192
Views
0
CrossRef citations to date
0
Altmetric
Review

Targeting Malignant Mitochondria With Therapeutic Peptides

&
Pages 961-979 | Published online: 23 Aug 2012

References

  • Ralph SJ , Rodriguez-EnriquezS, NeuzilJ, SaavedraE, Moreno-SanchezR. The causes of cancer revisited: “mitochondrial malignancy” and ROS-induced oncogenic transformation – why mitochondria are targets for cancer therapy. Mol. Aspects Med.31(2), 145–170 (2010).
  • McCarty MF . Targeting multiple signaling pathways as a strategy for managing prostate cancer: multifocal signal modulation therapy. Integr. Cancer Ther.3(4), 349–380 (2004).
  • Mahato RI , NarangAS, ThomaL, MillerDD. Emerging trends in oral delivery of peptide and protein drugs. Crit. Rev. Ther. Drug Carrier Syst.20(2–3), 153–214 (2003).
  • Tan ML , ChoongPF, DassCR. Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides31(1), 184–193 (2010).
  • Green DR , FergusonT, ZitvogelL, KroemerG. Immunogenic and tolerogenic cell death. Nat. Rev. Immunol.9(5), 353–363 (2009).
  • Ieva E , TrapaniA, CioffiN, DitarantoN, MonopoliA, SabbatiniL. Analytical characterization of chitosan nanoparticles for peptide drug delivery applications. Anal. Bioanal. Chem.393(1), 207–215 (2009).
  • Torchilin VP . Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv. Drug Deliv. Rev.60(4–5), 548–558 (2008).
  • Martins I , MichaudM, SukkurwalaAQet al. Premortem autophagy determines the immunogenicity of chemotherapy-induced cancer cell death. Autophagy 8(3) (2012) (Epub ahead of print).
  • Gogvadze V , ZhivotovskyB, OrreniusS. The warburg effect and mitochondrial stability in cancer cells. Mol. Aspects Med.31(1), 60–74 (2010).
  • Wemeau M , KeppO, TesniereAet al. Calreticulin exposure on malignant blasts predicts a cellular anticancer immune response in patients with acute myeloid leukemia. Cell Death Dis. 1, e104 (2010).
  • Bitler BG , SchroederJA. Anti-cancer therapies that utilize cell penetrating peptides. Recent Pat. Anticancer Drug Discov.5(2), 99–108 (2010).
  • Fulda S , GalluzziL, KroemerG. Targeting mitochondria for cancer therapy. Nat. Rev. Drug Discov.9(6), 447–464 (2010).
  • Hortobagyi GN . Trastuzumab in the treatment of breast cancer. N. Engl. J. Med.353(16), 1734–1736 (2005).
  • Nakase I , KonishiY, UedaM, SajiH, FutakiS. Accumulation of arginine-rich cell-penetrating peptides in tumors and the potential for anticancer drug delivery in vivo. J. Control. Release159(2), 181–188 (2012).
  • Christofk HR , Vander Heiden MG, Harris MH et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature452(7184), 230–233 (2008).
  • Mossalam M , DixonAS, LimCS. Controlling subcellular delivery to optimize therapeutic effect. Therapeutic Delivery1(1), 169–193 (2010).
  • Seyfried TN , SheltonLM. Cancer as a metabolic disease. Nutr. Metab. (Lond.).27(7), 7 (2010).
  • Chonghaile TN , SarosiekKA, VoTTet al. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science 334(6059), 1129–1133 (2011).
  • Galluzzi L , KroemerG. Necroptosis: a specialized pathway of programmed necrosis. Cell135(7), 1161–1163 (2008).
  • Atay C , UgurluS, OzorenN. Shock the heat shock network. J. Clin. Invest.119(3), 445–448 (2009).
  • Martinou JC , YouleRJ. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev. Cell21(1), 92–101 (2011).
  • Chipuk JE , KuwanaT, Bouchier-HayesLet al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303(5660), 1010–1014 (2004).
  • Kutuk O , LetaiA. Regulation of Bcl-2 family proteins by posttranslational modifications. Curr. Mol. Med.8(2), 102–118 (2008).
