216
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Dendritic Nanoparticles: the Next Generation of nanocarriers?

, , , &
Pages 941-959 | Published online: 23 Aug 2012

References

  • Lee CC , MackayJA, FrechetJMJ, SzokaFC. Designing dendrimers for biological applications. Nat. Biotechnol.23(12), 1517–1526 (2005).
  • Esfand R , TomaliaDA. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov. Today6(8), 427–436 (2001).
  • Svenson S , TomaliaDA. Commentary – dendrimers in biomedical applications – reflections on the field. Adv. Drug Deliv. Rev.57(15), 2106–2129 (2005).
  • Gao C , YanD. Hyperbranched polymers: from synthesis to applications. Prog. Polymer Sci.29(3), 183–275 (2004).
  • Jang WD , SelimKMK, LeeCH, KangIK. Bioinspired application of dendrimers: from bio-mimicry to biomedical applications. Prog. Polymer Sci.34(1), 1–23 (2009).
  • Baars MWPL , KarlssonAJ, SorokinV, De Waal BFW, Meijer EW. Supramolecular modification of the periphery of dendrimers resulting in rigidity and functionality. Angew. Chem. Int. Ed.39(23), 4262–4265 (2000).
  • Hong S , LeroueilPR, MajorosIJ, OrrBG, BakerJR, HollMMB. The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem. Biol.14(1), 107–115 (2007).
  • Myung J , GajjarKA, SaricJ, EddingtonDT, HongS. Dendrimer-mediated multivalent binding for the enhanced capture of tumor cells. Angew. Chem. Int. Ed.50(49), 11769–11772 (2011).
  • Boas U , HeegaardPM. Dendrimers in drug research. Chem. Soc. Rev.33(1), 43–63 (2004).
  • Hong S , BielinskaAU, MeckeAet al. Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjug. Chem. 15(4), 774–782 (2004).
  • Hong S , RattanR, MajorosIJet al. The role of ganglioside GM(1) in cellular internalization mechanisms of poly(amidoamine) dendrimers. Bioconjug. Chem. 20(8), 1503–1513 (2009).
  • Patri AK , Kukowska-LatalloJF, BakerJR. Targeted drug delivery with dendrimers: Comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv. Drug Deliv. Rev.57(15), 2203–2214 (2005).
  • Cheng Y , ZhaoL, LiY, XuT. Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chem. Soc. Rev.40(5), 2673–2703 (2011).
  • Heegaard PMH , BoasU, SorensenNS. Dendrimers for vaccine and immunostimulatory uses. A review. Bioconjug. Chem.21(3), 405–418 (2009).
  • Tekade RK , KumarPV, JainNK. Dendrimers in oncology: an expanding horizon. Chem. Rev.109(1), 49–87 (2009).
  • Khandare J , CalderonM, DagiaNM, HaagR. Multifunctional dendritic polymers in nanomedicine: opportunities and challenges. Chem. Soc. Rev.41(7), 2824–2848 (2012).
  • Kaminskas LM , PorterCJH. Targeting the lymphatics using dendritic polymers (dendrimers). Adv. Drug Deliv. Rev.63(10–11), 890–900 (2011).
  • Wurm F , FreyH. Linear-dendritic block copolymers: the state of the art and exciting perspectives. Prog. Polymer Sci.36(1), 1–52 (2011).
  • Rosen BM , WilsonCJ, WilsonDA, PetercaM, ImamMR, PercecV. Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem. Rev.109(11), 6275–6540 (2009).
  • Bae JW , PearsonRM, PatraNet al. Dendron-mediated self-assembly of highly PEGylated block copolymers: a modular nanocarrier platform. Chem. Commun. 47(37), 10302–10304 (2011).
  • Poon Z , ChenS, EnglerACet al. Ligand-clustered “patchy” nanoparticles for modulated cellular uptake and in vivo tumor targeting. Angew. Chem. Int. Ed. 49(40), 7266–7270 (2010).
  • Percec V , WilsonDA, LeowanawatPet al. Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architectures. Science 328(5981), 1009–1014 (2010).
  • Peterca M , PercecV, LeowanawatP, BertinA. Predicting the size and properties of dendrimersomes from the lamellar structure of their amphiphilic Janus dendrimers. J. Am. Chem. Soc.133(50), 20507–20520 (2011).
