3,498
Views
0
CrossRef citations to date
0
Altmetric
Review

Functional RNA Delivery Targeted to Dendritic Cells By Synthetic Nanoparticles

, , , &
Pages 1077-1099 | Published online: 29 Aug 2012

References

  • McCullough KC , SummerfieldA. Targeting the porcine immune system – particulate vaccines in the 21st century. Dev. Comp. Immunol.33, 394–409 (2009).
  • Thery C , AmigorenaS. The cell biology of antigen presentation in dendritic cells. Curr. Opin. Immunol.13, 45–51 (2001).
  • Randolph GJ , JacubzickC, QuC. Antigen presentation by monocytes and monocyte-derived cells. Curr. Opin. Immunol.20, 52–60 (2008).
  • Jensen PE . Recent advances in antigen processing and presentation. Nat. Immunol.8, 1041–1048 (2007).
  • Rocha N , NeefjesJ. MHC class II molecules on the move for successful antigen presentation. EMBO J.27, 1–5 (2008).
  • Vyas JM , Van der Veen AG, Ploegh HL. The known unknowns of antigen processing and presentation. Nat. Rev. Immunol.8, 607–618 (2008).
  • Collnot E -M, Ali H, Lehr C-M. Nano- and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. J. Control. Release161, 235–246 (2012).
  • Danhier F , AnsorenaE, SilvaJM, CocoR, Le Breton A, Preat V. PLGA-based nanoparticles: an overview of biomedical applications. J. Control. Release161, 505–522 (2012).
  • Hamdy S , HaddadiA, HungRW, LavasanifarA. Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv. Drug. Del. Rev.63, 943–955 (2011).
  • Klippstein R , PozoD. Nanotechnology-based manipulation of dendritic cells for enhanced immunotherapy strategies. Nanomedicine6, 523–529 (2010).
  • Pulendran B , AhmedR. Translating innate immunity into immunological memory: implications for vaccine development. Cell124, 849–863 (2006).
  • Shortman K , LahoudMH, CaminschiI. Improving vaccines by targeting antigens to dendritic cells. Exp. Mol. Med.41, 61–66 (2009).
  • Unger WW , van Beelen AJ, Bruijns SC et al. Glycan-modified liposomes boost CD4(+) and CD8(+) T-cell responses by targeting DC-SIGN on dendritic cells. J. Control. Release160, 88–95 (2012).
  • Kumari S , MgS, MayorS. Endocytosis unplugged: multiple ways to enter the cell. Cell Res.20, 256–275 (2010).
  • Sandvig K , PustS, SkotlandT, van Deurs B. Clathrin-independent endocytosis: mechanisms and function. Curr. Opin. Cell Biol.23, 413–420 (2011).
  • Platta HW , StenmarkH. Endocytosis and signaling. Curr. Opin. Cell Biol.23, 393–403 (2011).
  • van Niel G , WubboltsR, StoorvogelW. Endosomal sorting of MHC class II determines antigen presentation by dendritic cells. Curr. Opin. Cell Biol.20, 437–444 (2008).
  • Norbury CC , SigalLJ. Cross priming or direct priming: is that really the question? Curr. Opin. Immunol.15, 82–88 (2003).
  • Kurts C , RobinsonBW, KnollePA. Cross-priming in health and disease. Nat. Rev. Immunol.10, 403–414 (2010).
  • Heath W , BelzG, BehrensGMNet al. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol. Rev. 199, 9–26 (2004).
  • Monu N , TrombettaES. Cross-talk between the endocytic pathway and the endoplasmic reticulum in cross-presentationby MHC class I molecules. Curr. Opin. Immunol.19, 66–72 (2007).
  • Burgdorf S , KurtsC. Endocytosis mechanisms and the cell biology of antigen. Curr. Opin. Immunol.20, 89–95 (2008).
  • Bevan MJ . Cross-priming. Nat. Immunol.7, 363–365 (2006).