  • Szabo I , SoddemannM, LeanzaL, ZorattiM, GulbinsE. Single-point mutations of a lysine residue change function of Bax and Bcl-xL expressed in Bax- and Bak-less mouse embryonic fibroblasts: novel insights into the molecular mechanisms of Bax-induced apoptosis. Cell Death Differ.18(3), 427–438 (2011).
  • Szabo I , BockJ, GrassmeHet al. Mitochondrial potassium channel Kv1.3 mediates Bax-induced apoptosis in lymphocytes. Proc. Natl Acad. Sci. USA 105(39), 14861–14866 (2008).
  • Cipolat S , RudkaT, HartmannDet al. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 126(1), 163–175 (2006).
  • Liu T , HannafonB, GillL, KellyW, BenbrookD. Flex-Hets differentially induce apoptosis in cancer over normal cells by directly targeting mitochondria. Mol. Cancer Ther.6(6), 1814–1822 (2007).
  • Griffin C , KarnikA, McNultyJ, PandeyS. Pancratistatin selectively targets cancer cell mitochondria and reduces growth of human colon tumor xenografts. Mol. Cancer Ther.10(1), 57–68 (2011).
  • Vella S , ContiM, TassoR, CanceddaR, PaganoA. Dichloroacetate inhibits neuroblastoma growth by specifically acting against malignant undifferentiated cells. Int. J. Cancer130(7), 1484–1493 (2012).
  • Bellance N , LestienneP, RossignolR. Mitochondria: from bioenergetics to the metabolic regulation of carcinogenesis. Front. Biosci.14, 4015–4034 (2009).
  • Gupta SC , HeviaD, PatchvaS, ParkB, KohW, AggarwalBB. Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid. Redox Signal.16(11), 1295–1322 (2012).
  • Diehn M , ChoRW, LoboNAet al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239), 780–783 (2009).
  • Ishikawa K , TakenagaK, AkimotoMet al. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320(5876), 661–664 (2008).
  • Bair JS , PalchaudhuriR, HergenrotherPJ. Chemistry and biology of deoxynyboquinone, a potent inducer of cancer cell death. J. Am. Chem. Soc.132(15), 5469–5478 (2010).
  • Atlante A , CalissanoP, BobbaA, AzzaritiA, MarraE, PassarellaS. Cytochrome c is released from mitochondria in a reactive oxygen species (ROS)-dependent fashion and can operate as a ROS scavenger and as a respiratory substrate in cerebellar neurons undergoing excitotoxic death. J. Biol. Chem.275(47), 37159–37166 (2000).
  • Song IS , KimHK, JeongSHet al. Mitochondrial peroxiredoxin III is a potential target for cancer therapy. Int. J. Mol. Sci. 12(10), 7163–7185 (2011).
  • Yu GR , QinWW, LiJPet al. HIV-TAT-fused FHIT protein functions as a potential pro-apoptotic molecule in hepatocellular carcinoma cells. Biosci. Rep. 32(3), 271–279 (2012).
  • Martin J , St-PierreMV, DufourJF. Hit proteins, mitochondria and cancer. Biochim. Biophys. Acta1807(6), 626–632 (2011).
  • Svilar D , GoellnerEM, AlmeidaKH, SobolRW. Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage. Antioxid. Redox Signal.14(12), 2491–2507 (2011).
  • Houston MA , AugenlichtLH, HeerdtBG. Stable differences in intrinsic mitochondrial membrane potential of tumor cell subpopulations reflect phenotypic heterogeneity. Int. J. Cell Biol.6(9), e25207 (2011).
  • Xue X , YouS, ZhangQet al. Mitaplatin increases sensitivity of tumor cells to cisplatin by inducing mitochondrial dysfunction. Mol. Pharm. 9(3), 634–644 (2012).
  • Fukuda R , ZhangH, KimJW, ShimodaL, DangCV, SemenzaGL. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell129(1), 111–122 (2007).
