396
Views
0
CrossRef citations to date
0
Altmetric
Review

Overview and Outlook of Toll-like Receptor ligand–antigen Conjugate Vaccines

&
Pages 749-760 | Published online: 01 Jun 2012

References

  • Tognotti E . The eradication of smallpox, a success story for modern medicine and public health: what lessons for the future? J. Infect. Dev. Ctries4(5), 264–266 (2010).
  • Cima G . Rinderpest eradicated. International organizations declare ‘cattle plague‘ dead. J. Am. Vet. Med. Assoc.239(1), 11–15 (2011).
  • Roberts L . Polio eradication. Looking for a little luck. Science323(5915), 702–705 (2009).
  • Aylward B , YamadaT. The polio endgame. N. Engl. J. Med.364(24), 2273–2275 (2011).
  • Zauner W , LingnauK, MatterF, von Gabain A, Buschle M. Defied synthetic vaccines. Biol. Chem.382(4), 581–595 (2001).
  • Pashine A , ValianteNM, UlmerJB. Targeting the innate immune response with improved vaccine adjuvants. Nat. Med.11(4), S63–S68 (2005).
  • Aguilar JC , RodfíguezEG. Vaccine adjuvants revisited. Vaccine25(19), 3752–3762 (2007).
  • Guy B . The perfect mix: recent progress in adjuvant research. Nat. Rev. Micro.5(7), 505–517 (2007).
  • Imler JL , HoffmannJA. Signaling mechanisms in the antimicrobial host defense of Drosophila. Curr. Opin. Microbiol.3(1), 16–22 (2000).
  • Aderem A , UlevitchRJ. Toll-like receptors in the induction of the innate immune response. Nature406(6797), 782–787 (2000).
  • Medzhitov R . Toll-like receptors and innate immunity. Nat. Rev. Immunol.1(2), 135–145 (2001).
  • Kumar H , KawaiT, AkiraS. Toll-like receptors and innate immunity. Biochem. Biophys. Res. Commun.388(4), 621–625 (2009).
  • Takeda K , KaishoT, AkiraS. Toll-like receptors. Annu. Rev. Immunol.21, 335–376 (2003).
  • Uematsu S , JangMH, ChevrierNet al. Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells. Nat. Immunol. 7(8), 868–874 (2006).
  • Zhang D , ZhangG, HaydenMSet al. A Toll-like receptor that prevents infection by uropathogenic bacteria. Science 303(5663), 1522–1526 (2004).
  • Akira S , TakedaK. Toll-like receptor signaling. Nat. Rev. Immunol.4(7), 499–511 (2004).
  • Sun J , WiklundF, ZhengSLet al. Sequence variants in Toll-like receptor gene cluster (TLR6-TLR1-TLR10) and prostate cancer risk. J. Natl Cancer Inst. 97(7), 525–532 (2005).
  • Bochud PY , HersbergerM, TafféPet al. Polymorphisms in Toll-like receptor 9 influence the clinical course of HIV-1 infection. AIDS 21(4), 441–446 (2007).
  • Sobieszczyk ME , LingappaJR, McElrathMJ. Host genetic polymorphisms associated with innate immune factors and HIV-1. Curr. Opin. HIV AIDS6(5), 427–434 (2011).
  • Hawn TR , ScholesD, LiSSet al. Toll-like receptor polymorphisms and susceptibility to urinary tract infections in adult women. PLoS ONE 4(6), e5990 (2009).
  • Johnson CM , LyleEA, OmuetiKOet al. Cutting edge: a common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against Leprosy. J. Immunol. 178(12), 7520–7524 (2007).
  • Misch EA , MacdonaldM, RanjitCet al. Human TLR1 deficiency is associated with impaired mycobacterial signaling and protection from Leprosy reversal reaction. PLoS Negl. Trop. Dis. 2(5), e231 (2008).
  • Schroder NW , DiterichI, ZinkeAet al. Heterozygous Arg753Gln polymorphism of human TLR-2 impairs immune activation by Borrelia burgdorferi and protects from late stage Lyme disease. J. Immunol. 175(4), 2534–2540 (2005).
  • Hawn TR , VerbonA, LettingaKDet al. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to Legionnaires‘ Disease. J. Exp. Med. 198(10), 1563–1572 (2003).
