225
Views
0
CrossRef citations to date
0
Altmetric
Review

Recent Advances in the Rational Design of silica-based Nanoparticles for Gene Therapy

, , , , &
Pages 1217-1237 | Published online: 23 Oct 2012

References

  • Anderson WF . Human gene-therapy. Science256(5058), 808–813 (1992).
  • Sokolova V , EppleM. Inorganic nanoparticles as carriers of nucleic acids into cells. Angew. Chem. Int. Ed.47(8), 1382–1395 (2008).
  • Dufes C , UchegbuIF, SchatzleinAG. Dendrimers in gene delivery. Adv. Drug Deliv. Rev.57(15), 2177–2202 (2005).
  • Slowing II , Vivero-EscotoJL, WuCW, LinVSY. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev.60(11), 1278–1288 (2008).
  • Mao CQ , DuJZ, SunTMet al. A biodegradable amphiphilic and cationic triblock copolymer for the delivery of siRNA targeting the acid ceramidase gene for cancer therapy. Biomaterials 32(11), 3124–3133 (2011).
  • Arnold JD , MountainDJH, FreemanMBet al. Establishing Polymeric transfection as a non-viral, non-toxic method for gene therapy in the prevention of vascular disease. J. Vasc. Surg. 54(6), 1862–1862 (2011).
  • Sedighiani F , NikolS. Gene therapy in vascular disease. Surgeon9(6), 326–335 (2011).
  • Tuo J , Pang J-J, Cao X et al. AAV5-mediated sFLT01 gene therapy arrests retinal lesions in Ccl2−/−/Cx3cr1−/− mice. Neurobiol. Aging33(2), 433, e1–e10 (2012).
  • Lieberman JR , DaluiskiA, StevensonSet al. The effect of regional gene therapy with bone morphogenetic protein-2- producing bone-marrow cells on the repair of segmental femoral defects in rats. J. Bone Joint Surg. A 81(7), 905–917 (1999).
  • Wang Y , GraingerDW. RNA therapeutics targeting osteoclast-mediated excessive bone resorption. Adv. Drug Deliv. Rev.64(12), 1341–1357 (2012).
  • Morgan RA , DudleyME, WunderlichJRet al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314(5796), 126–129 (2006).
  • Gaspar HB , BjorkegrenE, ParsleyKet al. Successful reconstitution of immunity in ADA-SCID by stem cell gene therapy following cessation of PEG-ADA and use of mild preconditioning. Mol. Ther. 14(4), 505–513 (2006).
  • Raper SE , ChirmuleN, LeeFSet al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol. Genet. Metab. 80(1–2), 148–158 (2003).
  • Hacein-Bey-Abina S , Von Kalle C, Schmidt M et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science302(5644), 415–419 (2003).
  • Fukumori Y , IchikawaH. Nanoparticles for cancer therapy and diagnosis. Adv. Drug Deliv. Rev.17(1), 1–28 (2006).
  • Kofron MD , LaurencinCT. Bone tissue engineering by gene delivery. Adv. Drug Deliv. Rev.58(4), 555–576 (2006).
  • Cuomo F , CeglieA, LopezF. Specific interactions between nucleolipid doped liposomes and DNA allow a more efficient polynucleotide condensation. J. Coll. Interface Sci.365(1), 184–190 (2012).
  • Kamiya H , FujimuraY, MatsuokaI, HarashimaH. Visualization of intracellular trafficking of exogenous DNA delivered by cationic liposomes. Biochem. Biophys. Res. Commun.298(4), 591–597 (2002).
  • Zhou X , HuangL. Targeted delivery of DNA by liposomes and polymers. J. Control. Release19(1–3), 269–274 (1992).
  • Wang ZJ , QianL, WangXL, YangF, YangXR. Construction of hollow DNA/PLL microcapsule as a dual carrier for controlled delivery of DNA and drug. Coll. Surf. A Physicochem. Eng. Asp.326(1–2), 29–36 (2008).
  • Moret I , Esteban Peris J, Guillem VM et al. Stability of PEI–DNA and DOTAP–DNA complexes: effect of alkaline pH, heparin and serum. J. Control. Release76(1–2), 169–181 (2001).
  • Navarro G , Tros De Ilarduya C. Activated and non-activated PAMAM dendrimers for gene delivery in vitro and in vivo. Nanomed. Nanotechnol. Biol. Med.5(3), 287–297 (2009).
  • Xiong X -B, Uludağ H, Lavasanifar A. Biodegradable amphiphilic poly(ethylene oxide)-block-polyesters with grafted polyamines as supramolecular nanocarriers for efficient siRNA delivery. Biomaterials30(2), 242–253 (2009).