  • Sunoqrot S , BaeJW, PearsonRMet al. Temporal control over cellular targeting through hybridization of folate-targeted dendrimers and PEG-PLA nanoparticles. Biomacromolecules 13(4), 1223–1230 (2012).
  • Tomalia DA , BakerH, DewaldJet al. A new class of polymers – starburst-dendritic macromolecules. Polymer J. 17(1), 117–132 (1985).
  • Hawker CJ , FréchetJMJ. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc.112(21), 7638–7647 (1990).
  • Bosman AW , JanssenHM, MeijerEW. About dendrimers: structure, physical properties, and applications. Chem. Rev.99(7), 1665–1688 (1999).
  • Wooley KL , HawkerCJ, FrechetJMJ. Hyperbranched macromolecules via a novel double-stage convergent growth approach. J. Am. Chem. Soc.113(11), 4252–4261 (1991).
  • Freeman AW , FrechetJMJ. A rapid, orthogonal synthesis of poly(benzyl ester) dendrimers via an “activated” monomer approach. Org. Lett.1(4), 685–688 (1999).
  • Kawaguchi T , WalkerKL, WilkinsCL, MooreJS. Double exponential dendrimer growth. J. Am. Chem. Soc.117(8), 2159–2165 (1995).
  • Zeng F , ZimmermanSC. Rapid synthesis of dendrimers by an orthogonal coupling strategy. J. Am. Chem. Soc.118(22), 5326–5327 (1996).
  • Duncan R , IzzoL. Dendrimer biocompatibility and toxicity. Adv. Drug Deliv. Rev.57(15), 2215–2237 (2005).
  • Malik N , WiwattanapatapeeR, KlopschRet al. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J. Control. Release 65(1–2), 133–148 (2000).
  • Hong S , LeroueilPR, JanusEKet al. Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability. Bioconjug. Chem. 17(3), 728–734 (2006).
  • Jain K , KesharwaniP, GuptaU, JainNK. Dendrimer toxicity: let‘s meet the challenge. Int. J. Pharm.394(1–2), 122–142 (2010).
  • Ihre H , Padilla De Jesus OL, Frechet JM. Fast and convenient divergent synthesis of aliphatic ester dendrimers by anhydride coupling. J. Am. Chem. Soc.123(25), 5908–5917 (2001).
  • Ihre HR , Padilla De Jesus OL, Szoka FC Jr, Frechet JM. Polyester dendritic systems for drug delivery applications: design, synthesis, and characterization. Bioconjug. Chem.13(3), 443–452 (2002).
  • Winnicka K , BielawskiK, RusakM, BielawskaA. The effect of generation 2 and 3 poly(amidoamine) dendrimers on viability of human breast cancer cells. J. Health Sci.55(2), 169–177 (2009).
  • Lee CC , GilliesER, FoxMEet al. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc. Natl Acad. Sci. USA 103(45), 16649–16654 (2006).
  • Padilla De Jesus OL , IhreHR, GagneL, FrechetJM, SzokaFC Jr. Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation. Bioconjug. Chem.13(3), 453–461 (2002).
  • Wijagkanalan W , KawakamiS, HashidaM. Designing dendrimers for drug delivery and imaging: pharmacokinetic considerations. Pharm. Res.28(7), 1500–1519 (2011).
  • Kaminskas LM , BoydBJ, PorterCJH. Dendrimer pharmacokinetics: the effect of size, structure and surface characteristics on ADME properties. Nanomedicine6(6), 1063–1084 (2011).
  • Margerum LD , CampionBK, KooMet al. Gadolinium(III) DO3A macrocycles and polyethylene glycol coupled to dendrimers – effect of molecular weight on physical and biological properties of macromolecular magnetic resonance imaging contrast agents. J. Alloys Compounds 249(1–2), 185–190 (1997).
  • Kaminskas LM , BoydBJ, KarellasPet al. Impact of surface derivatization of poly-L-lysine dendrimers with anionic arylsulfonate or succinate groups on intravenous pharmacokinetics and disposition. Mol. Pharm. 4(6), 949–961 (2007).
  • Owens DE III, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm.307(1), 93–102 (2006).