  • Hawn TR , VerbonA, JanerM, ZhaoLP, BeutlerB, AderemA. Toll-like receptor 4 polymorphisms are associated with resistance to Legionnaires‘ disease. Proc. Natl Acad. Sci. USA102(7), 2487–2489 (2005).
  • Zhang Q , QianFH, ZhouLFet al. Polymorphisms in Toll-like receptor 4 gene are associated with asthma severity but not susceptibility in a Chinese Han population. J. Investig. Allergol. Clin. Immunol. 21(5), 370–377 (2011).
  • Kanagaratham C , CamaterosP, FlaczykA, RadziochD. Polymorphisms in Toll-like receptor genes and their roles in allergic asthma and atopy. Recent Pat. Inflamm. Allergy Drug Discov.5(1), 45–56 (2011).
  • Wurfel MM , GordonAC, HoldenTDet al. Toll-like receptor 1 polymorphisms affect innate immune responses and outcomes in sepsis. Am. J. Respir. Crit. Care Med. 178(7), 710–720 (2008).
  • Ma X , LiuY, GowenBB, GravissEA, ClarkAG, MusserJM. Full-exon resequencing reveals Toll-like receptor variants contribute to human susceptibility to tuberculosis disease. PLoS One2(12), e1318 (2007).
  • Hawn TR , MischEA, DunstanSJet al. A common human TLR1 polymorphism regulates the innate immune response to lipopeptides. Eur. J. Immunol. 37(8), 2280–2289 (2007).
  • Arbour NC , LorenzE, SchutteBCet al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet. 25(2), 187–191 (2000).
  • Pinto A , MorelloS, SorrentinoR. Lung cancer and Toll-like receptors. Cancer Immunol. Immunother.60(9), 1211–1220 (2011).
  • Wang H , RayburnE, ZhangR. Synthetic oligodeoxynucleotides containing deoxycytidyl-deoxyguanosinedinucleotides (CpG ODNs) and modified analogs as novel anticancer therapeutics. Curr. Pharm. Des.11(22), 2889–2907 (2005).
  • Akazawa T , InoueN, ShimeH, KodamaK, MatsumotoM, SeyaT. Adjuvant engineering for cancer immunotherapy development of a synthetic TLR2 ligand with increased cell adhesion. Cancer Sci.101(7), 1596–1603 (2010).
  • Johansen P , SentiG, Martinez Gomez JM et al. Toll-like receptor ligands as adjuvants in allergen-specific immunotherapy. Clin. Exp. Allergy35(12), 1591–1598 (2005).
  • Metzger JW , Beck-SickingerAG, LoleitM, EckertM, BesslerWG, JungG. Synthetic S-(2,3-dihydroxypropyl)-cysteinyl peptides derived from the N-terminus of the cytochrome subunit of the photoreaction centre of Rhodopseu-domonasviridis enhance murine splenocyte proliferation. J. Pept. Sci.1(3), 184–190 (1995).
  • Langhan B , BraunschweigerI, SchweitzerSet al. Lipidation of T helper sequences from hepatits C virus core significantly enhances T-cell activity in vitro. Immunol.102(4), 460–465 (2001).
  • Sieling PA , ChungW, DuongBT, GodowskiPJ, ModlinRL. Toll-like receptor 2 ligands as adjuvants for human Th1 responses. J. Immunol.170(1), 194–200 (2003).
  • Takeda K , AkiraS. Microbial recognition by Toll-like receptors. J. Dermatol. Sci.34(2), 73–82 (2004).
  • Sacht G , MärtenA, DeitersUet al. Activation of nuclear factor-κB in macrophages by mycoplasmal lipopeptides. Eur. J. Immunol. 28(12), 4207–4212 (1998).
  • Muhlradt PF , KiessM, MeyerH, SussmuthR, JungG. Structure and specific activity of macrophage-stimulating lipopeptides from Mycoplasma hyorhinis. Infect. Immun.66(10), 4804–4810(1998).
  • Muhlradt PF , KiessM, MeyerH, SussmuthR, JungG. Isolation, structure elucidation, and synthesis of a macrophage stimulatory lipopeptide from Mycoplasma fermentans acting at picomolar concentration. J. Exp. Med.185(11), 1951–1958 (1997).
  • Jackson DC , LauYF, LeTet al. A totally synthetic vaccine of generic structure that targets Toll-like receptor 2 on dendritic cells and promotes antibody or cytotoxic T cell responses. Proc. Natl Acad. Sci. USA 101(43), 15440–15445 (2004).