  • Blankenstein T , SchulerT. Cross-priming versus cross-tolerance: are two signals enough? Trends Immunol.23, 171–173 (2002).
  • Melief CJ . Mini-review: regulation of cytotoxic T-lymphocyte responses by dendritic cells: peaceful coexistence of cross-priming and direct priming? Eur. J. Immunol.33, 2645–2654 (2003).
  • den Haan JM , BevanMJ. Constitutive versus activation-dependent cross-presentation of immune complexes by CD8(+) and CD8(-) dendritic cells in vivo. J. Exp. Med.196, 817–827 (2002).
  • Moser M . Dendritic cells in immunity and tolerance-do they display opposite functions? Immunity.19, 5–8 (2003).
  • Lutz MB , KurtsC. Induction of peripheral CD4+ T-cell tolerance and CD8+ T-cell cross-tolerance by dendritic cells. Eur. J. Immunol.39, 2325–2330 (2009).
  • Allam JP , BieberT, NovakN. Dendritic cells as potential targets for mucosal immunotherapy. Curr. Opin. Allergy Clin. Immunol.9, 554–557 (2009).
  • Rescigno M . Dendritic cells in oral tolerance in the gut. Cell. Microbiol.13, 1312–1318 (2011).
  • Rescigno M , Di Sabatino A. Dendritic cells in intestinal homeostasis and disease. J. Clin. Invest.119, 2441–2450 (2009).
  • Rescigno M , LopatinU, ChieppaM. Interactions among dendritic cells, macrophages, and epithelial cells in the gut: implications for immune tolerance. Curr. Opin. Immunol.20, 669–675 (2008).
  • Rescigno M , MatteoliG. Lamina propria dendritic cells: for whom the bell TOLLs? Eur. J. Immunol.38, 1483–1486 (2008).
  • Sabatte J , MagginiJ, NahmodKet al. Interplay of pathogens, cytokines and other stress signals in the regulation of dendritic cell function. Cytokine Growth Factor Rev. 18, 5–17 (2007).
  • Chung Y , ChangJH, KweonMN, RennertPD, KangCY. CD8α-11b+ dendritic cells but not CD8α+ dendritic cells mediate cross-tolerance toward intestinal antigens. Blood106, 201–206 (2005).
  • Amigorena S , SavinaA. Intracellular mechanisms of antigen cross presentation in dendritic cells. Curr. Opin. Immunol.22, 109–117 (2010).
  • Belizaire R , UnanueER. Targeting proteins to distinct subcellular compartments reveals unique requirements for MHC class I and II presentation. Proc. Natl Acad. Sci. USA106, 17463–17468 (2009).
  • Markov OO , MironovaNL, MaslovMAet al. Novel cationic liposomes provide highly efficient delivery of DNA and RNA into dendritic cell progenitors and their immature offsets. J. Control. Release 160, 200–210 (2012).
  • Jilek S , MerkleHP, WalterE. DNA-loaded biodegradable microparticles as vaccine delivery systems and their interaction with dendritic cells. Adv. Drug Deliv. Rev.57, 377–390 (2005).
  • Ji W , PanusD, PalumboRN, TangR, WangC. Poly(2-aminoethyl methacrylate) with well-defined chain length for DNA vaccine delivery to dendritic cells. Biomacromolecules12, 4373–4385 (2011).
  • Sun X , ChenS, HanJ, ZhangZ. Mannosylated biodegradable polyethyleneimine for targeted DNA delivery to dendritic cells. Int. J. Nanomed.7, 2929–2942 (2012).
  • Melhem NM , GleasonSM, LiuXD, Barratt-BoyesSM. High-level antigen expression and sustained antigen presentation in dendritic cells nucleofected with wild-type viral mRNA but not DNA. Clin. Vaccine Immunol.15, 1337–1344 (2008).