  • Kojima C , ReginoC, UmedaY, KobayashiH, KonoK. Influence of dendrimer generation and polyethylene glycol length on the biodistribution of PEGylated dendrimers. Int. J. Pharm.383(1–2), 293–296 (2010).
  • Kaminskas LM , BoydBJ, KarellasPet al. The impact of molecular weight and peg chain length on the systemic pharmacokinetics of PEGylated poly L-lysine dendrimers. Mol. Pharm. 5(3), 449–463 (2008).
  • Poon Z , LeeJA, HuangS, PrevostRJ, HammondPT. Highly stable, ligand-clustered “patchy” micelle nanocarriers for systemic tumor targeting. Nanomedicine7(2), 201–209 (2011).
  • Gillies ER , DyE, FrechetJMJ, SzokaFC. Biological evaluation of polyester dendrimer: poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture. Mol. Pharm.2(2), 129–138 (2005).
  • Zhao F , ZhaoY, LiuY, ChangX, ChenC, ZhaoY. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small7(10), 1322–1337 (2011).
  • Wolinsky JB , GrinstaffMW. Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv. Drug Deliv. Rev.60(9), 1037–1055 (2008).
  • Kitchens KM , KolhatkarIB, SwaanPW, GhandehariH. Endocytosis inhibitors prevent poly(amidoamine) dendrimer internalization and permeability across Caco-2 cells. Mol. Pharm.5(2), 364–369 (2008).
  • Albertazzi L , SerresiM, AlbaneseA, BeltramF. Dendrimer internalization and intracellular trafficking in living cells. Mol. Pharm.7(3), 680–688 (2010).
  • Perumal OP , InapagollaR, KannanS, KannanRM. The effect of surface functionality on cellular trafficking of dendrimers. Biomaterials29(24–25), 3469–3476 (2008).
  • Rajendran L , KnolkerHJ, SimonsK. Subcellular targeting strategies for drug design and delivery. Nat. Rev. Drug Discov.9(1), 29–42 (2010).
  • Mammen M , ChoiSK, WhitesidesGM. Polyvalent interactions in biological systems: Implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed.37(20), 2755–2794 (1998).
  • Kiessling LL , GestwickiJE, StrongLE. Synthetic multivalent ligands in the exploration of cell-surface interactions. Curr. Opin. Chem. Biol.4(6), 696–703 (2000).
  • Kiessling LL , GestwickiJE, StrongLE. Synthetic multivalent ligands as probes of signal transduction. Angew. Chem. Int. Ed.45(15), 2348–2368 (2006).
  • Vance D , MartinJ, PatkeS, KaneRS. The design of polyvalent scaffolds for targeted delivery. Adv. Drug Deliv. Rev.61(11), 931–939 (2009).
  • Mecke A , LeeI, BakerJR Jr, Holl MMB, Orr BG. Deformability of poly(amidoamine) dendrimers. Eur. Phys. J. E. Soft Matter Biol. Phys.14(1), 7–16 (2004).
  • Page D , AravindS, RoyR. Synthesis and lectin binding properties of dendritic mannopyranoside. Chem. Commun. (16), 1913–1914 (1996).
  • Ashton PR , HounsellEF, JayaramanNet al. Synthesis and biological evaluation of α-D-mannopyranoside-containing dendrimers. J. Org. Chem. 63(10), 3429–3437 (1998).
  • Kane RS . Thermodynamics of multivalent interactions: influence of the linker. Langmuir26(11), 8636–8640 (2010).
  • Shewmake TA , SolisFJ, GilliesRJ, CaplanMR. Effects of linker length and flexibility on multivalent targeting. Biomacromolecules9(11), 3057–3064 (2008).
  • Kim YS , LeeJH, RyuJ, KimDJ. Multivalent and multifunctional ligands to β-amyloid. Curr. Pharm. Des.15(6), 637–658 (2009).
  • Rele SM , CuiWX, WangLCet al. Dendrimer-like PEO glycopolymers exhibit anti-inflammatory properties. J. Am. Chem. Soc. 127(29), 10132–10133 (2005).
  • Gestwicki JE , CairoCW, StrongLE, OetjenKA, KiesslingLL. Influencing receptor-ligand binding mechanisms with multivalent ligand architecture. J. Am. Chem. Soc.124(50), 14922–14933 (2002).