  • Zeng W , ErikssonE, ChuaB, GrolloL, JacksonDC. Structural requirement for the agonist activity of the TLR2 ligand Pam2Cys. Amino Acids39(2), 471–480 (2010).
  • Abdel-Aal A -BM, Al-Isae K, Zaman M, Toth I. Simple synthetic Toll-like receptor 2 ligands. Bioorg. Med. Chem. Lett.21(24), 5863–5865 (2011).
  • Seyberth T , VossS, BrockP, Wiesmüller K-H, Jung G. Lipolanthionine peptides act as inhibitors of TLR2-mediated IL-8 secretion. Synthesis and structure-activity relationships. J. Med. Chem.49(5), 1754–1765 (2006).
  • Wu W , LiR, MalladiSSet al. Structure–activity relationships in Toll-like receptor-2 agonistic diacylthioglycerol lipopeptides. J. Med. Chem. 53(8), 3198–3213 (2010).
  • Jin MS , KimSE, HeoJYet al. Crystal structure of the TLR1–TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130(6), 1071–1082 (2007).
  • Zeng W , GhoshS, LauYF, BrownLE, JacksonDC. Highly immunogenic and totally synthetic lipopeptides as self-adjuvanting immunocontraceptive vaccines. J. Immunol.169(9), 4905–4912 (2002).
  • Lau YF , DeliyannisG, ZengW, MansellA, JacksonDC, BrowLE. Lipid-containing mimetics of natural triggers of innate immunity as CTL-inducing influenza vaccines. Int. Immunol.18(12), 1801–1813 (2006).
  • Hewitt MC , SeebergerPH. Solution and solid-support synthesis of a potential leishmaniasis carbohydrate vaccine. J. Org. Chem.66(12), 4233–4243 (2001).
  • Buskas T , ThompsonP, BoonsGJ. Immunotherapy for cancer: synthetic carbohydrate-based vaccines. Chem. Commun. (Camb.)36, 5335–5349 (2009).
  • Ingale S , WolfertMA, BuskasT, Boons G-J. Increasing the antigenicity of synthetic tumor-associated carbohydrate antigens by targeting Toll-like receptors. Chem. Bio. Chem.10(3), 455–463 (2009).
  • Ingale S , WolfertMA, GaewadJ, BuskasT, Boons G-J. Robust immune responses elicited by a fully synthetic three-component vaccine. Nat. Chem. Biol.3(10), 663–667 (2007).
  • Kaiser A , GaidzikN, BeckerTet al. Fully synthetic vaccines consisting of tumor-associated MUC1 glycopeptides and a lipopeptide ligand of the Toll-like receptor 2. Angew. Chem. Int. Ed. 49(1), 1–6 (2010).
  • Cai H , HuangZH, ShiL, ZhaoYF, KunzH, LiYM. Towards a fully synthetic MUC1-based anticancer vaccine: efficient conjugation of glycopeptides with mono-, di-, and tetravalent lipopeptides using click chemistry. Chemistry17(23), 6396–6406 (2011).
  • Hollingsworth MA , SwansonBJ. Mucins in cancer: protection and control of the cell surface. Nat. Rev. Cancer4(1), 45–60 (2004).
  • Moyle PM , TothI. Self-adjuvanting lipopeptide vaccines. Curr. Med. Chem.15(5), 506–516 (2008).
  • Zaman M , Abdel-AalAB, PhillippsKS, FujitaY, GoodMF, TothI. Structure-activity relationship of lipopeptide group A streptococcus (GAS) vaccine candidates on Toll-like receptor 2. Vaccine28(10), 2243–2248 (2010).
  • Zaman M , Abdel-AalAB, FujitaYet al. Immunological evaluation of lipopeptide group A streptococcus (GAS) vaccine: structure–activity relationship. PLoS One 7(1), e30146 (2012).
  • Abdel-Aal AB , ZamanM, FujitaY, BatzloffMR, GoodMF, TothI. Design of three-component vaccines against group A streptococcal infections: importance of spatial arrangement of vaccine components. J. Med. Chem.53(22), 8041–8046 (2010).
  • Beutler B . Endotoxin, Toll-like receptor 4, and the afferent limb of innate immunity. Curr. Opin. Microbiol.3(1), 23–28 (2000).
  • Ulevitch RJ . Recognition of bacterial endotoxins by receptor-dependent mechanisms. Adv. Immunol.53, 267–289 (1993).
