98
Views
1
CrossRef citations to date
0
Altmetric
Review

Emerging Nanodelivery Strategies of RNAi Molecules for Colon Cancer Therapy: Preclinical Developments

&
Pages 1117-1130 | Published online: 29 Aug 2012

References

  • Temple LK . The prognosis of colon cancer is dependent on accurate staging. J. Surg. Oncol.102(1), 1–2 (2010).
  • Tannock IF . Conventional cancer therapy: promise broken or promise delayed? Lancet351(Suppl. 2), SII9–SII16 (1998).
  • Ghetie C , DaviesM, CornfeldD, SuhN, SaifMW. Expectoration of a lung metastasis in a patient with colorectal carcinoma. Clin. Colorectal Cancer7(4), 283–286 (2008).
  • Wong TW , ColomboG, SonvicoF. Pectin matrix as oral drug delivery vehicle for colon cancer treatment. AAPS PharmSciTech12(1), 201–214 (2011).
  • Kinget R , KalalaW, VervoortL, van den Mooter G. Colonic drug targeting. J. Drug Target6(2), 129–149 (1998).
  • Jose S , PremaMT, ChackoAJ, ThomasAC, SoutoEB. Colon specific chitosan microspheres for chronotherapy of chronic stable angina. Colloids Surf. B Biointerfaces83(2), 277–283 (2011).
  • Kadam VD , GattaniSG. Development of colon targeted multiparticulate pulsatile drug delivery system for treating nocturnal asthma. Drug Deliv.17(5), 343–351 (2010).
  • Chourasia MK , JainSK. Pharmaceutical approaches to colon targeted drug delivery systems. J. Pharm. Pharm. Sci.6(1), 33–66 (2003).
  • Stevens HN , WilsonCG, WellingPGet al. Evaluation of Pulsincap to provide regional delivery of dofetilide to the human GI tract. Int. J. Pharm. 236(1–2), 27–34 (2002).
  • Fukui E , MiyamuraN, UemuraK, KobayashiM. Preparation of enteric coated timed-release press-coated tablets and evaluation of their function by in vitro and in vivo tests for colon targeting. Int. J. Pharm.204(1–2), 7–15 (2000).
  • Li J , YangL, FergusonSMet al. In vitro evaluation of dissolution behavior for a colon-specific drug delivery system (CODES) in multi-pH media using United States Pharmacopeia apparatus II and III. AAPS PharmSciTech3(4), E33 (2002).
  • Bromberg L . Polymeric micelles in oral chemotherapy. J. Control. Release128(2), 99–112 (2008).
  • Cantore M , CapparelliE, BerardiF, PerroneR, ColabufoNA. Clinical pharmacokinetic and metabolism of PET radiotracers for imaging P-glycoprotein in chemoresistant tumor of colorectal cancer. Curr. Drug Metab.12(10), 985–988 (2011).
  • Juliano RL , LingV. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta455(1), 152–162 (1976).
  • Kuppens IE , BreedveldP, BeijnenJH, SchellensJH. Modulation of oral drug bioavailability: from preclinical mechanism to therapeutic application. Cancer Invest.23(5), 443–464 (2005).
  • Sparreboom A , NooterK. Does P-glycoprotein play a role in anticancer drug pharmacokinetics? Drug Resist. Update3(6), 357–363 (2000).
  • Cordon-Cardo C , O‘BrienJP, CasalsDet al. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood–brain barrier sites. Proc. Natl Acad. Sci. USA 86(2), 695–698 (1989).
  • Ho RH , KimRB. Transporters and drug therapy: implications for drug disposition and disease. Clin. Pharmacol. Ther.78(3), 260–277 (2005).
  • Thiebaut F , TsuruoT, HamadaH, GottesmanMM, PastanI, WillinghamMC. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc. Natl Acad. Sci. USA84(21), 7735–7738 (1987).
  • Goldstein LJ , GalskiH, FojoAet al. Expression of a multidrug resistance gene in human cancers. J. Natl Cancer Inst. 81(2), 116–124 (1989).