  • Dijkgraaf I , RijndersAY, SoedeAet al. Synthesis of DOTA-conjugated multivalent cyclic-RGD peptide dendrimers via 1,3-dipolar cycloaddition and their biological evaluation: implications for tumor targeting and tumor imaging purposes. Org. Biomol. Chem. 5(6), 935–944 (2007).
  • McNerny DQ , Kukowska-LatalloJF, MullenDGet al. RGD dendron bodies; synthetic avidity agents with defined and potentially interchangeable effector sites that can substitute for antibodies. Bioconjug. Chem. 20(10), 1853–1859 (2009).
  • Martin AL , LiB, GilliesER. Surface functionalization of nanomaterials with dendritic groups: toward enhanced binding to biological targets. J. Am. Chem. Soc.131(2), 734–741 (2008).
  • Vannucci L , FiserovaA, SadalapureKet al. Effects of N-acetyl-glucosamine-coated glycodendrimers as biological modulators in the B16F10 melanoma model in vivo. Int. J. Oncol. 23(2), 285–296 (2003).
  • Fox ME , SzokaFC, FrechetJMJ. Soluble polymer carriers for the treatment of cancer: the importance of molecular architecture. Acc. Chem. Res.42(8), 1141–1151 (2009).
  • Menjoge AR , KannanRM, TomaliaDA. Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov. Today15(5–6), 171–185 (2010).
  • Kukowska-Latallo JF , CandidoKA, CaoZYet al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res. 65(12), 5317–5324 (2005).
  • Lim J , ChouaiA, LoST, LiuW, SunX, SimanekEE. Design, synthesis, characterization, and biological evaluation of triazine dendrimers bearing paclitaxel using ester and ester/disulfide linkages. Bioconjug. Chem.20(11), 2154–2161 (2009).
  • Zhang Y , ThomasTP, DesaiAet al. Targeted dendrimeric anticancer prodrug: a methotrexate-folic acid-poly(amidoamine) conjugate and a novel, rapid, “one pot” synthetic approach. Bioconjug. Chem. 21(3), 489–495 (2010).
  • Mullen DG , DesaiAM, WaddellJNet al. The implications of stochastic synthesis for the conjugation of functional groups to nanoparticles. Bioconjug. Chem. 19(9), 1748–1752 (2008).
  • Zong H , ThomasTP, LeeKHet al. Bifunctional PAMAM dendrimer conjugates of folic acid and methotrexate with defined ratio. Biomacromolecules 13(4), 982–991 (2012).
  • Okuda T , KawakamiS, MaeieT, NiidomeT, YamashitaF, HashidaM. Biodistribution characteristics of amino acid dendrimers and their PEGylated derivatives after intravenous administration. J. Control. Release114(1), 69–77 (2006).
  • Singh P , GuptaU, AsthanaA, JainNK. Folate and folate–PEG–PAMAM dendrimers: Synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjug. Chem.19(11), 2239–2252 (2008).
  • Wiener EC , BrechbielMW, BrothersHet al. Dendrimer-based metal-chelates – a new class of magnetic-resonance-imaging contrast agents. Magn. Reson. Med. 31(1), 1–8 (1994).
  • Malik N , EvagorouEG, DuncanR. Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs10(8), 767–776 (1999).
  • Baker JR , QuintanaA, PiehlerL, Banazak-HollM, TomaliaD, RaczkaE. The synthesis and testing of anti-cancer therapeutic nanodevices. Biomed. Microdevices3(1), 61–69 (2001).
  • Myc A , DouceTB, AhujaNet al. Preclinical antitumor efficacy evaluation of dendrimer-based methotrexate conjugates. Anticancer Drug 19(2), 143–149 (2008).
  • Haensler J , SzokaFC. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug. Chem.4(5), 372–379 (1993).
  • Vincent L , VaretJ, PilleJYet al. Efficacy of dendrimer-mediated angiostatin and TIMP-2 gene delivery on inhibition of tumor growth and angiogenesis: in vitro and in vivo studies. Int. J. Cancer 105(3), 419–429 (2003).
  • Xiao K , LiY, LuoJet al. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 32(13), 3435–3446 (2011).