  • Lecoeur H , Borgne-SanchezA, ChaloinOet al. HIV-1 Tat protein directly induces mitochondrial membrane permeabilization and inactivates cytochrome c oxidase. Cell Death Dis. 3, E282 (2012).
  • Nonaka M , HashimotoY, TakeshimaSN, AidaY. The human immunodeficiency virus type 1 Vpr protein and its carboxy-terminally truncated form induce apoptosis in tumor cells. Cancer Cell Int.12(9), 20 (2009).
  • Arcangeli A , CrocianiO, LastraioliE, MasiA, PillozziS, BecchettiA. Targeting ion channels in cancer: a novel frontier in antineoplastic therapy. Curr. Med. Chem.16(1), 66–93 (2009).
  • Szabo I , LeanzaL, GulbinsE, ZorattiM. Physiology of potassium channels in the inner membrane of mitochondria. Pflugers Arch.463(2), 231–246 (2012).
  • Cardoso AR , QueliconiBB, KowaltowskiAJ. Mitochondrial ion transport pathways: role in metabolic diseases. Biochim. Biophys. Acta1797(6–7), 832–838 (2010).
  • Felipe A , BielanskaJ, ComesNet al. Targeting the voltage-dependent k(+) channels kv1.3 and kv1.5 as tumor biomarkers for cancer detection and prevention. Curr. Med. Chem. 19(5), 661–674 (2012).
  • Kosztka L , RusznakZ, NagyDet al. Inhibition of TASK-3 (KCNK9) channel biosynthesis changes cell morphology and decreases both DNA content and mitochondrial function of melanoma cells maintained in cell culture. Melanoma Res. 21(4), 308–322 (2011).
  • De Stefani D , RaffaelloA, TeardoE, SzaboI, RizzutoR. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature476(7360), 336–340 (2011).
  • Wong R , SteenbergenC, MurphyE. Mitochondrial permeability transition pore and calcium handling. Methods Mol. Biol.810, 235–242 (2012).
  • Cao X , ZhuH, Ali-OsmanF, LoHW. EGFR and EGFRvIII undergo stress- and EGFR kinase inhibitor-induced mitochondrial translocalization: a potential mechanism of EGFR-driven antagonism of apoptosis. Mol. Cancer10, 26 (2011).
  • Ren J , BhartiA, RainaD, ChenW, AhmadR, KufeD. MUC1 oncoprotein is targeted to mitochondria by heregulin-induced activation of c-Src and the molecular chaperone HSP90. Oncogene25(1), 20–31 (2006).
  • Sharma SV , BellDW, SettlemanJ, HaberDA. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer7(3), 169–181 (2007).
  • Zhu H , CaoX, Ali-OsmanF, KeirS, LoHW. EGFR and EGFRvIII interact with PUMA to inhibit mitochondrial translocalization of PUMA and PUMA-mediated apoptosis independent of EGFR kinase activity. Cancer Lett.294(1), 101–110 (2010).
  • Cruickshanks N , HamedH, BarefordMDet al. Lapatinib and obatoclax kill tumor cells through blockade of ERBB1/3/4 and through inhibition of BCL-XL and MCL-1. Mol. Pharmacol. 81(5), 748–758 (2012).
  • Yin L , KufeD. MUC1-C oncoprotein blocks terminal differentiation of chronic myelogenous leukemia cells by a ROS-mediated mechanism. Genes Cancer2(1), 56–64 (2011).
  • Yin L , KosugiM, KufeD. Inhibition of the MUC1-C oncoprotein induces multiple myeloma cell death by down-regulating TIGAR expression and depleting NADPH. Blood119(3), 810–816 (2012).
  • Kim TH , ZhaoY, DingWXet al. Bid-cardiolipin interaction at mitochondrial contact site contributes to mitochondrial cristae reorganization and cytochrome C release. Mol. Biol. Cell 15(7), 3061–3072 (2004).
  • Huang CY , ChiangSF, LinTY, ChiouSH, ChowKC. HIV-1 Vpr triggers mitochondrial destruction by impairing Mfn2-mediated ER-mitochondria interaction. PLoS One7(3), E33657 (2012).
