383
Views
0
CrossRef citations to date
0
Altmetric
Review

Improvement of the Bitter Taste of Drugs By Complexation With Cyclodextrins: applications, Evaluations and Mechanisms

, &
Pages 633-644 | Published online: 17 May 2012

References

  • Chandrashekar J , HoonMA, RybaNJ, ZukerCS. The receptors and cells for mammalian taste. Nature444(7117), 288–294 (2006).
  • Chen X , GabittoM, PengY, RybaNJ, ZukerCS. A gustotopic map of taste qualities in the mammalian brain. Science333(6047), 1262–1266 (2011).
  • Adler E , HoonMA, MuellerKL, ChandrashekarJ, RybaNJ, ZukerCS. A novel family of mammalian taste receptors. Cell100(6), 693–702 (2000).
  • Chandrashekar J , MuellerKL, HoonMAet al. T2Rs function as bitter taste receptors. Cell 100(6), 703–711 (2000).
  • Huang AL , ChenX, HoonMAet al. The cells and logic for mammalian sour taste detection. Nature 442(7105), 934–938 (2006).
  • Ishimaru Y , InadaH, KubotaM, ZhuangH, TominagaM, MatsunamiH. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc. Natl Acad. Sci. USA103(33), 12569–12574 (2006).
  • Li X , StaszewskiL, XuH, DurickK, ZollerM, AdlerE. Human receptors for sweet and umami taste. Proc. Natl Acad. Sci USA99(7), 4692–4696 (2002).
  • Matsunami H , MontmayeurJP, BuckLB. A family of candidate taste receptors in human and mouse. Nature404(6778), 601–604 (2000).
  • Mueller KL , HoonMA, ErlenbachI, ChandrashekarJ, ZukerCS, RybaNJ. The receptors and coding logic for bitter taste. Nature434(7030), 225–229 (2005).
  • Nelson G , ChandrashekarJ, HoonMAet al. An amino-acid taste receptor. Nature 416(6877), 199–202 (2002).
  • Nelson G , HoonMA, ChandrashekarJ, ZhangY, RybaNJ, ZukerCS. Mammalian sweet taste receptors. Cell106(3), 381–390 (2001).
  • Zhao GQ , ZhangY, HoonMAet al. The receptors for mammalian sweet and umami taste. Cell 115(3), 255–266 (2003).
  • Nunn T , WilliamsJ. Formulation of medicines for children. Br. J. Clin. Pharmacol.59(6), 674–676 (2005).
  • Sohi H , SultanaY, KharRK. Taste masking technologies in oral pharmaceuticals: recent developments and approaches. Drug Dev. Ind. Pharm.30(5), 429–448 (2004).
  • Shammari SA , KhojaT, YamaniMJ. Compliance with short-term antibiotic therapy among patients attending primary health centres in Riyadh, Saudi Arabia. J. R. Soc. Health115(4), 231–234 (1995).
  • Dhoka MV , NimbalkarUA, PandeA. Preparation of cefpodoxime proxetil-polymeric microspheres by the emulsion solvent diffusion method for taste masking. Int. J. Chem. Tech. Res.3(1), 411–419 (2011).
  • Ayenew Z , PuriV, KumarL, BansalAK. Trends in pharmaceutical taste masking technologies: a patent review. Recent Pat. Drug Deliv. Formul.3(1), 26–39 (2009).
  • Behzadi SS , ToegelS, ViernsteinH. Innovations in coating technology. Recent Pat. Drug Deliv. Formul.2(3), 209–230 (2008).
  • Douroumis D . Practical approaches of taste masking technologies in oral solid forms. Expert Opin. Drug Deliv.4(4), 417–426 (2007).
  • Douroumis D . Orally disintegrating dosage forms and taste-masking technologies; 2010. Expert Opin. Drug Deliv.8(5), 665–675 (2011).
  • Gryczke A , SchminkeS, ManiruzzamanM, BeckJ, DouroumisD. Development and evaluation of orally disintegrating tablets (ODTs) containing Ibuprofen granules prepared by hot melt extrusion. Colloids Surf. B Biointerfaces86(2), 275–284 (2011).
  • Hamashita T , MatsuzakiM, OnoTet al. Granulation of core particles suitable for film coating by agitation fluidized bed II. A proposal of a rapid dissolution test for evaluation of bitter taste of ibuprofen. Chem. Pharm. Bull. (Tokyo) 56(7), 883–887 (2008).