  • Ye SF , TianMM, WangTXet al. Synergistic effects of cell-penetrating peptide Tat and fusogenic peptide HA2-enhanced cellular internalization and gene transduction of organosilica nanoparticles. Nanomedicine 8(6), 833–841 (2011).
  • Adler AF , LeongKW. Emerging links between surface nanotechnology and endocytosis: impact on nonviral gene delivery. Nano Today5(6), 553–569 (2010).
  • Mintzer MA , SimanekEE. Nonviral vectors for gene delivery. Chem. Rev.109(2), 259–302 (2009).
  • Murthy SK . Nanoparticles in modern medicine: state of the art and future challenges. Int. J. Nanomed.2(2), 129–141 (2007).
  • Maiorano G , SabellaS, SorceBet al. Effects of cell culture media on the dynamic formation of protein–nanoparticle complexes and influence on the cellular response. ACS Nano 4(12), 7481–7491 (2010).
  • Osaki F , KanamoriT, SandoS, SeraT, AoyamaY. A quantum dot conjugated sugar ball and its cellular uptake on the size effects of endocytosis in the subviral region. J. Am. Chem. Soc.126(21), 6520–6521 (2004).
  • Zhu Y , MengW, GaoH, HanagataN. hollow mesoporous silica/poly(L-lysine) particles for codelivery of drug and gene with enzyme-triggered release property. J. Phys. Chem. C115(28), 13630–13636 (2011).
  • Hartono SB , GuWY, KleitzFet al. Poly-L-lysine functionalized large pore cubic mesostructured silica nanoparticles as biocompatible carriers for gene delivery. ACS Nano 6(3), 2104–2117 (2012).
  • Lee H , SungD, VeerapandianM, YunK, SeoSW. PEGylated polyethyleneimine grafted silica nanoparticles: enhanced cellular uptake and efficient siRNA delivery. Analyt. Bioanalyt. Chem.400(2), 535–545 (2011).
  • Zhu J , TangJW, ZhaoLZ, ZhouXF, WangYH, YuCZ. Ultrasmall, well-dispersed, hollow siliceous spheres with enhanced endocytosis properties. Small6(2), 276–282 (2010).
  • Xia TA , KovochichM, LiongMet al. Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 3(10), 3273–3286 (2009).
  • Lin YS , HaynesCL. Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J. Am. Chem. Soc.132(13), 4834–4842 (2010).
  • Zhu Y , FangY, BorchardtL, KaskelS. PEGylated hollow mesoporous silica nanoparticles as potential drug delivery vehicles. Microporous Mesoporous Mater.141(1–3), 199–206 (2011).
  • García-Calzón JA , Díaz-GarcíaME. Synthesis and analytical potential of silica nanotubes. Trends Analyt. Chem.35, 27–38 (2012).
  • Ashley CE , CarnesEC, PhillipsGKet al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers Nat. Mater. 10(6), 476–476 (2011).
  • Pedram EO , HinesAL. Pure vapor adsorption of water on mobil sorbead-R silica-gel. J. Chem. Eng. Data28(1), 11–14 (1983).
  • Ryoo R . Porous materials A tricontinuous mesoporous system. Nat. Chem.1(2), 105–106 (2009).
  • Zhao DY , FengJL, HuoQSet al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279(5350), 548–552 (1998).
  • Kresge CT , LeonowiczME, RothWJ, VartuliJC, BeckJS. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature359(6397), 710–712 (1992).
  • Stober W , FinkA, BohnE. Controlled growth of monodisperse silica spheres in micron size range. J. Coll. Interface Sci.26(1), 62–69 (1968).
  • He XX , WangKM, TanWHet al. Bioconjugated nanoparticles for DNA protection from cleavage. J. Am. Chem. Soc. 125(24), 7168–7169 (2003).
  • Slowing II , Vivero-EscotoJL, Wu C-W, Lin VSY. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev.60(11), 1278–1288 (2008).
  • Xie J , LeeS, ChenX. Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev.62(11), 1064–1079 (2010).
  • Dolatabadi JEN , De La Guardia M. Applications of diatoms and silica nanotechnology in biosensing, drug and gene delivery, and formation of complex metal nanostructures. Trends Analyt. Chem.30(9), 1538–1548 (2011).
  • Popat A , HartonoSB, StahrF, LiuJ, QiaoSZ, LuGQ. Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. Nanoscale3(7), 2801–2818 (2011).
  • Popat A , LiuJ, LuGQ, QiaoSZ. A pH-responsive drug delivery system based on chitosan coated mesoporous silica nanoparticles. J. Mater. Chem.22(22), 11173–11178 (2012).
  • Livingston DM . Inheritance of the 2 micrometer m DNA plasmid from Saccharomyces. Genetics86(1), 73–84 (1977).