  • Sabbah EN , DruillennecS, MorelletN, BouazizS, KroemerG, RoquesBP. Interaction between the HIV-1 protein Vpr and the adenine nucleotide translocator. Chem. Biol. Drug Des.67(2), 145–154 (2006).
  • Boya P , PauleauAL, PoncetD, Gonzalez-PoloRA, ZamzamiN, KroemerG. Viral proteins targeting mitochondria: controlling cell death. Biochim. Biophys. Acta1659(2–3), 178–189 (2004).
  • Ko JK , ChoiKH, PengJet al. Amphipathic tail-anchoring peptide and Bcl-2 homology domain-3 (BH3) peptides from Bcl-2 family proteins induce apoptosis through different mechanisms. J. Biol. Chem. 286(11), 9038–9048 (2011).
  • Papo N , ShaiY. New lytic peptides based on the d.l-amphipathic helix motif preferentially kill tumor cells compared to normal cells. Biochemistry42(31), 9346–9354 (2003).
  • Madan V , Sanchez-MartinezS, CarrascoL, NievaJL. A peptide based on the pore-forming domain of pro-apoptotic poliovirus 2B viroporin targets mitochondria. Biochim. Biophys. Acta1798(1), 52–58 (2010).
  • Szewczyk A , WojtczakL. Mitochondria as a pharmacological target. Pharmacol. Rev.54(1), 101–127 (2002).
  • Ellerby HM , ArapW, EllerbyLMet al. Anti-cancer activity of targeted pro-apoptotic peptides. Nat. Med. 5(9), 1032–1038 (1999).
  • Fantin VR , BerardiMJ, BabbeH, MichelmanMV, ManningCM, LederP. A bifunctional targeted peptide that blocks HER-2 tyrosine kinase and disables mitochondrial function in HER-2-positive carcinoma cells. Cancer Res.65(15), 6891–6900 (2005).
  • Smolarczyk R , CichonT, GrajaK, HuczJ, SochanikA, SzalaS. Antitumor effect of RGD-4C-GG-D(KLAKLAK)2 peptide in mouse B16(F10) melanoma model. Acta Biochim. Pol.53(4), 801–805 (2006).
  • Galluzzi L , KeppO, Trojel-HansenC, KroemerG. Non-apoptotic functions of apoptosis-regulatory proteins. EMBO Rep.13(4), 322–330 (2012).
  • Rudner J , ElsaesserSJ, MullerAC, BelkaC, JendrossekV. Differential effects of anti-apoptotic Bcl-2 family members Mcl-1, Bcl-2, and Bcl-xL on celecoxib-induced apoptosis. Biochem. Pharmacol.79(1), 10–20 (2010).
  • Schoenwaelder SM , JacksonSP. Bcl-xL-inhibitory BH3 mimetics (ABT-737 or ABT-263) and the modulation of cytosolic calcium flux and platelet function. Blood119(5), 1320–1321; author reply 1321–1322 (2012).
  • Holinger EP , ChittendenT, LutzRJ. Bak BH3 peptides antagonize Bcl-xL function and induce apoptosis through cytochrome c-independent activation of caspases. J. Biol. Chem.274(19), 13298–13304 (1999).
  • Dharap SS , MinkoT. Targeted proapoptotic LHRH-BH3 peptide. Pharm. Res.20(6), 889–896 (2003).
  • Pitter K , BernalF, LabelleJ, WalenskyLD. Dissection of the BCL-2 family signaling network with stabilized α-helices of BCL-2 domains. Methods Enzymol.446, 387–408 (2008).
  • Katz SG , LabelleJL, GodesM, FisherJ, BirdGH, WalenskyLD. A stapled BIM BH3 helix restores apoptosis in bim-null mantle cell lymphoma. Presented at: American Society of Hematology Annual Meeting. Atlanta, GA, USA, 4–7 December 2010.
  • Ponassi R , BiasottiB, TomatiVet al. A novel Bim-BH3-derived Bcl-XL inhibitor: biochemical characterization, in vitro, in vivo and ex vivo anti-leukemic activity. Cell Cycle 7(20), 3211–3224 (2008).