  • Hamashita T , NakagawaY, AketoT, WatanoS. Granulation of core particles suitable for film coating by agitation fluidized bed I. Optimum formulation for core particles and development of a novel friability test method. Chem. Pharm. Bull. (Tokyo)55(8), 1169–1174 (2007).
  • Yoshida T , TasakiH, MaedaA, KatsumaM, SakoK, UchidaT. Optimization of salting-out taste-masking system for micro-beads containing drugs with high solubility. Chem. Pharm. Bull. (Tokyo)56(11), 1579–1584 (2008).
  • Yoshida T , TasakiH, MaedaA, KatsumaM, SakoK, UchidaT. Salting-out taste-masking system generates lag time with subsequent immediate release. Int. J. Pharm.365(1–2), 81–88 (2009).
  • Yoshida T , TasakiH, MaedaA, KatsumaM, SakoK, UchidaT. Mechanism of controlled drug release from a salting-out taste-masking system. J. Control. Release131(1), 47–53 (2008).
  • Sikandar MK , MakviyaR, SharmaPK. Taste masking: an important pharmaceutical technology for the improvement of organoleptic property of pharmaceutical active agents. Eur. J. Biol. Sci.3(3), 67–71 (2011).
  • Albers E , MullerBW. Cyclodextrin derivatives in pharmaceutics. Crit. Rev. Ther. Drug Carrier Syst.12(4), 311–337 (1995).
  • Brewster ME , LoftssonT. Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev.59(7), 645–666 (2007).
  • Challa R , AhujaA, AliJ, KharRK. Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech6(2), E329–E357 (2005).
  • Davis ME , BrewsterME. Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug Discov.3(12), 1023–1035 (2004).
  • Li J , LohXJ. Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery. Adv. Drug Deliv. Rev.60(9), 1000–1017 (2008).
  • Loftsson T , BrewsterME. Pharmaceutical applications of cyclodextrins: basic science and product development. J. Pharm. Pharmacol.62(11), 1607–1621 (2010).
  • Uekama K , HirayamaF, IrieT. Cyclodextrin drug carrier systems. Chem. Rev.98(5), 2045–2076 (1998).
  • Uekama K , OtagiriM. Cyclodextrins in drug carrier systems. Crit. Rev. Ther. Drug Carrier Syst.3(1), 1–40 (1987).
  • Debouzy JC , FauvelleF, CrouzySet al. Mechanism of α-cyclodextrin induced hemolysis. A study of the factors controlling the association with serine-, ethanolamine-, and choline-phospholipids. J. Pharm. Sci. 87(1), 59–66 (1998).
  • Fauvelle F , DebouzyJC, CrouzyS, GoschlM, ChapronY. Mechanism of α-cyclodextrin-induced hemolysis. The two-step extraction of phosphatidylinositol from the membrane. J. Pharm. Sci.86(8), 935–943 (1997).
  • Irie T , OtagiriM, SunadaMet al. Cyclodextrin-induced hemolysis and shape changes of human erythrocytes in vitro. J. Pharmacobiodyn. 5(9), 741–744 (1982).
  • Ohtani Y , IrieT, UekamaK, FukunagaK, PithaJ. Differential effects of α-, β- and γ-cyclodextrins on human erythrocytes. Eur. J. Biochem.186(1–2), 17–22 (1989).
  • Irie T , UekamaK. Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J. Pharm. Sci.86(2), 147–162 (1997).
  • Loftsson T , JarhoP, MassonM, JarvinenT. Cyclodextrins in drug delivery. Expert Opin. Drug Deliv.2(2), 335–351 (2005).
  • Uekama K , ImaiT, MaedaT, IrieT, HirayamaF, OtagiriM. Improvement of dissolution and suppository release characteristics of flurbiprofen by inclusion complexation with heptakis(2,6-di-O-methyl)-β-cyclodextrin. J. Pharm. Sci.74(8), 841–845 (1985).
  • Sharma S , LewisS. Taste masking technologies: a review. Int. J. Pharm. Sci.2(2), 6–13 (2010).
  • Kumazawa T , NomuraT, KuriharaK. Liposomes as model for taste cells: receptor sites for bitter substances including N–C=S substances and mechanism of membrane potential changes. Biochemistry27(4), 1239–1244 (1988).
  • Okahata Y , En-NaG, EbatoH. Synthetic chemoreceptive membranes. Sensing bitter or odorous substances on a synthetic lipid multibilayer film by using quartz-crystal microbalances and electric responses. Anal. Chem.62(14), 1431–1438 (1990).
  • Ono N , MiyamotoY, IshiguroTet al. Reduction of bitterness of antihistaminic drugs by complexation with β-cyclodextrins. J. Pharm. Sci. 100(5), 1935–1943 (2011).