  • Shi FS , RakhmilevichAL, HeiseCPet al. Intratumoral injection of interleukin-12 plasmid DNA, either naked or in complex with cationic lipid, results in similar tumor regression in a murine model. Mol. Cancer Ther. 1(11), 949–957 (2002).
  • Vivero-Escoto JL , SlowingII, LinVSY. Tuning the cellular uptake and cytotoxicity properties of oligonucleotide intercalator-functionalized mesoporous silica nanoparticles with human cervical cancer cells HeLa. Biomaterials31(6), 1325–1333 (2010).
  • Jung MR , ShimIK, KimESet al. Controlled release of cell-permeable gene complex from poly(L-lactide) scaffold for enhanced stem cell tissue engineering. J. Control. Release 152(2), 294–302 (2011).
  • Anderson RJ , SchneiderJ. Plasmid DNA and viral vector-based vaccines for the treatment of cancer. Vaccine25(Suppl. 2), B24–B34 (2007).
  • Suwalski A , DabboueH, DelalandeAet al. Accelerated Achilles tendon healing by PDGF gene delivery with mesoporous silica nanoparticles. Biomaterials 31(19), 5237–5245 (2010).
  • Darquet AM , CameronB, WilsP, SchermanD, CrouzetJ. A new DNA vehicle for nonviral gene delivery: supercoiled minicircle. Gene Ther.4(12), 1341–1349 (1997).
  • Park JH , LeeM, KimSW. Non-viral adiponectin gene therapy into obese 2 type diabetic mice ameliorates insulin resistance. J. Control. Release114(1), 118–125 (2006).
  • Van Gaal EVB , OostingRS, HenninkWE, CrommelinDJA, MastrobattistaE. Junk DNA enhances pEI-based non-viral gene delivery. Int. J. Pharm.390(1), 76–83 (2010).
  • Fedor MJ . Structure and function of the hairpin ribozyme. J. Mol. Biol.297(2), 269–291 (2000).
  • Scott WG , FinchJT, KlugA. The crystal structure of an AII-RNAhammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell81(7), 991–1002 (1995).
  • Pley HW , FlahertyKM, MckayDB. Three-dimensional structure of a hammerhead ribozyme. Nature372(6501), 68–74 (1994).
  • Kolniak TA , SullivanJM. Rapid, cell-based toxicity screen of potentially therapeutic post-transcriptional gene silencing agents. Exp. Eye Res.92(5), 328–337 (2011).
  • Ozaki I , ZernMA, LiuS, WeiDL, PomerantzRJ, DuanL. Ribozyme-mediated specific gene replacement of the α1-antitrypsin gene in human hepatoma cells. J. Hepatol.31(1), 53–60 (1999).
  • Uhlmann E , PeymanA. Antisense oligonucleotides: a new therapeutic principle. Chem. Rev.90(4), 543–584 (1990).
  • Stein C , ChengY. Antisense oligonucleotides as therapeutic agents – is the bullet really magical? Science261(5124), 1004–1012 (1993).
  • Su W -Y, Xiong H, Fang J-Y. Natural antisense transcripts regulate gene expression in an epigenetic manner. Biochem. Biophys. Res. Commun.396(2), 177–181 (2010).
  • Hamada K , ShirakawaT, GotohA, RothJA, FollenM. Adenovirus-mediated transfer of human papillomavirus 16 E6/E7 antisense RNA and induction of apoptosis in cervical cancer. Gynecol. Oncol.103(3), 820–830 (2006).
  • Bock LC , GriffinLC, LathamJA, VermaasEH, TooleJJ. Selection of single-stranded-DNA molecules that bind and inhibit human thrombin. Nature355(6360), 564–566 (1992).
  • Huizenga DE , SzostakJW. A DNA Aptamer that binds adenosine and ATP. Biochemistry34(2), 656–665 (1995).
  • Guo PX , CobanO, SneadNMet al. Engineering RNA for targeted siRNA delivery and medical application. Adv. Drug Deliv. Rev. 62(6), 650–666 (2010).
  • Hermann T , PatelDJ. Biochemistry – adaptive recognition by nucleic acid aptamers. Science287(5454), 820–825 (2000).
  • Nimjee SM , RusconiCP, SullengerBA. Aptamers: an emerging class of therapeutics. Annu. Rev. Med.56, 555–583 (2005).
  • Farokhzad OC , ChengJJ, TeplyBAet al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl Acad. Sci. USA 103(16), 6315–6320 (2006).
  • Zhang S , ZhaoY, ZhiD, ZhangS. Non-viral vectors for the mediation of RNAi. Bioorg. Chem.40, 10–18 (2012).