  • Gangoda L , MoujalledD, LeeY, RahimiA, PuthalakathH. Analysis of the role of Bim as a tumor suppressor in Carney complex syndrome. In: Cell Death in Cancer. De Rode Hoed, Amsterdam, The Netherlands (2012).
  • Rong YP , BultynckG, AromolaranASet al. The BH4 domain of Bcl-2 inhibits ER calcium release and apoptosis by binding the regulatory and coupling domain of the IP3 receptor. Proc. Natl Acad. Sci. USA 106(34), 14397–14402 (2009).
  • Iqbal S , ZhangS, DrissAet al. PDGF upregulates Mcl-1 through activation of β-catenin and HIF-1α-dependent signaling in human prostate cancer cells. PLoS One 7(1), E30764 (2012).
  • Zhong F , HarrMW, BultynckGet al. Induction of Ca(2)+-driven apoptosis in chronic lymphocytic leukemia cells by peptide-mediated disruption of Bcl-2-IP3 receptor interaction. Blood 117(10), 2924–2934 (2011).
  • Elgendy M , SheridanC, BrumattiG, MartinSJ. Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Mol. Cell42(1), 23–35 (2011).
  • Garg AD , KryskoDV, VerfaillieTet al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J. 31(5), 1062–1079 (2012).
  • Cristofanon S , FuldaS. ABT-737 promotes tBid mitochondrial insertion to enhance TRAIL-induced apoptosis in glioblastoma cells. In: Cell Death in Cancer. De Rode Hoed, Amsterdam, The Netherlands (2012).
  • Glaser SP , LeeEF, TrounsonEet al. Anti-apoptotic Mcl-1 is essential for the development and sustained growth of acute myeloid leukemia. Genes Dev. 26(2), 120–125 (2012).
  • Stewart ML , FireE, KeatingAE, WalenskyLD. The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer. Nat. Chem. Biol.6(8), 595–601 (2010).
  • Galluzzi L , KeppO, TajeddineN, KroemerG. Disruption of the hexokinase-VDAC complex for tumor therapy. Oncogene27(34), 4633–4635 (2008).
  • Brenner C , GrimmS. The permeability transition pore complex in cancer cell death. Oncogene25(34), 4744–4756 (2006).
  • Shoshan-Barmatz V , De Pinto V, Zweckstetter M, Raviv Z, Keinan N, Arbel N. VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol. Aspects Med.31(3), 227–285 (2010).
  • Rupprecht R , PapadopoulosV, RammesGet al. Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat. Rev. Drug Discov. 9(12), 971–988 (2010).
  • Taliani S , PugliesiI, Da Settimo F. Structural requirements to obtain highly potent and selective 18 kDa translocator protein (TSPO) Ligands. Curr. Top Med. Chem.11(7), 860–886 (2011).
  • Chiara F , CastellaroD, MarinOet al. Hexokinase II detachment from mitochondria triggers apoptosis through the permeability transition pore independent of voltage-dependent anion channels. PLoS One 3(3), E1852 (2008).
  • Masgras I , RasolaA, BernardiP. Induction of the permeability transition pore in cells depleted of mitochondrial DNA. Biochim. Biophys. Acta (2012) (Epub ahead of print).
  • Borgne-Sanchez A , DupontS, LangonneAet al. Targeted Vpr-derived peptides reach mitochondria to induce apoptosis of αVβ3-expressing endothelial cells. Cell Death Differ. 14(3), 422–435 (2007).
  • Park D , ChiuJ, PerroneGG, DildaPJ, HoggPJ. The tumour metabolism inhibitors GSAO and PENAO react with cysteines 57 and 257 of mitochondrial adenine nucleotide translocase. Cancer Cell Int.12(1), 11 (2012).
  • Dilda PJ , DecollogneS, WeerakoonLet al. Optimization of the antitumor efficacy of a synthetic mitochondrial toxin by increasing the residence time in the cytosol. J. Med. Chem. 52(20), 6209–6216 (2009).