  • Funasaki N , UratsujiI, OkunoT, HirotaS, NeyaS. Masking mechanisms of bitter taste of drugs studied with ion selective electrodes. Chem. Pharm. Bull. (Tokyo)54(8), 1155–1161 (2006).
  • Funasaki N , KawaguchiR, IshikawaS, HadaS, NeyaS, KatsuT. Quantitative estimation of the bitter taste intensity of oxyphenonium bromide reduced by cyclodextrins from electromotive force measurements. Anal. Chem.71(9), 1733–1736 (1999).
  • Kataoka M , MiyanagaY, TsujiE, UchidaT. Evaluation of bottled nutritive drinks using a taste sensor. Int. J. Pharm.279(1–2), 107–114 (2004).
  • Miyanaga Y , InoueN, OhnishiA, FujisawaE, YamaguchiM, UchidaT. Quantitative prediction of the bitterness suppression of elemental diets by various flavors using a taste sensor. Pharm. Res.20(12), 1932–1938 (2003).
  • Takagi S , TokoK, WadaK, YamadaH, ToyoshimaK. Detection of suppression of bitterness by sweet substance using a multichannel taste sensor. J. Pharm. Sci.87(5), 552–555 (1998).
  • Toko K . Electronic tongue. Biosens. Bioelectron.13(6), 701–709 (1998).
  • Uchida T , KobayashiY, MiyanagaYet al. A new method for evaluating the bitterness of medicines by semi-continuous measurement of adsorption using a taste sensor. Chem. Pharm. Bull. (Tokyo) 49(10), 1336–1339 (2001).
  • Uchida T , TanigakeA, MiyanagaYet al. Evaluation of the bitterness of antibiotics using a taste sensor. J. Pharm. Pharmacol. 55(11), 1479–1485 (2003).
  • Mady FM , Abou-TalebAE, KhaledKAet al. Enhancement of the aqueous solubility and masking the bitter taste of famotidine using drug/SBE-β-CyD/povidone K30 complexation approach. J. Pharm. Sci. 99(10), 4285–4294 (2010).
  • Mady FM , Abou-TalebAE, KhaledKAet al. Evaluation of carboxymethyl-β-cyclodextrin with acid function: improvement of chemical stability, oral bioavailability and bitter taste of famotidine. Int. J. Pharm. 397(1–2), 1–8 (2010).
  • Szejtli J , SzenteL. Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. Eur. J. Pharm. Biopharm.61(3), 115–125 (2005).
  • Woertz K , TissenC, KleinebuddeP, BreitkreutzJ. Rational development of taste masked oral liquids guided by an electronic tongue. Int. J. Pharm.400(1–2), 114–123 (2010).
  • Miyamoto Y , NakaharaM, MotoyamaKet al. Improvement of some physicochemical properties of arundic acid, (R)-(-)-2-propyloctanonic acid, by complexation with hydrophilic cyclodextrins. Int. J. Pharm. 413(1–2), 63–72 (2011).
  • Toda J , MisakiM, KonnoA, WadaT, YasumatsuK. Interaction of cyclodextrins with taste substances. Proc. 4th Int. Flavour Conference1, 19–34 (1985).
  • Shah PP , MashruRC. Formulation and evaluation of taste masked oral reconstitutable suspension of primaquine phosphate. AAPS PharmSciTech9(3), 1025–1030 (2008).
  • Cabral FP , BergamoBB, DantasCA, RiulA, Jr, Giacometti JA. Impedance E-tongue instrument for rapid liquid assessment. Rev. Sci. Instrum.80(2), 026107 (2009).
  • Gupta H , SharmaA, KumarS, RoySK. E-tongue: a tool for taste evaluation. Recent Pat. Drug Deliv. Formul.4(1), 82–89 (2010).
  • Rachid O , SimonsFE, Rawas-QalajiM, SimonsKJ. An electronic tongue: evaluation of the masking efficacy of sweetening and/or flavoring agents on the bitter taste of epinephrine. AAPS PharmSciTech11(2), 550–557 (2010).
  • Stojanov M , WimmerR, LarsenKL. Study of the inclusion complexes formed between cetirizine and α-, β-, and γ-cyclodextrin and evaluation on their taste-masking properties. J. Pharm. Sci.100(8), 3177–3185 (2011).
  • Shah PP , MashruRC. Palatable reconstitutable dry suspension of artemether for flexible pediatric dosing using cyclodextrin inclusion complexation. Pharm. Dev. Technol.15(3), 276–285 (2010).