  • Allison AC . Adjuvants and immune enhancement. Int. J. Technol. Assess. Health Care10(1), 107–120 (1994).
  • Park BS , SongDH, KimHM, Choi B-S, Lee H, Lee J-O. The structural basis of lipopolysaccharide recognition by the TLR4–MD-2 complex. Nature458(7242), 1191–1195 (2009).
  • Qureshi N , MascagniP, RibiE, TakayamaK. Monophosphoryl lipid A obtained from lipopolysaccharides of Salmonella minnesota R595: purification of the dimethyl derivative by high performance lipid chromatography and complete structural determination. J. Biol. Chem.260(9), 5271–5278 (1985).
  • Myers K , TrochotAT, WardJ. A critical determination of lipid A endotoxic activity. Cellular and molecular aspects of endotoxin reactions. Proceedings of the 1st Congress of the International Endotoxin Society. San Diego, USA, 9–12 May 1990.
  • Wang Q , XueJ, GuoZ. Synthesis of a monophosphoryl lipid A derivative and its conjugation to a modified form of a tumor-associated carbohydrate antigen GM3. Chem. Commun. (Camb.)37, 5536–5537 (2009).
  • Wang Q , ZhouZ, TangS, GuoZ. Carbohydrate–monophosphoryl lipid A conjugates are fully synthetic self-adjuvanting cancer vaccines eliciting robust immune responses in the mouse. ACS Chem. Biol.7(1), 235–240 (2012).
  • Gewirtz AT , NavasTA, LyonsS, GodowskiPJ, MadaraJL. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol.167(4), 1882–1885 (2001).
  • Hayashi F , SmithKD, OzinskyAet al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410(6832), 1099–1103 (2001).
  • Huleatt JW , JacobsAR, TangJet al. Vaccination with recombinant fusion proteins incorporating Toll-like receptor ligands induces rapid cellular and humoral immunity. Vaccine 25(4), 763–775 (2007).
  • Bargieri DY , RosaDS, BragaCJet al. New malaria vaccine candidates based on the Plasmodium vivax Merozoite Surface Protein-1 and the TLR-5 agonist Salmonella typhimurium FliC flagellin. Vaccine 26(48), 6132–6142 (2008).
  • Braga CJ , MassisLM, Sbrogio-AlmeidaMEet al. CD8+ T cell adjuvant effects of Salmonella FliCd flagellin in live vaccine vectors or as purified protein. Vaccine 28(5), 1373–1382 (2010).
  • Delaney KD , PhippsJP, JohnsonJB, MizelSB. A recombinant flagellin–poxvirus fusion protein vaccine elicits complement-dependent protection against respiratory challenge with vaccinia virus in mice. Viral Immunol.23(2), 201–210(2010).
  • Lamb RA , LaiCJ, ChoppinPW. Sequences of mRNAs derived from genome RNA segment 7 of influenza virus: colinear and interrupted mRNAs code for overlapping proteins. Proc. Natl Acad. Sci. USA78(7), 4170–4174 (1981).
  • Fiers W , De Filette M, El Bakkouri K et al. M2e-based universal influenza A vaccine. Vaccine27(45), 6280–6283 (2009).
  • Huleatt JW , NakaarV, DesaiPet al. Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin. Vaccine 26(2), 201–214 (2008).
  • Talbot HK , RockMT, JohnsonCet al. Immunopotentiation of trivalent influenza vaccine when given with VAX102, a recombinant influenza M2e vaccine fused to the TLR5 ligand flagellin. PLoS One 5(12), e14442 (2010).
  • Turley CB , RuppRE, JohnsonCet al. Safety and immunogenicity of a recombinant M2e-flagellin influenza vaccine (STF2.4xM2e) in healthy adults. Vaccine 29(32), 5145–5152 (2011).
  • Song L , NakaarV, KavitaUet al. Efficacious recombinant influenza vaccines produced by high yield bacterial expression: a solution to global pandemic and seasonal needs. PLoS ONE 3(5), e2257 (2008).
  • Song L , ZhangY, YunNEet al. Superior efficacy of a recombinant flagellin: H5N1 HA globular head vaccine is determined by the placement of the globular head within flagellin. Vaccine 27(42), 5875–5884 (2009).