  • Banerjee J , GhoshS. Bax increases the pore size of rat brain mitochondrial voltage-dependent anion channel in the presence of tBid. Biochem. Biophys. Res. Commun.323(1), 310–314 (2004).
  • Shoshan-Barmatz V , Ben-HailD. VDAC, a multi-functional mitochondrial protein as a pharmacological target. Mitochondrion12(1), 24–34 (2012).
  • Gergalova G , LykhmusO, KalashnykOet al. Mitochondria express α7 nicotinic acetylcholine receptors to regulate Ca accumulation and cytochrome c release: study on isolated mitochondria. PLoS One 7(2), E31361 (2012).
  • Karbowski M , NorrisKL, ClelandMM, JeongSY, YouleRJ. Role of Bax and Bak in mitochondrial morphogenesis. Nature443(7112), 658–662 (2006).
  • Rosenfeldt MT , RyanKM. The multiple roles of autophagy in cancer. Carcinogenesis32(7), 955–963 (2011).
  • White EJ , MartinV, LiuJLet al. Autophagy regulation in cancer development and therapy. Am. J. Cancer Res. 1(3), 362–372 (2011).
  • Hoyer-Hansen M , JaattelaM. Autophagy: an emerging target for cancer therapy. Autophagy4(5), 574–580 (2008).
  • Gomes LC , Di Benedetto G, Scorrano L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell. Biol.13(5), 589–598 (2011).
  • Blackstone C , ChangCR. Mitochondria unite to survive. Nat. Cell Biol.13(5), 521–522 (2011).
  • Zorzano A , SebastianD, SegalesJ, PalacinM. The molecular machinery of mitochondrial fusion and fission: an opportunity for drug discovery? Curr. Opin. Drug Discov. Devel.12(5), 597–606 (2009).
  • Mossalam M , MatissekKJ, OkalA, ConstanceJE, LimCS. Direct induction of apoptosis using an optimal mitochondrially targeted p53. Mol. Pharm.9(5), 1449–1458 (2012).
  • Ferecatu I , BergeaudM, Rodriguez-EnfedaqueAet al. Mitochondrial localization of the low level p53 protein in proliferative cells. Biochem. Biophys. Res. Commun. 387(4), 772–777 (2009).
  • Bergeaud M , MathieuL, Le Floch N, Mignotte B, Rincheval V, Vayssiere JL. Localization and function of p53 protein at mitochondria in proliferative cells. In: Cell Death in Cancer. De Rode Hoed, Amsterdam, The Netherlands (2012).
  • Von Der Malsburg K , MullerJM, BohnertMet al. Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev. Cell 21(4), 694–707 (2011).
  • Alirol E , MartinouJC. Mitochondria and cancer: is there a morphological connection? Oncogene25(34), 4706–4716 (2006).
  • Bouleau S , Parvu-FerecatuI, Rodriguez-EnfedaqueAet al. Fibroblast growth factor 1 inhibits p53-dependent apoptosis in PC12 cells. Apoptosis 12(8), 1377–1387 (2007).
  • Mossalam M , MatissekKJ, OkalA, ConstanceJE, LimCS. Direct induction of apoptosis using an optimal mitochondrially targeted p53. Mol. Pharm.9(5), 1449–1458 (2012).
  • Barnes DJ , PalaiologouD, PanousopoulouEet al. Bcr-Abl expression levels determine the rate of development of resistance to imatinib mesylate in chronic myeloid leukemia. Cancer Res. 65(19), 8912–8919 (2005).
  • Wang JY . Nucleo-cytoplasmic communication in apoptotic response to genotoxic and inflammatory stress. Cell Res.15(1), 43–48 (2005).
  • Ito Y , PandeyP, MishraNet al. Targeting of the c-Abl tyrosine kinase to mitochondria in endoplasmic reticulum stress-induced apoptosis. Mol. Cell. Biol. 21(18), 6233–6242 (2001).
  • Lasfer M , DavenneL, VadrotNet al. Protein kinase PKCδ and c-Abl are required for mitochondrial apoptosis induction by genotoxic stress in the absence of p53, p73 and Fas receptor. FEBS Lett. 580(11), 2547–2552 (2006).