  • Birhade ST , BankarVH, Gaikwad,PD, PawarSP. Preparation and evaluation of cyclodextrin based binary systems for taste masking. J. Pharm. Sci. Drug Res.2(3), 199–203 (2010).
  • Sevukarajan M , ThanujaB, RahulN. Novel inclusion complexes of oseltamivir phosphate-with β-cyclodextrin: physico-chemical characterization. J. Pharm. Sci. Res.2(9), 583–589 (2010).
  • Mahesh A , ShastriN, SadanandamM. Development of taste masked fast disintegrating films of levocetirizine dihydrochloride for oral use. Curr. Drug Deliv.7(1), 21–27 (2010).
  • Patel AR , VaviaPR. Preparation and evaluation of taste masked famotidine formulation using drug/β-cyclodextrin/polymer ternary complexation approach. AAPS PharmSciTech9(2), 544–550 (2008).
  • Uekama K , ArimaH, IrieT, MatsubaraK, KurikiT. Sustained release of buserelin acetate, a luteinizing hormone-releasing hormone agonist, from an injectable oily preparation utilizing ethylated β-cyclodextrin. J. Pharm. Pharmacol.41(12), 874–876 (1989).
  • Matsubara K , IrieT, UekamaK. Spectroscopic characterization of the inclusion complex of a luteinizing hormone-releasing hormone agonist, buserelin acetate, with dimethyl-β-cyclodextrin. Chem. Pharm. Bull. (Tokyo)45(2), 378–383 (1997).
  • Tokihiro K , IrieT, UekamaK. Varying effects of cyclodextrin derivatives on aggregation and thermal behavior of insulin in aqueous solution. Chem. Pharm. Bull. (Tokyo)45(3), 525–531 (1997).
  • Tavornvipas S , TajiriS, HirayamaF, ArimaH, UekamaK. Effects of hydrophilic cyclodextrins on aggregation of recombinant human growth hormone. Pharm. Res.21(12), 2369–2376 (2004).
  • Tavornvipas S , HirayamaF, TakedaS, ArimaH, UekamaK. Effects of cyclodextrins on chemically and thermally induced unfolding and aggregation of lysozyme and basic fibroblast growth factor. J. Pharm. Sci.95(12), 2722–2729 (2006).
  • Abe K , IrieT, UekamaK. Enhanced nasal delivery of luteinizing hormone releasing hormone agonist buserelin by oleic acid solubilized and stabilized in hydroxypropyl-β-cyclodextrin. Chem. Pharm. Bull. (Tokyo)43(12), 2232–2237 (1995).
  • Matsubara K , AndoY, IrieT, UekamaK. Protection afforded by maltosyl-β-cyclodextrin against α-chymotrypsin-catalyzed hydrolysis of a luteinizing hormone-releasing hormone agonist, buserelin acetate. Pharm. Res.14(10), 1401–1405 (1997).
  • Irie T , UekamaK. Cyclodextrins in peptide and protein delivery. Adv. Drug Deliv. Rev.36(1), 101–123 (1999).
  • Arima H , YunomaeK, HirayamaF, UekamaK. Contribution of P-glycoprotein to the enhancing effects of dimethyl-β-cyclodextrin on oral bioavailability of tacrolimus. J. Pharmacol. Exp. Ther.297(2), 547–555 (2001).
  • Arima H , YunomaeK, MorikawaT, HirayamaF, UekamaK. Contribution of cholesterol and phospholipids to inhibitory effect of dimethyl-β-cyclodextrin on efflux function of P-glycoprotein and multidrug resistance-associated protein 2 in vinblastine-resistant Caco-2 cell monolayers. Pharm. Res.21(4), 625–634 (2004).
  • Yunomae K , ArimaH, HirayamaF, UekamaK. Involvement of cholesterol in the inhibitory effect of dimethyl-β-cyclodextrin on P-glycoprotein and MRP2 function in Caco-2 cells. FEBS Lett.536(1–3), 225–231 (2003).
  • Motoyama K , ToyodomeH, OnoderaRet al. Involvement of lipid rafts of rabbit red blood cells in morphological changes induced by methylated β-cyclodextrins. Biol. Pharm. Bull. 32(4), 700–705 (2009).
  • Ohkubo S , NakahataN. Role of lipid rafts in trimeric G protein-mediated signal transduction. Yakugaku Zasshi127(1), 27–40 (2007).
  • Katsuragi Y , KuriharaK. Specific inhibitor for bitter taste. Nature365(6443), 213–214 (1993).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.