  • Wykes M , PomboA, JenkinsC, MacPhersonGG. Dendritic cells interact directly with naive B-lymphocytes to transfer antigen and initiate class switching in a primary T-dependent response. J. Immunol.161, 1313–1319 (1998).
  • Le Roux D , Le Bon A, Dumas A et al. Antigen stored in dendritic cells after macropinocytosis is released unprocessed from late endosomes to target B cells. Blood119, 95–105 (2011).
  • Katas H , AlparHO. Development and characterisation of chitosan nanoparticles for siRNA delivery. J. Control. Release115, 216–225 (2006).
  • Gao W , XiaoZ, Radovic-MorenoA, ShiJ, LangerR, FarokzadOC. Progress in siRNA delivery using multifunctional nanoparticles. Methods Mol. Biol.629, 53–67 (2010).
  • Tezuka H , OhtekiT. Regulation of intestinal homeostasis by dendritic cells. Immunol. Rev.234, 247–258 (2010).
  • Nestle FO , Di Meglio P, Qin J-Z, Nickoloff BJ. Skin immune sentinels in health and disease. Nat. Rev. Immunol.9, 679–691 (2009).
  • Romani N , ClausenBE, StoitznerP. Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin. Immunol. Rev.234, 120–141 (2010).
  • Kaplan DH . In vivo function of Langerhans cells and dermal dendritic cells. Trends Immunol.31, 446–451 (2010).
  • Watts C , WestMA, ZaruR. TLR signalling regulated antigen presentation in dendritic cells. Curr. Opin. Immunol.22, 124–130 (2010).
  • Dam TK , BrewerCF. Lectins as pattern recognition molecules: the effects of epitope density in innate immunity. Glycobiology20, 270–279 (2009).
  • Combadiere B , LiardC. Transcutaneous and intradermal vaccination. Hum. Vaccines7, 811–827 (2011).
  • Ueno H , KlechevskyE, SchmittNet al. Targeting human dendritic cell subsets for improved vaccines. Semin. Immunol. 23, 21–27 (2011).
  • Caminschi I , ShortmanK. Boosting antibody responses by targeting antigens to dendritic cells. Trends Immunol.33, 71–77 (2011).
  • Romani N , ThurnherM, IdoyagaJ, SteinmanRM, FlacherV. targeting of antigens to skin dendritic cells: possibilities to enhance vaccine efficacy. Immunol. Cell Biol.88, 424–430 (2010).
  • Stoitzner P , GreenLK, JungJYet al. Tumor immunotherapy by epicutaneous immunization requires Langerhans cells. J. Immunol. 180, 1991–1998 (2008).
  • Garcia-Gaumont C , SeksekO, GrzybowskaJ, BorowskiE, BolardJ. delivery systems for antisense oligonucleotides. Pharmacol. Ther.87, 255–277 (2000).
  • Mahato RI , TakakuraY, HashidaM. Development of targeted delivery systems for nucleic acid drugs. J. Drug Target.4, 337–357 (1996).
  • Henriksen-Lacey M , KorsholmKS, AndersenP, PerrieY, ChristensenD. Liposomal vaccine delivery systems. Exp. Opin. Drug Del.8, 505–519 (2011).
  • Wasungu L , HoekstraD. Cationic lipids, lipoplexes and intracellular delivery of genes. J. Control. Release116, 255–264 (2006).
  • Landesman-Milo D , PeerD. Altering the immune response with lipid-based nanoparticles. J. Control. Release161, 600–608 (2012).
  • Li W , SzokaFC. Lipid-based nanoparticles for nucleic acid delivery. Pharm. Res.24, 438–449 (2007).
  • Slütter B , BalSM, DingZ, JiskootW, BouwstraJA. Adjuvant effect of cationic liposomes and CpG depends on administration route. J. Control. Release154, 123–130 (2011).