  • Constance JE , DespresSD, NishidaA, LimCS. Selective targeting of c-Abl via a cryptic mitochondrial targeting signal activated by cellular redox status in leukemic and breast cancer cells. Pharm. Res.29(8), 2317–2328 (2012).
  • Katz C , Zaltsman-AmirY, MostizkyY, KolletN, GrossA, FriedlerA. Molecular basis of the interaction between the pro apoptotic tBID protein and mitochondrial carrier homologue 2 (MTCH2): key players in the mitochondrial death pathway. J. Biol. Chem.287(18), 15016–15023 (2012).
  • Zaltsman Y , ShachnaiL, Yivgi-OhanaNet al. MTCH2/MIMP is a major facilitator of tBID recruitment to mitochondria. Nat. Cell. Biol. 12(6), 553–562 (2010).
  • Holley AK , DharSK, XuY, St Clair DK. Manganese superoxide dismutase: beyond life and death. Amino Acids42(1), 139–158 (2012).
  • Pedram A , RazandiM, WallaceDC, LevinER. Functional estrogen receptors in the mitochondria of breast cancer cells. Mol. Biol. Cell17(5), 2125–2137 (2006).
  • Ennen M , MinigV, GrandemangeSet al. Regulation of the high basal expression of the manganese superoxide dismutase gene in aggressive breast cancer cells. Free Radic. Biol. Med. 50(12), 1771–1779 (2011).
  • Zhao Y , ChaiswingL, VelezJMet al. p53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase. Cancer Res. 65(9), 3745–3750 (2005).
  • Altieri DC , SteinGS, LianJB, LanguinoLR. TRAP-1, the mitochondrial Hsp90. Biochim. Biophys. Acta1823(3), 767–773 (2012).
  • Dai C , WhitesellL. HSP90: a rising star on the horizon of anticancer targets. Future Oncol.1(4), 529–540 (2005).
  • Kamal A , ThaoL, SensintaffarJet al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425(6956), 407–410 (2003).
  • Xu H , ShiY, WangJet al. A heat shock protein 90 binding domain in endothelial nitric-oxide synthase influences enzyme function. J. Biol. Chem. 282(52), 37567–37574 (2007).
  • Siegelin MD , DohiT, RaskettCMet al. Exploiting the mitochondrial unfolded protein response for cancer therapy in mice and human cells. J. Clin. Invest. 121(4), 1349–1360 (2011).
  • Kang BH , TavecchioM, GoelHLet al. Targeted inhibition of mitochondrial Hsp90 suppresses localised and metastatic prostate cancer growth in a genetic mouse model of disease. Br. J. Cancer 104(4), 629–634 (2011).
  • Plescia J , SalzW, XiaFet al. Rational design of shepherdin, a novel anticancer agent. Cancer Cell 7(5), 457–468 (2005).
  • Horibe T , KawamotoM, KohnoM, KawakamiK. Cytotoxic activity to acute myeloid leukemia cells by Antp-TPR hybrid peptide targeting Hsp90. J. Biosci. Bioeng. (2012).
  • Seigneuric R , GobboJ, ColasP, GarridoC. Targeting cancer with peptide aptamers. Oncotarget2(7), 557–561 (2011).
  • Szeto HH , SchillerPW. Novel therapies targeting inner mitochondrial membrane – from discovery to clinical development. Pharm. Res.28(11), 2669–2679 (2011).
  • Weiss A , BrillB, BorghoutsC, DelisN, MackL, GronerB. Survivin inhibition by an interacting recombinant peptide, derived from the human ferritin heavy chain, impedes tumor cell growth. J. Cancer Res. Clin. Oncol.138(7), 1205–1220 (2012).
  • Shirakata T , OkaY, NishidaSet al. WT1 peptide therapy for a patient with chemotherapy-resistant salivary gland cancer. Anticancer Res. 32(3), 1081–1085 (2012).