  • Treanor JJ , TaylorDN, TusseyLet al. Safety and immunogenicity of a recombinant hemagglutinin influenza–flagellin fusion vaccine (VAX125) in healthy young adults. Vaccine 28(52), 8268–8274 (2010).
  • Taylor DN , TreanorJJ, StroutCet al. Induction of a potent immune response in the elderly using the TLR-5 agonist, flagellin, with a recombinant hemagglutinin influenza-flagellin fusion vaccine (VAX125, STF2.HA1 SI). Vaccine 29(31), 4897–4902 (2011).
  • Gerster JF , LindstromKJ, MillerRLet al. Synthesis and structure–activity relationships of 1H-imidazo[4,5-c]quinolines that induce interferon production. J. Med. Chem. 48(10), 3481–3491 (2005).
  • Tomai MA , GibsonSJ, ImbertsonLMet al. Immunomodulating and antiviral activities of the imidazoquinolines S-28463. Antiviral Res. 28(3), 253–264 (1995).
  • Izumi T , SakaguchiJ, TakeshitaMet al. 1H-Imidazo[4,5-c]quinoline derivatives as novel potent TNF-alpha suppressors: synthesis and structure-activity relationship of 1-, 2-and 4-substituted 1H-imidazo[4,5-c]quinolines or 1H-imidazo[4,5-c]pyridines. Bioorg. Med. Chem. 11(12), 2541–2550 (2003).
  • Miller RL , GersterJF, OwensML, SladeHB, TomaiMA. Imiquimod applied topically: a novel immune response modifier and new class of drug. Int. J. Immunopharmacol.21(1), 1–14 (1999).
  • Shukla NM , KimbrellMR, MalladiSS, DavidSA. Regioisomerism-dependent TLR7 agonism and antagonism in an imidazoquinoline. Bioorg. Med. Chem. Lett.19(8), 2211–2214 (2009).
  • Shukla NM , MalladiSS, DayV, DavidSA. Preliminary evaluation of a 3H-imidazoquinoline library as dual TLR7/TLR8 antagonists. Bioorg. Med. Chem.19(12), 3801–3811 (2011).
  • Shukla NM , MalladiSS, MutzCA, BalakrishnaR, DavidSA. Structure–activity relationships in human Toll-like receptor 7-active imidazoquinoline analogues. J. Med. Chem.53(11), 4450–4465 (2010).
  • Shukla NM , MutzCA, UkaniR, WarshakoonHJ, MooreDS, DavidSA. Syntheses of fluorescent imidazoquinoline conjugates as probes of Toll-like receptor 7. Bioorg. Med. Chem. Lett.20(22), 6384–6386 (2010).
  • Wille-Reece U , WuCY, FlynnBJ, KedlRM, SederRA. Immunization with HIV-1 Gag protein conjugated to a TLR7/8 agonist results in the generation of HIV-1 Gag-specific Th1 and CD8+ T Cell responses. J. Immunol.174(12), 7676–7683 (2005).
  • Wille-Reece U , FlynnBJ, LoréKet al. HIV Gag protein conjugated to a Toll-like receptor 7/8 agonist improves the magnitude and quality of Th1 and CD8+T cell responses in nonhuman primates. Proc. Natl Acad. Sci. USA 102(42), 15190–15194 (2005).
  • Wille-Reece U , FlynnBJ, LoréKet al. Toll-like receptor agonists influence the magnitude and quality of memory T cell responses after prime-boost immunization in nonhuman primates. J. Exp. Med. 203(5), 1249–1258 (2006).
  • Oh JZ , KurcheJS, BurchillMA, KedlRM. TLR7 enables cross-presentation by multiple dendritic cell subsets through a type I IFN-dependent pathway. Blood118(11), 3028–3038 (2011).
  • Shukla NM , LewisTC, DayTPet al. Toward self-adjuvanting subunit vaccines: model peptide and protein antigens incorporating covalently bound Toll-like receptor-7 agonistic imidazoquinolines. Bioorg. Med. Chem. Lett. 21(11), 3232–3236 (2011).
  • Krieg AM . CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol.20, 709–760 (2002).
  • Heit A , SchmitzF, HaasT, BuschDH, WagnerH. Antigen co-encapsulated with adjuvants efficiently drive protective T cell immunity. Eur. J. Immunol.37(8), 2063–2074 (2007).
  • Kim D , KwonS, RheeJWet al. Production of antibodies with peptide–CpG-DNA liposome complex without carriers. BMC Immunol. 12, 29 (2011).