  • Hassane FS , SalehAF, AbesR, GaitMJ, LebleuB. Cell penetrating peptides: overview and applications to the delivery of oligonucleotides. Cell. Mol. Life Sci.67, 715–726 (2010).
  • Vazquez-Calvo A , Saiz J-C, McCullough KC, Sobrino F, Martin-Acebes MA. Acid-dependent viral entry. Virus Res.167(2), 125–137 (2012).
  • Mueller J , KretzschmarI, VolkmerR, BoisguerinP. Comparison of cellular uptake using 22 CPPs in 4 different cell lines. Bioconjug. Chem.19, 2363–2374 (2008).
  • Lundin P , JohanssonH, GuterstamPet al. Distinct uptake routes of cell-penetratng peptide conjugates. Bioconjug. Chem. 19, 2535–2542 (2008).
  • Zaro JL , Shen W-C. Quantitative comparison of membrane transduction and endocytosis of oligopeptides. Biochem. Biophys. Res. Commun.307, 241–247 (2003).
  • Tünnemann G , MartinRM, HauptS, PatschC, EdenhoferF, CardosoC. Cargo-dependent mode of uptake and bioavailability of TAT-containing proteins and peptides in living cells. FASEB J.20, 1775–1784 (2006).
  • Summerton JE . A novel reagent for safe, effective delivery of substances into cells. Ann. NY Acad. Sci.1058, 62–75 (2005).
  • Boudier A , Aubert-PlouësselA, GérardinCet al. Tripartite siRNA micelles as controlled delivery systems for primary dendritic cells. Drug Dev. Ind. Pharm. 35, 950–958 (2009).
  • Diaz-Moscoso A , VercauterenD, RejmanJet al. Insights in cellular uptake mechanisms of pDNA-polycationic amphiphilic cyclodextrin nanoparticles (CDplexes). J. Control. Release 143, 318–325 (2010).
  • Dierendonck M , De Koker S, Vervaet C, Remon JP, De Geest BG. Interaction between polymeric multilayer capsules and immune cells. J. Control. Release161, 592–599 (2012).
  • Hu Y , LitwinT, NagarajaARet al. Cytosolic delivery of membrane-impermeable molecules in dendritic cells using pH-responsive core-shell nanoparticles. Nano Lett. 7, 3056–3064 (2007).
  • Hu Y , LuJJ, AtukoralePUet al. Cytosolic delivery mediated via electrostatic surface binding of protein, virus or siRNA cargoes to pH-responsive core-shell gel. Biomacromolecules 10, 756–765 (2009).
  • Howard KA . Delivery of RNA interference therapeutics using polycation-based nanoparticles. Adv. Drug. Del. Rev.61, 710–720 (2009).
  • Laga R , CarlisleR, TangneyM, UlbrichK, SeymourLW. Polymer coatings for delivery of nucleic acid therapeutics. J. Control. Rel.161, 537–553 (2012).
  • Sharma R , GhasparianA, RobinsonJA, McCulloughKC. Synthetic virus-like particles target dendritic cell lipid rafts for rapid endocytosis primarily but not exclusively by macropinocytosis. PLoS ONEe43248 (2012).
  • Midoux P , PichonC, Yaouanc J-J, Jaffrès P-A. Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br. J. Pharmacol.157, 166–178 (2009).
  • Varkouhi AK , ScholteM, StormG, HaismaHJ. Endosomal escape pathways for delivery of biologicals. J. Control. Release151, 220–228 (2011).
  • Gonzalez-Rodriguez ML , RabascoAM. Charged liposomes as carriers to enhance the permeation through the skin. Exp. Opin. Drug Del.8, 857–871 (2011).
  • Jiang H -L, Kim TH, Kim Y-K, Park I-Y, Cho M-H, Cho CS. Efficient gene delivery using chitosan–polyethylenimine hybrid systems. Biomed. Mater.3(2), 025013 (2008).