  • Sinthuvanich C , VeigaAS, GuptaK, GasparD, BlumenthalR, SchneiderJP. Anticancer ss-hairpin peptides: membrane-induced folding triggers activity. J. Am. Chem. Soc.134(14), 6210– 6217 (2012).
  • Verdine GL . Drugging the ‘undruggable‘. Harvey Lect.102, 1–15 (2006).
  • Borghouts C , KunzC, GronerB. Current strategies for the development of peptide-based anti-cancer therapeutics. J. Pept. Sci.11(11), 713–726 (2005).
  • Zhai D , GodoiP, SergienkoEet al. High-throughput fluorescence polarization assay for chemical library screening against anti-apoptotic Bcl-2 family member Bfl-1. J. Biomol. Screen 17(3), 350–360 (2012).
  • Verdine GL , WalenskyLD. The challenge of drugging undruggable targets in cancer: lessons learned from targeting BCL-2 family members. Clin. Cancer Res.13(24), 7264–7270 (2007).
  • Bolhassani A . Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer. Biochim. Biophys. Acta1816(2), 232–246 (2011).
  • Kelley SO , StewartKM, MourtadaR. Development of novel peptides for mitochondrial drug delivery: amino acids featuring delocalized lipophilic cations. Pharm. Res.28(11), 2808–2819 (2011).
  • Moreau V , FleuryC, PiquerDet al. PEPOP: computational design of immunogenic peptides. BMC Bioinformatics 9, 71 (2008).
  • Van Walle I , GansemansY, ParrenPW, StasP, LastersI. Immunogenicity screening in protein drug development. Expert Opin. Biol. Ther.7(3), 405–418 (2007).
  • Chirino AJ , AryML, MarshallSA. Minimizing the immunogenicity of protein therapeutics. Drug Discov. Today9(2), 82–90 (2004).
  • Watt PM . Screening for peptide drugs from the natural repertoire of biodiverse protein folds. Nat. Biotechnol.24(2), 177–183 (2006).
  • Braun CR , MintserisJ, GavathiotisE, BirdGH, GygiSP, WalenskyLD. Photoreactive stapled BH3 peptides to dissect the BCL-2 family interactome. Chem. Biol.17(12), 1325–1333 (2010).
  • Valero JG , SanceyL, KucharczakJet al. Bax-derived membrane-active peptides act as potent and direct inducers of apoptosis in cancer cells. J. Cell. Sci. 124(Pt 4), 556–564 (2011).
  • Trusheim M , AitkenMC, BerndtER. Characterizing markets for biopharmaceutical innovations: Do biologics differ from small molecules? (Article 4). Forum Health Econ. Policy13(1), 16014 (2010).
  • Kozlowski S , WoodcockJ, MidthunK, ShermanRB. Developing the nation‘s biosimilars program. N. Engl. J. Med.365(5), 385–388 (2011).
  • Trivigno D , EssmannF, HuberS, RudnerJ. The deubiquitinase USP9x controls Mcl-1 levels in response to ionizing radiation. In: Cell Death in Cancer. De Rode Hoed, Amsterdam, The Netherlands (2012).
  • Naumann I , KapplerR, von Schweinitz D, Debatin KM, Fulda S. Bortezomib primes neuroblastoma cells for TRAIL-induced apoptosis by linking the death receptor to the mitochondrial pathway. Clin. Cancer Res.17(10), 3204–3218 (2011).
  • Certo M , Del Gaizo Moore V, Nishino M et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell9(5), 351–365 (2006).
  • Vrielink J , HeinsMS, SetroikromoRet al. Synthetic constrained peptide selectively binds and antagonizes death receptor 5. FEBS J. 277(7), 1653–1665 (2010).
  • Neuzil J , WangXF, DongLF, LowP, RalphSJ. Molecular mechanism of ‘mitocan‘-induced apoptosis in cancer cells epitomizes the multiple roles of reactive oxygen species and Bcl-2 family proteins. FEBS Lett.580(22), 5125–5129 (2006).
  • Chipuk JE , GreenDR. Dissecting p53-dependent apoptosis. Cell Death Differ.13(6), 994–1002 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.