  • Weinstein RS , JakateSM, DominguezJMet al. Relationship of the expression of the multidrug resistance gene product (P-glycoprotein) in human colon carcinoma to local tumor aggressiveness and lymph node metastasis. Cancer Res. 51(10), 2720–2726 (1991).
  • Ford JM , HaitWN. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol. Rev.42(3), 155–199 (1990).
  • Ford JM , HaitWN. Pharmacologic circumvention of multidrug resistance. Cytotechnology12(1–3), 171–212 (1993).
  • Wang SW , MonagleJ, McNultyC, PutnamD, ChenH. Determination of P-glycoprotein inhibition by excipients and their combinations using an integrated high-throughput process. J. Pharm. Sci.93(11), 2755–2767 (2004).
  • Watanabe T , NakayamaY, NaitoM, Oh-haraT, ItohY, TsuruoT. Cremophor EL reversed multidrug resistance in vitro but not in tumor-bearing mouse models. Anticancer Drugs7(8), 825–832 (1996).
  • Krishna R , MayerLD. Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur. J. Pharm. Sci.11(4), 265–283 (2000).
  • Lampidis TJ , KrishanA, PlanasL, TapieroH. Reversal of intrinsic resistance to adriamycin in normal cells by verapamil. Cancer Drug Deliv.3(4), 251–259 (1986).
  • Alaoui-Jamali MA , SchecterRL, RustumYM, CenturioniMG, LehnertS, BatistG. In vivo reversal of doxorubicin resistance by a new tiapamil analog Ro11–2933. J. Pharmacol. Exp. Ther.264(3), 1299–1304 (1993).
  • Boesch D , MullerK, Pourtier-ManzanedoA, LoorF. Restoration of daunomycin retention in multidrug-resistant P388 cells by submicromolar concentrations of SDZ PSC 833, a nonimmunosuppressive cyclosporin derivative. Exp. Cell Res.196(1), 26–32 (1991).
  • Krishna R , de Jong G, Mayer LD. Pulsed exposure of SDZ PSC 833 to multidrug resistant P388/ADR and MCF7/ADR cells in the absence of anticancer drugs can fully restore sensitivity to doxorubicin. Anticancer Res.17(5A), 3329–3334 (1997).
  • Dale IL , TuffleyW, CallaghanRet al. Reversal of P-glycoprotein-mediated multidrug resistance by XR9051, a novel diketopiperazine derivative. Br. J. Cancer 78(7), 885–892 (1998).
  • Dantzig AH , ShepardRL, CaoJet al. Reversal of P-glycoprotein-mediated multidrug resistance by a potent cyclopropyldibenzosuberane modulator, LY335979. Cancer Res. 56(18), 4171–4179 (1996).
  • Peck RA , HewettJ, HardingMWet al. Phase I and pharmacokinetic study of the novel MDR1 and MRP1 inhibitor biricodar administered alone and in combination with doxorubicin. J. Clin. Oncol. 19(12), 3130–3141 (2001).
  • Baguley BC . Multiple drug resistance mechanisms in cancer. Mol. Biotechnol.46(3), 308–316.
  • Fletcher JI , HaberM, HendersonMJ, NorrisMD. ABC transporters in cancer: more than just drug efflux pumps. Nature Rev. Cancer10(2), 147–156 (2010).
  • Szakacs G , PatersonJK, LudwigJA, Booth-GentheC, GottesmanMM. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov.5(3), 219–234 (2006).
  • Quattrone A , PapucciL, MorgantiMet al. Inhibition of MDR1 gene expression by antimessenger oligonucleotides lowers multiple drug resistance. Oncol. Res. 6(7), 311–320 (1994).
  • Nagata J , KijimaH, HatanakaHet al. Reversal of drug resistance using hammerhead ribozymes against multidrug resistance-associated protein and multidrug resistance 1 gene. Int. J. Oncol. 21(5), 1021–1026 (2002).
  • Qia S , WangH, ChenX. Reversal of HCC drug resistance by using hammerhead ribozymes against multidrug resistance 1 gene. J. Huazhong Univ. Sci. Technol. Med. Sci.25(6), 662–664 (2005).
  • Elbashir SM , HarborthJ, LendeckelW, YalcinA, WeberK, TuschlT. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature411(6836), 494–498 (2001).