  • Hartono SB , GuW, KleitzFet al. Poly-L-lysine functionalized large pore cubic mesostructured silica nanoparticles as biocompatible carriers for gene delivery. ACS Nano 6(3), 2104–2117 (2012).
  • Fire A , XuSQ, MontgomeryMK, KostasSA, DriverSE, MelloCC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature391(6669), 806–811 (1998).
  • Mao C -Q, Du J-Z, Sun T-M et al. A biodegradable amphiphilic and cationic triblock copolymer for the delivery of siRNA targeting the acid ceramidase gene for cancer therapy. Biomaterials32(11), 3124–3133 (2011).
  • Kim JK , ChoiKJ, LeeM, JoMH, KimS. Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer- and microRNA-221 molecular beacon-conjugated nanoparticle. Biomaterials33(1), 207–217 (2012).
  • Rando TA . Oligonucleotide-mediated gene therapy for muscular dystrophies. Neuromusc. Disord.12, S55–S60 (2002).
  • Graham IR , DicksonG. Gene repair and mutagenesis mediated by chimeric RNA-DNA oligonucleotides: chimeraplasty for gene therapy and conversion of single nucleotide polymorphisms (SNPs). Biochim. Biophys. Acta1587(1), 1–6 (2002).
  • Li Z -H, Liu D-P, Yin W-X, Guo Z-C, Liang C-C. Targeted correction of the point mutations of β-thalassemia and targeted mutagenesis of the nucleotide associated with HPFH by RNA/DNA oligonucleotides: potential for β-thalassemia gene therapy. Blood Cell. Mol. Dis.27(2), 530–538 (2001).
  • Ferreira GNM , MonteiroGA, PrazeresDMF, CabralJMS. Downstream processing of plasmid DNA for gene therapy and DNA vaccine applications. Trends Biotechnol.18(9), 380–388 (2000).
  • Minigo G , ScholzenA, TangCKet al. Poly-L-lysine-coated nanoparticles: a potent delivery system to enhance DNA vaccine efficacy. Vaccine 25(7), 1316–1327 (2007).
  • Veiseh O , KievitFM, MokHet al. Cell transcytosing poly-arginine coated magnetic nanovector for safe and effective siRNA delivery. Biomaterials 32(24), 5717–5725 (2011).
  • Burnett JC , RossiJJ. RNA-based therapeutics: current progress and future prospects. Chem. Biol.19(1), 60–71 (2012).
  • Zuker M . On Finding all suboptimal foldings of an RNA Molecule. Science244(4900), 48–52 (1989).
  • Correll CC , FreebornB, MoorePB, SteitzTA. Metals, motifs, and recognition in the crystal structure of a 5S rRNA domain. Cell91(5), 705–712 (1997).
  • Pleij CWA , BoschL. RNA pseudoknots – structure, detection, and prediction. Methods Enzymol.180, 289–303 (1989).
  • Jaeger JA , SantaluciaJ, TinocoI. Determination of RNA structure and thermodynamics. Annu. Rev. Biochem.62, 255–287 (1993).
  • Kaneko H , SuzukiH, AbeT, Miyano-KurosakiN, TakakuH. Inhibition of HIV-1 replication by vesicular stomatitis virus envelope glycoprotein pseudotyped baculovirus vector-transduced ribozyme in mammalian cells. Biochem. Biophy. Res. Commun.349(4), 1220–1227 (2006).
  • Zhu SG , XiangJJ, LiXLet al. Poly(L-lysine)-modified silica nanoparticles for the delivery of antisense oligonucleotides. Biotechnol. Appl. Biochem. 39, 179–187 (2004).
  • Barnor JS , Miyano-KurosakiN, YamaguchiKet al. Intracellular expression of antisense RNA transcripts complementary to the human immunodeficiency virus type-1 vif gene inhibits viral replication in infected T-lymphoblastoid cells. Biochem. Biophys. Res. Commun. 320(2), 544–550 (2004).
  • Que-Gewirth NS , SullengerBA. Gene therapy progress and prospects: RNA aptamers. Gene Ther.14(4), 283–291 (2007).
  • Martell RE , NevinsJR, SullengerBA. Optimizing aptamer activity for gene therapy applications using expression cassette SELEX. Mol. Ther.6(1), 30–34 (2002).
  • Ishizaki J , NevinsJR, SullengerBA. Inhibition of cell proliferation by an RNA ligand that selectively blocks E2F function. Nat. Med.2(12), 1386–1389 (1996).
  • Nana-Sinkam SP , CroceCM. MicroRNAs as therapeutic targets in cancer. Transl. Res.157(4), 216–225 (2011).
  • Ashley CE , CarnesEC, EplerKEet al. Delivery of small interfering RNA by peptide-targeted mesoporous silica nanoparticle-supported lipid bilayers. ACS Nano 6(3), 2174–2188 (2012).