  • Sisson AL , SteinhilberD, RossowT, WelkerP, LichaK, HaagR. Biocompatible functionalized polyglycerol microgels with cell penetrating properties. Angew. Chem. Int. Ed.48(41), 7540–7545 (2009).
  • D‘Emanuele A , AttwoodD. Dendrimer-drug interactions. Adv. Drug Deliv. Rev.57(15), 2147–2162 (2005).
  • Karakoti AS , DasS, ThevuthasanS, SealS. PEGylated inorganic nanoparticles. Angew. Chem. Int. Ed.50(9), 1980–1994 (2011).
  • Xiao K , LiY, LeeJSet al. “OA02” peptide facilitates the precise targeting of paclitaxel-loaded micellar nanoparticles to ovarian cancer in vivo. Cancer Res. 72(8), 2100–2110 (2012).
  • Hua C , PengSM, DongCM. Synthesis and characterization of linear-dendron-like poly(ε-caprolactone)-β-poly(ethylene oxide) copolymers via the combination of ring-opening polymerization and click chemistry. Macromolecules41(18), 6686–6695 (2008).
  • Kostiainen MA , SzilvayGR, LehtinenJet al. Precisely defined protein-polymer conjugates: construction of synthetic DNA binding domains on proteins by using multivalent dendrons. Acs Nano 1(2), 103–113 (2007).
  • Deng JJ , ZhouYF, XuB, MaiKJ, DengYB, ZhangLM. Dendronized chitosan derivative as a biocompatible gene delivery carrier. Biomacromolecules12(3), 642–649 (2011).
  • Barnard A , PosoccoP, PriclSet al. Degradable self-assembling dendrons for gene delivery: experimental and theoretical insights into the barriers to cellular uptake. J. Am. Chem. Soc. 133(50), 20288–20300 (2011).
  • Wood KC , LittleSR, LangerR, HammondPT. A family of hierarchically self-assembling linear-dendritic hybrid polymers for highly efficient targeted gene delivery. Angew. Chem. Int. Ed.44(41), 6704–6708 (2005).
  • Yu HJ , NieY, DohmenC, LiYQ, WagnerE. Epidermal growth factor-PEG functionalized PAMAM-pentaethylenehexamine dendron for targeted gene delivery produced by click chemistry. Biomacromolecules12(6), 2039–2047 (2011).
  • Wood KC , AzarinSM, ArapW, PasqualiniR, LangerR, HammondPT. Tumor-targeted gene delivery using molecularly engineered hybrid polymers functionalized with a tumor-homing peptide. Bioconjug. Chem.19(2), 403–405 (2008).
  • Kojima C . Design of stimuli-responsive dendrimers. Expert Opin. Drug Deliv.7(3), 307–319 (2010).
  • Pantel K , BrakenhoffRH. Dissecting the metastatic cascade. Nat. Rev. Cancer4(6), 448–456 (2004).
  • Ring A , SmithIE, DowsettM. Circulating tumour cells in breast cancer. Lancet Oncol.5(2), 79–88 (2004).
  • Nagrath S , SequistLV, MaheswaranSet al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173), 1235–1239 (2007).
  • Stott SL , HsuCH, TsukrovDIet al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl Acad. Sci. USA 107(43), 18392–18397 (2010).
  • He W , WangHF, HartmannLC, ChengJX, LowPS. In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry. Proc. Natl Acad. Sci. USA104(28), 11760–11765 (2007).
  • Dimitroff CJ , LechpammerM, Long-WoodwardD, KutokJL. Rolling of human bone-metastatic prostate tumor cells on human bone marrow endothelium under shear flow is mediated by E-selectin. Cancer Res.64(15), 5261–5269 (2004).
  • McNeeley KM , AnnapragadaA, BellamkondaRV. Decreased circulation time offsets increased efficacy of PEGylated nanocarriers targeting folate receptors of glioma. Nanotechnology18(38), 510 (2007).
  • McNeeley KM , KarathanasisE, AnnapragadaAV, BellamkondaRV. Masking and triggered unmasking of targeting ligands on nanocarriers to improve drug delivery to brain tumors. Biomaterials30(23–24), 3986–3995 (2009).