  • Elbashir SM , LendeckelW, TuschlT. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Devel.15(2), 188–200 (2001).
  • Xia Z , ZhuZ, ZhangLet al. Specific reversal of MDR1/P-gp-dependent multidrug resistance by RNA interference in colon cancer cells. Oncol. Reports 20(6), 1433–1439 (2008).
  • Liu C , ZhaoG, LiuJet al. Novel biodegradable lipid nano complex for siRNA delivery significantly improving the chemosensitivity of human colon cancer stem cells to paclitaxel. J. Control. Release 140(3), 277–283 (2009).
  • Matsui Y , KobayashiN, NishikawaM, TakakuraY. Sequence-specific suppression of mdr1a/1b expression in mice via RNA interference. Pharm. Res.22(12), 2091–2098 (2005).
  • Donmez Y , GunduzU. Reversal of multidrug resistance by small interfering RNA (siRNA) in doxorubicin-resistant MCF-7 breast cancer cells. Biomed. Pharmacother.65(2), 85–89 (2011).
  • Pakunlu RI , WangY, SaadM, KhandareJJ, StarovoytovV, MinkoT. In vitro and in vivo intracellular liposomal delivery of antisense oligonucleotides and anticancer drug. J. Control. Release114(2), 153–162 (2006).
  • Alahari SK , DeanNM, FisherMHet al. Inhibition of expression of the multidrug resistance-associated P-glycoprotein of by phosphorothioate and 5´ cholesterol-conjugated phosphorothioate antisense oligonucleotides. Mol. Pharmacol. 50(4), 808–819 (1996).
  • Poole EM , CurtinK, HsuLet al. Genetic variability in EGFR, Src and HER2 and risk of colorectal adenoma and cancer. Int. J. Mol. Epidemiol. Genetics 2(4), 300–315 (2011).
  • Yarden Y . Biology of HER2 and its importance in breast cancer. Oncology61(Suppl. 2), 1–13 (2001).
  • Lee D , YuM, LeeEet al. Tumor-specific apoptosis caused by deletion of the ERBB3 pseudo-kinase in mouse intestinal epithelium. J. Clin. Investig. 119(9), 2702–2713 (2009).
  • Yotsumoto F , YagiH, SuzukiSOet al. Validation of HB-EGF and amphiregulin as targets for human cancer therapy. Biochem. Biophys. Res. Comm. 365(3), 555–561 (2008).
  • Firestein R , BassAJ, KimSYet al. CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature 455(7212), 547–551 (2008).
  • He SB , YuanY, WangL, YuMJ, ZhuYB, ZhuXG. Effects of cyclin-dependent kinase 8 specific siRNA on the proliferation and apoptosis of colon cancer cells. J. Exp. Clin. Cancer Res.30, 109 (2011).
  • Oh BY , LeeRA, KimKH. siRNA targeting Livin decreases tumor in a xenograft model for colon cancer. World J. Gastroenterol.17(20), 2563–2571 (2011).
  • Subramaniam V , VincentIR, GilakjanM, JothyS. Suppression of human colon cancer tumors in nude mice by siRNA CD44 gene therapy. Exp. Mol. Pathol.83(3), 332–340 (2007).
  • Banchereau J , SteinmanRM. Dendritic cells and the control of immunity. Nature392(6673), 245–252 (1998).
  • Stockwin LH , McGonagleD, MartinIG, BlairGE. Dendritic cells: immunological sentinels with a central role in health and disease. Immunol. Cell Biol.78(2), 91–102 (2000).
  • Shortman K , LiuYJ. Mouse and human dendritic cell subtypes. Nat. Rev. Immunol.2(3), 151–161 (2002).
  • Steinman RM , BanchereauJ. Taking dendritic cells into medicine. Nature449(7161), 419–426 (2007).
  • Steinman RM . Lasker Basic Medical Research Award. Dendritic cells: versatile controllers of the immune system. Nat. Med.13(10), 1155–1159 (2007).
  • Kalinski P , HilkensCM, WierengaEA, KapsenbergML. T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol. Today20(12), 561–567 (1999).