  • Tagalakis AD , OwenJS, SimonsJP. Lack of RNA–DNA oligonucleotide (chimeraplast) mutagenic activity in mouse embryos. Mol. Reprod. Develop.71(2), 140–144 (2005).
  • Xiang S , TongH, ShiQet al. Uptake mechanisms of non-viral gene delivery. J. Control. Release 158(3), 371–378 (2012).
  • Van Der Aa MA , HuthUS, HafeleSYet al. Cellular uptake of cationic polymer–DNA complexes via caveolae plays a pivotal role in gene transfection in COS-7 cells. Pharm. Res. 24(8), 1590–1598 (2007).
  • Vibin M , VinayakanR, JohnA, RejiyaCS, RajiV, AbrahamA. Cellular uptake and subcellular localization of highly luminescent silica-coated CdSe quantum dots – in vitro and in vivo. J. Coll. Interface Sci.357(2), 366–371 (2011).
  • Shen SD , GuT, MaoDSet al. Synthesis of nonspherical mesoporous silica ellipsoids with tunable aspect ratios for magnetic assisted assembly and gene delivery. Chem. Mater. 24(1), 230–235 (2012).
  • Park IY , KimIY, YooMK, ChoiYJ, ChoMH, ChoCS. Mannosylated polyethylenimine coupled mesoporous silica nanoparticles for receptor-mediated gene delivery. Int. J. Pharm.359(1–2), 280–287 (2008).
  • Slowing I , TrewynBG, LinVSY. Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticleson the endocytosis by human cancer cells. J. Am. Chem. Soc.128(46), 14792–14793 (2006).
  • Chung TH , WuSH, YaoMet al. The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles 3T3-L1 cells and human mesenchymal stem cells. Biomaterials 28(19), 2959–2966 (2007).
  • Slowing II , WuCW, Vivero-EscotoJL, LinVSY. Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells. Small5(1), 57–62 (2009).
  • Xu Z , WangSL, GaoHW. Effects of nano-sized silicon dioxide on the structures and activities of three functional proteins. J. Hazard. Mater.180(1–3), 375–383 (2010).
  • Shi J , HedbergY, LundinM, Odnevall Wallinder I, Karlsson HL, Möller L. Hemolytic properties of synthetic nano- and porous silica particles: the effect of surface properties and the protection by the plasma corona. Acta Biomater.8(9), 3478–3490 (2012).
  • Yiu HHP , McbainSC, Lethbridge ZaD, Lees MR, Dobson J. Preparation and characterization of polyethylenimine-coated Fe3O4-MCM-48 nanocomposite particles as a novel agent for magnet-assisted transfection. J. Biomed. Mater. Res. A92A(1), 386–392 (2010).
  • Zhang X , MaGH, SuZG, Benkirane-JesselN. Novel poly(L-lysine) particles for gene delivery. J. Control. Release152, E182–E184 (2011).
  • Miyata K , GoudaN, TakemotoHet al. Enhanced transfection with silica-coated polyplexes loading plasmid DNA. Biomaterials 31(17), 4764–4770 (2010).
  • Khalil IA , KogureK, FutakiSet al. Octaarginine-modified multifunctional envelope-type nanoparticles for gene delivery. Gene Ther. 14(8), 682–689 (2007).
  • He QJ , ZhangJM, ShiJLet al. The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. Biomaterials 31(6), 1085–1092 (2010).
  • Radu DR , LaiCY, JeftinijaK, RoweEW, JeftinijaS, LinVSY. A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J. Am. Chem. Soc.126(41), 13216–13217 (2004).
  • Zeng P , XuY, ZengCH, RenH, PengML. Chitosan-modified poly(D,L-lactide-co-glycolide) nanospheres for plasmid DNA delivery and HBV gene-silencing. Int. J. Pharm.415(1–2), 259–266 (2011).
  • Angelopoulou A , EfthimiadouEK, KordasG. Dextran modified pH sensitive silica hydro-xerogels as promising drug delivery scaffolds. Mater. Lett.74, 50–53 (2012).
  • Kunzmann A , AnderssonB, VogtCet al. Efficient internalization of silica-coated iron oxide nanoparticl es of different sizes by primary human macrophages and dendritic cells. Toxicol. Appl. Pharm. 253(2), 81–93 (2011).
  • Chen AM , ZhangM, WeiDGet al. Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small 5(23), 2673–2677 (2009).
  • Meng HA , LiongM, XiaTAet al. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano 4(8), 4539–4550 (2010).