  • Won Y -W, Lim KS, Kim Y-H. Intracellular organelle-targeted non-viral gene delivery systems. J. Control. Release152, 99–109 (2011).
  • Nakase I , KobayashiS, FutakiS. Endosome-disruptive peptides for improving cytosolic delivery of bioactive macromolecules. Biopolym. Peptide Sci.94, 763–770 (2010).
  • Hafez IM , MaurerN, CullisPR. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther.8, 1188–1196 (2001).
  • Tavernier G , AndriesO, DemeesterJ, SandersNN, De Smedt SC, Rejman J. mRNA as gene therapeutic: how to control protein expression. J. Control. Release150, 238–247 (2011).
  • Ceppi M , RuggliN, TacheV, GerberH, McCulloughKC, SummerfieldA. Double-stranded secondary structures on mRNA induce type 1 interferon (IFN a/b) production and maturation of mRNA-transfected monocyte-derived dendritic cells. J. Gene Med.7, 452–465 (2005).
  • Liu MA . Gene-based vaccines: recent developments. Curr. Opin. Mol. Therapy12, 86–93 (2010).
  • Dow SW . Liposome-nucleic acid immunotherapeutics. Exp. Opin. Drug Del.5, 11–24 (2008).
  • Basha G , NovobrantsevaTI, RosinNet al. Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigen-presenting cells. Am. Soc. Gene Cell Ther. 19, 2186–2200 (2011).
  • Tesz GJ , AouadiM, ProtMet al. Glucan particles for selective delivery of siRNA to phagocytic cells in mice. Biochem. J. 436, 351–362 (2011).
  • Subramanya S , Kim S-S, Abraham S et al. Targeted delivery of small interfering RNA to human dendritic cells to suppress Dengue Virus infection and associated proinflammatory cytokine production. J. Virol.84, 2490–2501 (2010).
  • Akita H , KogureK, MoriguchiRet al. nanoparticles for ex vivo siRNA delivery to dendritic cells for cancer vaccines: programmed endosomal escape and dissociation. J. Control. Release 143, 311–317 (2010).
  • Kong Y , RuanL, MaL, CuiY, WangJM, LeY. RNA interference as a novel and powerful tool in immunopharmacological research. Int. Immunopharm.7, 417–426 (2007).
  • Davidson BL , McCrayPB. Current prospects for RNA interference-based therapies. Nat. Rev. Gen.12, 329–340 (2011).
  • Akinc A , ZumbuehlA, GoldbergMet al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat. Biotechnol. 26, 561–569 (2008).
  • Howard KA , RahbekUL, LiuXet al. RNA interference in vitro and in vivo using a Chitosan siRNA nanoparticle system. Mol. Ther. 14, 476–484 (2006).
  • Rahbek UL , HowardKA, OupickyDet al. Intracellular siRNA and precursor miRNA trafficking using bioresponsive copolypeptides. J. Gene Med. 10, 81–93 (2008).
  • Boudier A , Aubert-PlouësselA, MebarekNet al. Development of tripartite polyion micelles for efficient peptide delivery into dendritic cells without altering their plasticity. J. Control. Release 154, 156–163 (2011).
  • Mockey M , BourseauE, ChandrashekharVet al. mRNA-based cancer vaccine: prevention of B16 melanoma progression and metastasis by systemic injection of MART 1 mRNA histidylated lipopolyplexes. Cancer Gene Ther. 14, 802–814 (2007).
  • Kim H -K, Wei H, Kulkarni A, Pogranichniy RN, Thompson DH. Effective targeted gene delivery to dendritic cells via synergetic interaction of mannosylated lipid with DOPE and BCAT. Biomacromolecules13, 636–644 (2012).
  • Perche F , BenvegnuT, BerchelMet al. Enhancement of dendritic cells transfection in vivo and of vaccintion against B16F10 melanoma with mannosylated histidylated lipopolyplexes loaded with tumor antigen messenger RNA. Nanomedicine 7, 445–453 (2011).