  • Gabizon A , HorowitzAT, GorenD, TzemachD, ShmeedaH, ZalipskyS. In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clin. Cancer Res.9(17), 6551–6559 (2003).
  • Danhier F , FeronO, PreatV. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release148(2), 135–146 (2010).
  • Patri AK , MajorosIJ, BakerJR Jr. Dendritic polymer macromolecular carriers for drug delivery. Curr. Opin. Chem. Biol.6(4), 466–471 (2002).
  • Kukowska-Latallo JF , CandidoKA, CaoZet al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res. 65(12), 5317–5324 (2005).
  • Tian L , HammondPT. Comb-dendritic block copolymers as tree-shaped macromolecular amphiphiles for nanoparticle self-assembly. Chem. Materials18(17), 3976–3984 (2006).
  • Gillies ER , FrechetJM. Designing macromolecules for therapeutic applications: polyester dendrimer-poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture. J. Am. Chem. Soc.124(47), 14137–14146 (2002).
  • Demattei CR , HuangB, TomaliaDA. Designed dendrimer syntheses by self-assembly of single-site, ssDNA functionalized dendrons. Nano Lett.4(5), 771–777 (2004).
  • Olson ES , JiangT, AguileraTAet al. Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proc. Natl Acad. Sci. USA 107(9), 4311–4316 (2010).
  • Kobayashi H , KoyamaY, BarrettTet al. Multimodal nanoprobes for radionuclide and five-color near-infrared optical lymphatic imaging. ACS Nano. 1(4), 258–264 (2007).
  • Cheng Z , ThorekDLJ, TsourkasA. Gadolinium-conjugated dendrimer nanoclusters as a tumor-targeted T(1) magnetic resonance imaging contrast agent. Angew. Chem. Int. Ed.49(2), 346–350 (2010).
  • Kaneshiro TL , JeongEK, MorrellG, ParkerDL, LuZR. Synthesis and evaluation of globular Gd-DOTA-monoamide conjugates with precisely controlled nanosizes for magnetic resonance angiography. Biomacromolecules9(10), 2742–2748 (2008).
  • Herborn CU , BarkhausenJ, PaetschIet al. Coronary arteries: contrast-enhanced MR imaging with SH L 643A – experience in 12 volunteers. Radiology 229(1), 217–223 (2003).
  • Chisholm EJ , VassauxG, Martin-DuquePet al. Cancer-specific transgene expression mediated by systemic injection of nanoparticles. Cancer Res. 69(6), 2655–2662 (2009).
  • Almutairi A , RossinR, ShokeenMet al. Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. Proc. Natl Acad. Sci. USA 106(3), 685–690 (2009).
  • Parrott MC , BenhabbourSR, SaabCet al. Synthesis, radiolabeling, and bio-imaging of high-generation polyester dendrimers. J. Am. Chem. Soc. 131(8), 2906–2916 (2009).
  • Zhu S , HongM, ZhangL, TangG, JiangY, PeiY. PEGylated PAMAM dendrimer-doxorubicin conjugates: in vitro evaluation and in vivo tumor accumulation. Pharm. Res.27(1), 161–174 (2010).
  • Yang WL , BarthRF, WuGet al. Convection enhanced delivery of boronated EGF as a molecular targeting agent for neutron capture therapy of brain tumors. J. Neurooncol. 95(3), 355–365 (2009).
  • Yang W , BarthRF, WuGet al. Convection enhanced delivery of boronated EGF as a molecular targeting agent for neutron capture therapy of brain tumors. J. Neurooncol. 95(3), 355–365 (2009).
  • Van Der Poll DG , Kieler-FergusonHM, FloydWCet al. Design, synthesis, and biological evaluation of a robust, biodegradable dendrimer. Bioconjug. Chem. 21(4), 764–773 (2010).
  • Dhanikula RS , ArgawA, BouchardJF, HildgenP. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: enhanced efficacy and intratumoral transport capability. Mol. Pharm.5(1), 105–116 (2008).
  • Fox ME , GuillaudeuS, FrechetJMJ, JergerK, MacaraegN, SzokaFC. Synthesis and in vivo antitumor efficacy of PEGylated poly(L-lysine) dendrimer-camptothecin conjugates. Mol. Pharm.6(5), 1562–1572 (2009).