  • Cermenati G , TerraccianoI, CastelliIet al. The CPP Tat enhances eGFP cell internalization and transepithelial transport by the larval midgut of bombyx mori (lepidoptera, bombycidae). J. Insect Physiol. 57(12), 1689–1697 (2011).
  • Fonseca SB , PereiraMP, KelleySO. Recent advances in the use of cell-penetrating peptides for medical and biological applications. Adv. Drug Deliv. Rev.61(11), 953–964 (2009).
  • Gao CB , Izquierdo-BarbaI, NakaseIet al. Mesostructured silica based delivery system for a drug with a peptide as a cell-penetrating vector. Microporous Mesoporous Mater. 122(1–3), 201–207 (2009).
  • Ziegler A , NerviP, DurrenbergerM, SeeligJ. The cationic cell-penetrating peptide CPP(TAT) derived from the HIV-1 protein TAT is rapidly transported into living fibroblasts: optical, biophysical, and metabolic evidence. Biochemistry44(1), 138–148 (2005).
  • Mao Z , WanL, HuL, MaL, GaoC. Tat peptide mediated cellular uptake of SiO2 submicron particles. Coll. Surf. B Biointerfaces75(2), 432–440 (2010).
  • Moore NM , SheppardCL, BarbourTR, Sakiyama-ElbertSE. The effect of endosomal escape peptides on in vitro gene delivery of polyethylene glycol-based vehicles. J. Gene Med.10(10), 1134–1149 (2008).
  • Oliveira S , Van Rooy I, Kranenburg O, Storm G, Schiffelers RM. Fusogenic peptides enhance endosomal escape improving siRNA-induced silencing of oncogenes. Int. J. Pharm.331(2), 211–214 (2007).
  • Sadeghian F , HosseinkhaniS, AlizadehA, HatefiA. Design, engineering and preparation of a multi-domain fusion vector for gene delivery. Int. J. Pharma427(2), 393–399 (2012).
  • Varkouhi AK , ScholteM, StormG, HaismaHJ. Endosomal escape pathways for delivery of biologicals. J. Control. Release151(3), 220–228 (2011).
  • Canton I , BattagliaG. Endocytosis at the nanoscale. Chem. Soc. Rev.41(7), 2718–2739 (2012).
  • Sauer AM , SchlossbauerA, RuthardtN, CaudaV, BeinT, BrauchleC. Role of endosomal escape for disulfide-based drug delivery from colloidal mesoporous silica evaluated by live-cell imaging. Nano Lett.10(9), 3684–3691 (2010).
  • Chang JH , KimKJ, ShinYK. Sustained drug release on temperature-responsive polymer hybrid nanoporous silica composites. Bull. Korean Chem. Soc.25(8), 1257–1260 (2004).
  • Chen F , ZhuY. Chitosan enclosed mesoporous silica nanoparticles as drug nano-carriers: sensitive response to the narrow pH range. Microporous Mesoporous Mater.150(0), 83–89 (2012).
  • Xu Y , QuF, WangY, LinH, WuX, JinY. Construction of a novel pH-sensitive drug release system from mesoporous silica tablets coated with Eudragit. Solid State Sci.13(3), 641–646 (2011).
  • van der Aa M a, Mastrobattista E, Oosting RS, Hennink WE, Koning GA, Crommelin DJA. The nuclear pore complex: The gateway to successful nonviral gene delivery. Pharm. Res.23(3), 447–459 (2006).
  • Pan L , HeQ, LiuJet al. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J. Am. Chem. Soc. 134(13), 5722–5725 (2012).
  • Zhang JX , SunW, BergmanLet al. Magnetic mesoporous silica nanospheres as DNA/drug carrier. Mater. Lett. 67(1), 379–382 (2012).
  • Liu J , WangB, HartonoSBet al. Magnetic silica spheres with large nanopores for nucleic acid adsorption and cellular uptake. Biomaterials 33(3), 970–978 (2012).
  • Yiu HHP , McbainSC, Lethbridge ZaD, Lees MR, Dobson J. Preparation and characterization of polyethylenimine-coated Fe3O4-MCM-48 nanocomposite particles as a novel agent for magnet-assisted transfection. J. Biomed. Mater. Res. A92A(1), 386–392 (2010).
  • Medintz IL , UyedaHT, GoldmanER, MattoussiH. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater.4(6), 435–446 (2005).
  • Michalet X , PinaudFF, BentolilaLAet al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709), 538–544 (2005).
  • Wu C -S, Oo MKK, Cupps JM, Fan X. Robust silica-coated quantum dot–molecular beacon for highly sensitive DNA detection. Biosens. Bioelectron.26(9), 3870–3875 (2011).
  • Christen V , FentK. Silica nanoparticles and silver-doped silica nanoparticles induce endoplasmatic reticulum stress response and alter cytochrome P4501A activity. Chemosphere87(4), 423–434 (2012).