  • Trombetta ES , MellmanI. Cell biology of antigen processing in vitro and in vivo. Annu. Rev. Immunol.23, 975–1028 (2005).
  • Yang L , CarboneDP. Tumor-host immune interactions and dendritic cell dysfunction. Adv. Cancer Res.92, 13–27 (2004).
  • Alshamsan A . Induction of tolerogenic dendritic cells by IL-6-secreting CT26 colon carcinoma. Immunopharmacol. Immunotoxicol.34(3), 465–469 (2011).
  • Alshamsan A , HamdyS, HaddadiAet al. STAT3 knockdown in B16 melanoma by siRNA lipopolyplexes induces bystander immune response in vitro and in vivo. Translational Oncol. 4(3), 178–188 (2011).
  • Alshamsan A , HaddadiA, HamdySet al. STAT3 silencing in dendritic cells by siRNA polyplexes encapsulated in PLGA nanoparticles for the modulation of anticancer immune response. Mol. Pharm. 7(5), 1643–1654 (2010).
  • Alshamsan A , HamdyS, SamuelJ, El-KadiAO, LavasanifarA, UludagH. The induction of tumor apoptosis in B16 melanoma following STAT3 siRNA delivery with a lipid-substituted polyethylenimine. Biomaterials31(6), 1420–1428 (2010).
  • Munn DH , SharmaMD, HouDet al. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J. Clin. Investig. 114(2), 280–290 (2004).
  • Sharma MD , BabanB, ChandlerPet al. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J. Clin. Investig. 117(9), 2570–2582 (2007).
  • Yen MC , LinCC, ChenYLet al. A novel cancer therapy by skin delivery of indoleamine 2,3-dioxygenase siRNA. Clin. Cancer Res. 15(2), 641–649 (2009).
  • Whitehead KA , LangerR, AndersonDG. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov.8(2), 129–138 (2009).
  • Hu CM , ChangZF. Synthetic lethality by lentiviral short hairpin RNA silencing of thymidylate kinase and doxorubicin in colon cancer cells regardless of the p53 status. Cancer Res.68(8), 2831–2840 (2008).
  • Fichtner-Feigl S , TerabeM, KitaniAet al. Restoration of tumor immunosurveillance via targeting of interleukin-13 receptor-alpha 2. Cancer Res. 68(9), 3467–3475 (2008).
  • Muruve DA . The innate immune response to adenovirus vectors. Hum. Gene Ther.15(12), 1157–1166 (2004).
  • Zaiss AK , MuruveDA. Immune responses to adeno-associated virus vectors. Curr. Gene Ther.5(3), 323–331 (2005).
  • Kohn DB , SadelainM, GloriosoJC. Occurrence of leukaemia following gene therapy of X-linked SCID. Nat. Rev. Cancer3(7), 477–488 (2003).
  • Uprichard SL . The therapeutic potential of RNA interference. FEBS Lett.579(26), 5996–6007 (2005).
  • Kennedy D . Breakthrough of the year. Science298(5602), 2283 (2002).
  • Behlke MA . Progress towards in vivo use of siRNAs. Mol. Ther.13(4), 644–670 (2006).
  • Grayson AC , DoodyAM, PutnamD. Biophysical and structural characterization of polyethylenimine-mediated siRNA delivery in vitro. Pharm. Res.23(8), 1868–1876 (2006).
  • Li SD , ChonoS, HuangL. Efficient gene silencing in metastatic tumor by siRNA formulated in surface-modified nanoparticles. J. Control. Release126(1), 77–84 (2008).
  • Kim SH , JeongJH, LeeSH, KimSW, ParkTG. Local and systemic delivery of VEGF siRNA using polyelectrolyte complex micelles for effective treatment of cancer. J. Control. Release129(2), 107–116 (2008).
  • Kim WJ , ChangCW, LeeM, KimSW. Efficient siRNA delivery using water soluble lipopolymer for anti-angiogenic gene therapy. J. Control. Release118(3), 357–363 (2007).
  • Kramer M , StumbeJF, GrimmGet al. Dendritic polyamines: simple access to new materials with defined treelike structures for application in nonviral gene delivery. Chembiochem 5(8), 1081–1087 (2004).