  • Kaminskas LM , McLeodVM, KellyBDet al. Doxorubicin-conjugated PEGylated dendrimers show similar tumoricidal activity but lower systemic toxicity when compared to PEGylated liposome and solution formulations in mouse and rat tumor models. Mol. Pharm. 9(3), 422–432 (2012).
  • Kaminskas LM , KellyBD, McLeodVMet al. Capping methotrexat α-carboxyl groups enhances systemic exposure and retains the cytotoxicity of drug conjugated PEGylated polylysine dendrimers. Mol. Pharm. 8(2), 338–349 (2011).
  • Kaminskas LM , KellyBD, McLeodVMet al. Characterisation and tumour targeting of PEGylated polylysine dendrimers bearing doxorubicin via a pH labile linker. J. Control. Release 152(2), 241–248 (2011).
  • Kaminskas LM , KellyBD, McLeodVMet al. Pharmacokinetics and tumor disposition of PEGylated, methotrexate conjugated poly-l-lysine dendrimers. Mol. Pharm. 6(4), 1190–1204 (2009).
  • Choe YH , ConoverCD, WuDCet al. Anticancer drug delivery systems: multi-loaded N-4-acyl poly(ethylene glycol) prodrugs of ara-C. II. Efficacy in ascites and solid tumors. J. Control. Release 79(1–3), 55–70 (2002).
  • Pasut G , ScaramuzzaS, SchiavonO, MendichiR, VeroneseFM. PEG-epirubicin conjugates with high drug loading. J. Bioactive Compatible Polymers20(3), 213–230 (2005).
  • Vandamme TF , BrobeckL. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J. Control. Release102(1), 23–38 (2005).
  • Ke W , ZhaoY, HuangR, JiangC, PeiY. Enhanced oral bioavailability of doxorubicin in a dendrimer drug delivery system. J. Pharm. Sci.97(6), 2208–2216 (2008).
  • Florence AT , SakthivelT, TothI. Oral uptake and translocation of a polylysine dendrimer with a lipid surface. J. Control. Release65(1–2), 253–259 (2000).
  • Hayder M , PoupotM, BaronMet al. A phosphorus-based dendrimer targets inflammation and osteoclastogenesis in experimental arthritis. Sci. Transl. Med. 3(81), 81ra35 (2011).
  • Chandrasekar D , SistlaR, AhmadFJ, KharRK, DiwanPV. Folate coupled poly(ethyleneglycol) conjugates of anionic poly(amidoamine) dendrimer for inflammatory tissue specific drug delivery. J. Biomed. Mater. Res. Part A.82A(1), 92–103 (2007).
  • Chandrasekar D , SistlaR, AhmadFJ, KharRK, DiwanPV. The development of folate-PAMAM dendrimer conjugates for targeted delivery of anti-arthritic drugs and their pharmacokinetics and biodistribution in arthritic rats. Biomaterials28(3), 504–512 (2007).
  • Chauhan AS , SrideviS, ChalasaniKBet al. Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin. J. Control. Release 90(3), 335–343 (2003).
  • Yiyun C , NaM, TongwenXet al. Transdermal delivery of nonsteroidal anti-inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers. J. Pharm. Sci. 96(3), 595–602 (2007).
  • Taratula O , GarbuzenkoOB, KirkpatrickPet al. Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral siRNA delivery. J. Control. Release 140(3), 284–293 (2009).
  • Defoort JP , NardelliB, HuangWL, HoDD, TamJP. Macromolecular assemblage in the design of a synthetic AIDS vaccine. Proc. Natl Acad. Sci. USA89(9), 3879–3883 (1992).
  • Bernstein DI , BourneN, AyisiNKet al. Evaluation of formulated dendrimer SPL7013 as a microbicide. Antiviral Res. 57(3), A66–A66 (2003).
  • Jiang YH , EmauP, CairnsJSet al. SPL7013 gel as a topical microbicide for prevention of vaginal transmission of SHIV89.6P in macaques. AIDS Res. Hum. Retroviruses 21(3), 207–213 (2005).
  • Daftarian P , KaiferAE, LiWet al. Peptide-conjugated PAMAM dendrimer as a universal DNA vaccine platform to target antigen-presenting cells. Cancer Res. 71(24), 7452–7462 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.