  • Liu SH , ZhangZH, WangYB, WangFK, HanMY. Surface-functionalized silica-coated gold nanoparticles and their bioapplications. Talanta67(3), 456–461 (2005).
  • Witasp E , KupferschmidtN, BengtssonLet al. Efficient internalization of mesoporous silica particles of different sizes by primary human macrophages without impairment of macrophage clearance of apoptotic or antibody-opsonized target cells. Toxicol. Appl. Pharm. 239(3), 306–319 (2009).
  • Russo PA , CarrottMMLR, MouraoPAM, CarrottPJM. Tailoring the surface chemistry of mesocellular foams for protein adsorption. Coll. Surf. A Physicochem. Eng. Asp.386(1–3), 25–35 (2011).
  • Drescher D , Orts-GilG, LaubeGet al. Toxicity of amorphous silica nanoparticles on eukaryotic cell model is determined by particle agglomeration and serum protein adsorption effects. Analyt. Bioanalyt. Chem. 400(5), 1367–1373 (2011).
  • Kim J , KimHS, LeeNet al. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem. Int. Ed. 47(44), 8438–8441 (2008).
  • Ogris M , BrunnerS, SchullerS, KircheisR, WagnerE. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Therapy6(4), 595–605 (1999).
  • Lu F , WuSH, HungY, MouCY. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small5(12), 1408–1413 (2009).
  • Chithrani BD , GhazaniAA, ChanWCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett.6(4), 662–668 (2006).
  • Li Y , SunL, JinMHet al. Size-dependent cytotoxicity of amorphous silica nanoparticles in human hepatoma HepG2 cells. Toxicol. Vitro 25(7), 1343–1352 (2011).
  • Chono S , TaninoT, SekiT, MorimotoK. Uptake characteristics of liposomes by rat alveolar macrophages: influence of particle size and surface mannose modification. J. Pharm. Pharmacol.59(1), 75–80 (2007).
  • Lai SK , HidaK, ManSTet al. Privileged delivery of polymer nanoparticles to the perinuclear region of live cells via a non-clathrin, non-degradative pathway. Biomaterials 28(18), 2876–2884 (2007).
  • Jiang W , KimBYS, RutkaJT, ChanWCW. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol.3(3), 145–150 (2008).
  • Guo J , BourreL, SodenDM, O‘sullivanGC, O‘driscollC. Can non-viral technologies knockdown the barriers to siRNA delivery and achieve the next generation of cancer therapeutics? Biotechnol. Adv.29(4), 402–417 (2011).
  • Rai P , MallidiS, ZhengXet al. Development and applications of photo-triggered theranostic agents. Adv. Drug Deliv. Rev. 62(11), 1094–1124 (2010).
  • Zhao YN , SunXX, ZhangGN, TrewynBG, SlowingII, LinVSY. Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects. ACS Nano5(2), 1366–1375 (2011).
  • Liu F , YuaP, WanJJet al. Periodic mesoporous organosilicas with controlled pore symmetries for peptides enrichment. J. Nanosci. Nanotechnol. 11(6), 5215–5222 (2011).
  • Huang L , KrukM. Synthesis of ultra-large-pore FDU-12 silica using ethylbenzene as micelle expander. J. Coll. Interface Sci.365(1), 137–142 (2012).
  • Wang HN , ZhouXF, YuMHet al. Supra-assembly of siliceous vesicles. J. Am. Chem. Soc. 128(50), 15992–15993 (2006).
  • Suteewong T , SaiH, CohenRet al. Highly aminated mesoporous silica nanoparticles with cubic pore structure. J. Am. Chem. Soc. 133(2), 172–175 (2011).
  • Huang XL , TengX, ChenD, TangFQ, HeJQ. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials31(3), 438–448 (2010).
  • Huang XL , LiLL, LiuTLet al. The shape Effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano 5(7), 5390–5399 (2011).
  • Jankiewicz BJ , JamiolaD, ChomaJ, JaroniecM. Silica-metal core-shell nanostructures. Adv. Coll. Interface Sci.170(1–2), 28–47 (2012).
  • Jo C , KimK, RyooR. Syntheses of high quality KIT-6 and SBA-15 mesoporous silicas using low-cost water glass, through rapid quenching of silicate structure in acidic solution. Microporous Mesoporous Mater.124(1–3), 45–51 (2009).
  • Liu S , LuL, YangZ, CoolP, VansantEF. Further investigations on the modified Stöber method for spherical MCM-41. Mater. Chem. Phys.97(2–3), 203–206 (2006).
  • Kruk M , HuiCM. Synthesis and characterization of large-pore FDU-12 silica. Microporous Mesoporous Mater.114(1–3), 64–73 (2008).