  • Christian DA , CaiS, BowenDM, KimY, PajerowskiJD, DischerDE. Polymersome carriers: from self-assembly to siRNA and protein therapeutics. Eur. J. Pharm. Biopharm.71(3), 463–474 (2009).
  • Jensen DM , CunD, MaltesenMJ, FrokjaerS, NielsenHM, FogedC. Spray drying of siRNA-containing PLGA nanoparticles intended for inhalation. J. Control. Release (2009).
  • Godbey WT , WuKK, MikosAG. Poly(ethylenimine) and its role in gene delivery. J. Control. Release60(2–3), 149–160 (1999).
  • Boussif O , Lezoualc‘hF, ZantaMAet al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl Acad. Sci. USA 92(16), 7297–7301 (1995).
  • Demeneix B , BehrJP. Polyethylenimine (PEI). Adv. Genet.53, 217–230 (2005).
  • Bologna JC , DornG, NattF, WeilerJ. Linear polyethylenimine as a tool for comparative studies of antisense and short double-stranded RNA oligonucleotides. Nucleosides Nucleotides Nucleic Acids22(5–8), 1729–1731 (2003).
  • Urban-Klein B , WerthS, AbuharbeidS, CzubaykoF, AignerA. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther.12(5), 461–466 (2005).
  • Aigner A . Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs. J. Biotechnol.124(1), 12–25 (2006).
  • Grzelinski M , Urban-KleinB, MartensTet al. RNA interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts. Hum. Gene Ther. 17(7), 751–766 (2006).
  • Kim SH , JeongJH, LeeSH, KimSW, ParkTG. PEG conjugated VEGF siRNA for anti-angiogenic gene therapy. J. Control. Release116(2), 123–129 (2006).
  • Kaestner P , AignerA, BastiansH. Therapeutic targeting of the mitotic spindle checkpoint through nanoparticle-mediated siRNA delivery inhibits tumor growth in vivo. Cancer Lett.304(2), 128–136 (2011).
  • Ibrahim AF , WeirauchU, ThomasM, GrunwellerA, HartmannRK, AignerA. MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res.71(15), 5214–5224 (2011).
  • Torchilin VP . Multifunctional nanocarriers. Adv. Drug Deliv. Rev.58(14), 1532–1555 (2006).
  • Zhang X , GeYL, TianRH. The knockdown of c-myc expression by RNAi inhibits cell proliferation in human colon cancer HT-29 cells in vitro and in vivo. Cell. Mol. Biol. Lett.14(2), 305–318 (2009).
  • Peer D , ParkEJ, MorishitaY, CarmanCV, ShimaokaM. Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science319(5863), 627–630 (2008).
  • Wilson DS , DalmassoG, WangL, SitaramanSV, MerlinD, MurthyN. Orally delivered thioketal nanoparticles loaded with TNF-alpha-siRNA target inflammation and inhibit gene expression in the intestines. Nat. Mater.9(11), 923–928 (2010).
  • Zhang H . Survivin specified small interfering RNA-CLIO-Cy5.5. In: Molecular Imaging and Contrast Agent Database (MICAD). National Center for Biotechnology Information, Bethesda, MD, USA (2004).
  • Abedini F , IsmailM, HosseinkhaniHet al. Effects of CXCR4 siRNA/dextran-spermine nanoparticles on CXCR4 expression and serum LDH levels in a mouse model of colorectal cancer metastasis to the liver. Cancer Manag. Res. 3, 301–309 (2011).
  • Leng A , YangJ, LiuTet al. Nanoparticle-delivered VEGF-silencing cassette and suicide gene expression cassettes inhibit colon carcinoma growth in vitro and in vivo. Tumour Biol. 32(6), 1103–1111 (2011).
  • Kim WJ , ChristensenLV, JoSet al. Cholesteryl oligoarginine delivering vascular endothelial growth factor siRNA effectively inhibits tumor growth in colon adenocarcinoma. Mol. Ther. 14(3), 343–350 (2006).
  • Krieger ML , KonoldA, WieseM, JaehdeU, BendasG. Targeted doxorubicin-liposomes as a tool to circumvent P-gp-mediated resistance in ovarian carcinoma cells. Int. J. Clin. Pharmacol. Ther.48(7), 442–444 (2010).