  • Häcker H , MischakH, MiethkeTet al. CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J. 17(21), 6230–6240 (1998).
  • Raja K , McDonaldR, TuckS, RodriguezR, MilleyB, TraquinaP. One-pot synthesis, purification, and formulation of bionanoparticle–CpG oligodeoxynucleotide hepatitis B surface antigen conjugate vaccine via tangential flow filtration. Bioconjug. Chem.18(2), 285–288 (2007).
  • Heit A , MaurerT, HochreinHet al. Cutting edge: Toll-like receptor 9 expression is not required for CpG DNA-aided cross-presentation of DNA-conjugated antigens but essential for cross-priming of CD8 T cells. J. Immunol. 170(6), 2802–2805 (2003).
  • Sandip K . Datta SK, Cho HJ, Takabayashi K, Horner AA, Raz E. Antigen–immunostimulatory oligonucleotide conjugates: mechanisms and applications. Immunol. Rev.199, 217–226 (2004).
  • Heit A , SchmitzF, O‘KeeffeMet al. Protective CD8 T cell immunity triggered by CpG–protein conjugates competes with the efficacy of live vaccines. J. Immunol. 174(7), 4373–4380 (2005).
  • Khan S , BijkerMS, WeteringsJJet al. Distinct uptake mechanisms but similar intracellular processing of two different Toll-like receptor ligand–peptide conjugates in dendritic cells. J. Biol. Chem. 282(29), 21145–21159 (2007).
  • Teshima R , OkunukiH, SatoY, AkiyamaH, MaitaniT, SawadaJ. Effect of oral administration of CpG ODN on WBB6F1-W/Wv mice. Allergol. Int.55(1), 43–48 (2006).
  • Tulic MK , FisetPO, ChristodoulopoulosPet al. Amb a 1-immunostimulatory oligodeoxynucleotide conjugate immunotherapy decreases the nasal inflammatory response. J. Allergy Clin.Immunol. 113(2), 235–241 (2004).
  • Simons FE , ShikishimaY, Van Nest G, Eiden JJ, HayGlass KT. Selective immune redirection in humans with ragweed allergy by injecting Amb a 1 linked to immunostimulatory DNA. J. Allergy Clin. Immunol.113(6), 1144–1151 (2004).
  • Creticos PS , SchroederJT, HamiltonRGet al. Immunotherapy with a ragweed-Toll-like receptor 9 agonist vaccine for allergic rhinitis. N. Engl. J. Med. 355(14), 1445–1455 (2006).
  • Rafnar T , GriffithIJ, KuoMC, BondJF, RogersBL, KlapperDG. Cloning of Amba I (antigen E), the major allergen family of short ragweed pollen. J. Biol. Chem.266(2), 1229–1236 (1991).
  • Roelofs MF , JoostenLA, Abdollahi-RoodsazSet al. The expression of Toll-like receptors 3 and 7 in rheumatoid arthritis synovium is increased and costimulation of Toll-like receptors 3, 4, and 7/8 results in synergistic cytokine production by dendritic cells. Arthritis Rheum. 52(8), 2313–2322 (2005).
  • Zhu Q , EgelstonC, VivekanandhanAet al. Toll-like receptor ligands synergize through distinct dendritic cell pathways to induce T cell responses: implications for vaccines. Proc. Natl. Acad. Sci. USA. 105(42), 16260–16265 (2008).
  • Zhu Q , EgelstonC, GagnonSet al. Using 3 TLR ligands as a combination adjuvant induces qualitative changes in T cell responses needed for antiviral protection in mice. J. Clin. Invest. 120(2), 609–616 (2010).
  • Napolitani G , RinaldiA, BertoniF, SallustoF, LanzavecchiaA. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat. Immunol.6(8), 769–776 (2005).
  • Warger T , OsterlohP, RechtsteinerGet al. Synergistic activation of dendritic cells by combined Toll-like receptor ligation induces superior CTL responses in vivo. Blood 108(2), 544–550 (2006).
  • Querec T , BennounaS, AlkanSet al. Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J. Exp. Med. 203(2), 413–424 (2006).
  • Querec TD , AkondyRSet al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat. Immunol. 10, 116–125 (2009).
  • Kasturi SP , SkountzouI, AlbrechtRAet al. Programing the magnitude and persistence of antibody responses with immunity. Nature 470(7335), 543–547 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.