  • Fantini MCA , KanagussukoCF, ZiliotiGJM, MartinsTS. Synthesis and structure of cage-like mesoporous silica using different precursors. J. Alloys Compounds509, S357–S360 (2011).
  • Parambadath S , RanaVK, MoorthySet al. Periodic mesoporous organosilicas with co-existence of diurea and sulfanilamide as an effective drug delivery carrier. J. Solid State Chem. 184(5), 1208–1215 (2011).
  • Shin JH , ParkSS, SelvarajM, HaCS. Adsorption of amino acids on periodic mesoporous organosilicas. J. Porous Mater.19(1), 29–35 (2012).
  • He QJ , ShiJL. Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J. Mater. Chem.21(16), 5845–5855 (2011).
  • Park DH , NishiyamaN, EgashiraY, UeyamaK. Separation of organic/water mixtures with silylated MCM-48 silica membranes. Microporous and Mesoporous Materials66(1), 69–76 (2003).
  • Fenelonov VB , RomannikovVN, DerevyankinAL. Mesopore size and surface area calculations for hexagonal mesophases (types MCM41, FSM-16, etc.) using low-angle XRD and adsorption data. Microporous Mesoporous Mater.28(1), 57–72 (1999).
  • Bhattarai SR , MuthuswamyE, WaniAet al. Enhanced gene and siRNA delivery by polycation-modified mesoporous silica nanoparticles loaded with chloroquine. Pharm. Res. 27(12), 2556–2568 (2010).
  • Deng Z , ZhenZ, HuX, WuS, XuZ, ChuPK. Hollow chitosan–silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy. Biomaterials32(21), 4976–4986 (2011).
  • Na H -K, Kim M-H, Park K et al. Efficient functional delivery of siRNA using mesoporous silica nanoparticles with ultralarge pores. Small8(11), 1752–1761 (2012).
  • Kim MH , NaHK, KimYKet al. Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery. ACS Nano 5(5), 3568–3576 (2011).
  • Lee HI , KimJH, StuckyGD, ShiYF, PakC, KimJM. Morphology-selective synthesis of mesoporous SBA-15 particles over micrometer, submicrometer and nanometer scales. J. Mater. Chem.20(39), 8483–8487 (2010).
  • Sun J , ZhangH, TianRet al. Ultrafast enzyme immobilization over large-pore nanoscale mesoporous silica particles. Chem. Commun. (12), 1322–1324 (2006).
  • Ji X , LeeKT, MonjauzeM, NazarLF. Strategic synthesis of SBA-15 nanorods. Chem. Commun. (36), 4288–4290 (2008).
  • Wagner CS , ShehataS, HenzlerK, YuanJY, WittemannA. Towards nanoscale composite particles of dual complexity. J. Coll. Interface Sci.355(1), 115–123 (2011).
  • Chen CC , LiuYC, WuCH, YehCC, SuMT, WuYC. Preparation of fluorescent silica nanotubes and their application in gene delivery. Adv. Mater.17(4), 404–407 (2005).
  • Bhushan B , JungYC. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci.56(1), 1–108 (2011).
  • Nel AE , MadlerL, VelegolDet al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8(7), 543–557 (2009).
  • Liu XM , HeJH. Hierarchically structured superhydrophilic coatings fabricated by self-assembling raspberry-like silica nanospheres. J. Coll. Interface Sci.314(1), 341–345 (2007).
  • Trewyn BG , NiewegJA, ZhaoY, LinVSY. Biocompatible mesoporous silica nanoparticles with different morphologies for animal cell membrane, penetration. Chem. Eng. J.137(1), 23–29 (2008).
  • Parker AL , EckleyL, SinghS, PreeceJA, CollinsL, FabreJW. (LYS)16-based reducible polycations provide stable polyplexes with anionic fusogenic peptides and efficient gene delivery to post mitotic cells. Biochim. Biophys. Acta1770(9), 1331–1337 (2007).
  • Lee SH , KimSH, ParkTG. Intracellular siRNA delivery system using polyelectrolyte complex micelles prepared from VEGF siRNA-PEG conjugate and cationic fusogenic peptide. Biochem. Biophys. Res. Commun.357(2), 511–516 (2007).
  • Pichon C , GonçalvesC, MidouxP. Histidine-rich peptides and polymers for nucleic acids delivery. Adv. Drug Deliv. Rev.53(1), 75–94 (2001).
  • Bardi G , MalvindiMA, GherardiniLet al. The biocompatibility of amino functionalized CdSe/ZnS quantum-dot-Doped SiO2 nanoparticles with primary neural cells and their gene carrying performance. Biomaterials 31(25), 6555–6566 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.