  • Su X , FrickeJ, KavanaghDG, IrvineDJ. In vitro and in vivo mRNA delivery using lipid-enveloped pH-responsive polymer nanoparticles. Mol. Pharm.8, 774–787 (2011).
  • Debus H , BaumhofP, ProbstJ, KisselT. delivery of messenger RNA using poly(ethylene imine)–poly(ethylene glycol)–copolymer blends for polyplex formation: biophysical characterization and in vitro transfection properties. J. Control. Release148, 334–343 (2010).
  • Rejman J , TavernierG, BavarsadN, DemeesterJ, De Smedt SC. mRNA transfection of cervical carcinoma and mesenchymal stem cells mediated by cationic carriers. J. Control. Release147, 385–391 (2010).
  • Khromykh AA . Replicon-based vectors of positive strand RNA viruses. Curr. Opin. Mol. Therapy.2, 555–569 (2000).
  • Mandl CW . Flavivirus immunization with capsid-deletion mutants: basics, benefits, and barriers. Viral Immunol.17, 461–472 (2004).
  • Rayner JO , DrygaSA, KamrudKI. Alphavirus vectors and vaccination. Rev. Med. Virol.12, 279–296 (2002).
  • Atkins GJ , FleetonMN, SheahanBJ. Therapeutic and prophylactic applications of alphavirus vectors. Exp. Rev. Mol. Med.10, e33 (2008).
  • Racanelli V , BehrensSE, AlibertiJ, RehermannB. Dendritic cells transfected with cytopathic self-replicating RNA induce crosspriming of CD8+ T cells and antiviral immunity. Immunity20, 47–58 (2004).
  • Frey CF , BauhoferO, RuggliN, SummerfieldA, HofmannMA, TratschinJD. Classical swine fever virus replicon particles lacking the Erns gene: a potential marker vaccine for intradermal application. Vet. Res.37, 655–670 (2006).
  • Suter R , SummerfieldA, Thomann-HarwoodLJ, McCulloughKC, TratschinJD, RuggliN. Immunogenic and replicative properties of classical swine fever virus replicon particles modified to induce IFN-alpha/beta and carry foreign genes. Vaccine29, 1491–1503 (2011).
  • Suzuki R , WinkelmannER, MasonPW. Construction and characterization of a single-cycle chimeric flavivirus vaccine candidate that protects mice against lethal challenge with dengue virus type 2. J. Virol.83, 1870–1880 (2009).
  • Kucharzik T , LugeringN, RautenbergKet al. Role of M cells in intestinal barrier function. Ann. NY Acad. Sci. 915, 171–183 (2000).
  • Kyd JM , CrippsAW. Functional differences between M cells and enterocytes in sampling luminal antigens. Vaccine26, 6221–6224 (2008).
  • Martin-Latil S , GnadigNF, MalletAet al. Transcytosis of HTLV-1 across a tight human epithelial barrier and infection of sub-epithelial dendritic cells. Blood 120(3), 572–580 (2012).
  • Chieppa M , RescignoM, HuangAY, GermainRN. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J. Exp. Med.203, 2841–2852 (2006).
  • Lelouard H , FalletM, de Bovis B, Meresse S, Gorvel JP. Peyer‘s patch dendritic cells sample antigens by extending dendrites through M cell-specific transcellular pores. Gastroenterology142, 592–601 e593 (2012).
  • Rescigno M , UrbanoM, ValzasinaBet al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2, 361–367 (2001).
  • Vallon-Eberhard A , LandsmanL, YogevN, VerrierB, JungS. Transepithelial pathogen uptake into the small intestinal lamina propria. J. Immunol.176, 2465–2469 (2006).
  • Soloff AC , Barratt-BoyesSM. Enemy at the gates: dendritic cells and immunity to mucosal pathogens. Cell Res.20, 872–885 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.