4), 662–668 (2006).
  • El-Sayed IH , HuangXH, El-SayedMA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett.5(5), 829–834 (2005).
  • El-Sayed IH , HuangXH, El-SayedMA. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett.239(1), 129–135 (2006).
  • Huang XH , El-SayedIH, QianW, El-SayedMA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc.128(6), 2115–2120 (2006).
  • Huang XH , JainPK, El-SayedIH, El-SayedMA. Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem. Photobiol.82(2), 412–417 (2006).
  • Chanda N , KattumuriV, ShuklaRet al. Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity. Proc. Natl Acad. Sci. USA 107(19), 8760–8765 (2010).
  • Dixit V , Van Den Bossche J, Sherman DM, Thompson DH, Andres RP. Synthesis and grafting of thioctic acid-PEG-folate conjugates onto au nanoparticles for selective targeting of folate receptor-positive tumor cells. Bioconjug. Chem.17(3), 603–609 (2006).
  • Chen YH , TsaiCY, HuangPYet al. Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol. Pharma. 4(5), 713–722 (2007).
  • Osborne CK . Tamoxifen in the treatment of breast cancer. N. Engl. J. Med.339(22), 1609–1618 (1998).
  • Heinlein CA , ChangC. Androgen receptor in prostate cancer. Endocr. Rev.25(2), 276–308 (2004).
  • Pietras RJ , Márquez-GarbánDC. Membrane-associated estrogen receptor signaling pathways in human cancers. Clin. Cancer Res.13(16), 4672–4676 (2007).
  • Lu ML , SchneiderMC, ZhengYX, ZhangXB, RichieJP. Caveolin-1 interacts with androgen receptor – a positive modulator of androgen receptor mediated transactivation. J. Biol. Chem.276(16), 13442–13451 (2001).
  • Pedram A , RazandiM, SainsonRCA, KimJK, HughesCC, LevinER. A conserved mechanism for steroid receptor translocation to the plasma membrane. J. Biol. Chem.282(31), 22278–22288 (2007).
  • Whitaker HC , HanrahanS, TottyNet al. Androgen receptor is targeted to distinct subcellular compartments in response to different therapeutic antiandrogens. Clin. Cancer Res. 10(21), 7392–7401 (2004).
  • Bergen JM , Von Recum HA, Goodman TT, Massey AP, Pun SH. Gold nanoparticles as a versatile platform for optimizing physicochemical parameters for targeted drug delivery. Macromol. Biosci.6(7), 506–516 (2006).
  • Dhar S , ReddyEM, ShirasA, PokharkarV, PrasadBLV. Natural gum reduced/stabilized gold nanoparticles for drug delivery formulations. Chem. Eur. J.14(33), 10244–10250 (2008).
  • Brown SD , NativoP, Smith J-A et al. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J. Am. Chem. Soc.132(13), 4678–4684 (2010).
  • Dolmans DEJ , FukumuraD, JainRK. Photodynamic therapy for cancer. Nat. Rev. Cancer3(5), 380–387 (2003).
  • Cheng Y , C. Samia A, Meyers JD, Panagopoulos I, Fei B, Burda C. Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J. Am. Chem. Soc.130(32), 10643–10647 (2008).
  • Hartmann JT , KollmannsbergerC, KanzL, BokemeyerC. Platinum organ toxicity and possible prevention in patients with testicular cancer. Int. J. Cancer83(6), 866–869 (1999).
  • Thompson SW , DavisLE, KornfeldM, HilgersRD, StandeferJC. Cisplatin neuropathy. Clinical, electrophysiologic, morphologic, and toxicologic studies. Cancer54(7), 1269–1275 (1984).
  • Pitsillides CM , JoeEK, WeiX, AndersonRR, LinCP. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys. J.84(6), 4023–4032 (2003).
  • El-Sayed IH , HuangX, El-SayedMA. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett.239(1), 129–135 (2006).
  • Van de Broek B , DevoogdtN, D‘HollanderAet al. Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. ACS Nano 5(6), 4319–4328 (2011).
  • Van Vlerken LE , AmijiMM. Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert Opin. Drug Del.3(2), 205–216 (2006).
  • Constantinides PP , WasanKM. Lipid formulation strategies for enhancing intestinal transport and absorption of P-glycoprotein (P-gp) substrate drugs: in vitro/in vivo case studies. J. Pharm. Sci.96(2), 235–248 (2007).
  • Gu Y -J, Cheng J, Man CW-Y, Wong W-T, Cheng SH. Gold-doxorubicin nanoconjugates for overcoming multidrug resistance. Nanomedicine8(2), 204–211 (2011).
  • Wang F , Wang Y-C, Dou S, Xiong M-H, Sun T-M, Wang J. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano5(5), 3679–3692 (2011).
  • Cho W -S, Cho M, Jeong J et al. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol. Appl. Pharmacol.236(1), 16–24 (2009).
  • Libutti SK , PaciottiGF, ByrnesAAet al. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin. Cancer Res. 16(24), 6139–6149 (2010).
  • Glover RD , MillerJM, HutchisonJE. Generation of metal nanoparticles from silver and copper objects: nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment. ACS Nano5(11), 8950–8957 (2011).
  • Shimizu T , TeranishiT, HasegawaS, MiyakeM. Size evolution of alkanethiol-protected gold nanoparticles by heat treatment in the solid state. J. Phys. Chem. B107(12), 2719–2724 (2003).
  • Sau TK , MurphyCJ. Seeded high yield synthesis of short au nanorods in aqueous solution. Langmuir20(15), 6414–6420 (2004).
  • Oldenburg SJ , AverittRD, WestcottSL, HalasNJ. Nanoengineering of optical resonances. Chem. Phys. Lett.288(2–4), 243–247 (1998).
  • Chen J , MclellanJM, SiekkinenA, XiongY, Li Z-Y, Xia Y. Facile synthesis of gold/silver nanocages with controllable pores on the surface. J. Am. Chem. Soc.128(46), 14776–14777 (2006).
  • Li W , CaiX, KimCet al. Gold nanocages covered with thermally-responsive polymers for controlled release by high-intensity focused ultrasound. Nanoscale 3(4), 1724–1730 (2011).
  • Lu J , DreisingerDB, CooperWC. Cobalt precipitation by reduction with sodium borohydride. Hydrometallurgy45(3), 305–322 (1997).

Patent

  • Oyelere AK, El-Sayed MA, Dreaden EC: US0077581A1 (2011) (Pending).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.