  • Thierry AR , DritschiloA, RahmanA. Effect of liposomes on P-glycoprotein function in multidrug resistant cells. Biochem. Biophys. Res. Commun.187(2), 1098–1105 (1992).
  • Li X , LuWL, LiangGWet al. Effect of stealthy liposomal topotecan plus amlodipine on the multidrug-resistant leukaemia cells in vitro and xenograft in mice. Eur. J. Clin. Invest. 36(6), 409–418 (2006).
  • Wang J , GohB, LuWet al. In vitro cytotoxicity of Stealth liposomes co-encapsulating doxorubicin and verapamil on doxorubicin-resistant tumor cells. Biol. Pharm. Bull.28(5), 822–828 (2005).
  • Wu J , LuY, LeeAet al. Reversal of multidrug resistance by transferrin-conjugated liposomes co-encapsulating doxorubicin and verapamil. J. Pharm. Pharm. Sci. 10(3), 350–357 (2007).
  • Alakhov V , MoskalevaE, BatrakovaEV, KabanovAV. Hypersensitization of multidrug resistant human ovarian carcinoma cells by pluronic P85 block copolymer. Bioconjug. Chem.7(2), 209–216 (1996).
  • Venne A , LiS, MandevilleR, KabanovA, AlakhovV. Hypersensitizing effect of pluronic L61 on cytotoxic activity, transport, and subcellular distribution of doxorubicin in multiple drug-resistant cells. Cancer Res.56(16), 3626–3629 (1996).
  • Alakhov V , KlinskiE, LiSet al. Block copolymer-based formulation of doxorubicin. From cell screen to clinical trials. Colloids Surf. B Biointerfaces 16(1–4), 113–134 (1999).
  • Elamanchili P , McEachernC, BurtH. Reversal of multidrug resistance by methoxypolyethylene glycol-block-polycaprolactone diblock copolymers through the inhibition of P-glycoprotein function. J. Pharm. Sci.98(3), 945–958 (2009).
  • Batrakova EV , LiS, AlakhovVY, MillerDW, KabanovAV. Optimal structure requirements for pluronic block copolymers in modifying P-glycoprotein drug efflux transporter activity in bovine brain microvessel endothelial cells. J. Pharmacol. Exp. Ther.304(2), 845–854 (2003).
  • Astier A , DoatB, FerrerMJet al. Enhancement of adriamycin antitumor activity by its binding with an intracellular sustained-release form, polymethacrylate nanospheres, in U-937 cells. Cancer Res. 48(7), 1835–1841 (1988).
  • Omelyanenko V , KopeckovaP, GentryC, KopecekJ. Targetable HPMA copolymer-adriamycin conjugates. Recognition, internalization, and subcellular fate. J. Control. Release53(1–3), 25–37 (1998).
  • Hu CM , ZhangL. Therapeutic nanoparticles to combat cancer drug resistance. Curr. Drug Metab.10(8), 836–841 (2009).
  • de Verdiere AC , DubernetC, NematiFet al. Reversion of multidrug resistance with polyalkylcyanoacrylate nanoparticles: towards a mechanism of action. Br. J. Cancer 76(2), 198–205 (1997).
  • Pepin X , AttaliL, DomraultCet al. On the use of ion-pair chromatography to elucidate doxorubicin release mechanism from polyalkylcyanoacrylate nanoparticles at the cellular level. J. Chromatogr. B Biomed. Sci. Appl. 702(1–2), 181–191 (1997).
  • Kopecek J , KopeckovaP, MinkoT, LuZ. HPMA copolymer-anticancer drug conjugates: design, activity, and mechanism of action. Eur. J. Pharm. Biopharm.50(1), 61–81 (2000).
  • Dong X , MumperRJ. Nanomedicinal strategies to treat multidrug-resistant tumors: current progress. Nanomedicine (Lond.)5(4), 597–615 (2010).
  • Shapira A , LivneyYD, BroxtermanHJ, AssarafYG. Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance. Drug Resist. Updat.14(3), 150–163 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.