916
Views
1
CrossRef citations to date
0
Altmetric
Review

Mechanisms of Absorption and Elimination of Drugs Administered By Inhalation

&
Pages 1027-1045 | Published online: 07 Aug 2013

References

  • Edwards DA , Ben-JebriaA, LangerR. Recent advances in pulmonary drug delivery using large, porous inhaled particles. J. Appl. Physiol.85(2), 379–385 (1998).
  • Biron A . Current therapeutic methods in the thorough treatment of asthma. Concours. Med.85, 7019–7026 (1963).
  • Noymer P , BiondiS, MyersD, CassellaJ. Pulmonary delivery of therapeutic compounds for treating CNS disorders. Ther. Deliv.2(9), 1125–1140 (2011).
  • Agu RU , UgwokeMI, ArmandM, KingetR, VerbekeN. The lung as a route for systemic delivery of therapeutic proteins and peptides. Respir. Res.2(4), 198–209 (2001).
  • Sanjar S , MatthewsJ. Treating systemic diseases via the lung. J. Aerosol Med.14(Suppl. 1), S51–S58 (2001).
  • Ehrhardt C , FiegelJ, FuchsSet al. Drug absorption by the respiratory mucosa: cell culture models and particulate drug carriers. J. Aerosol Med. 15(2), 131–139 (2002).
  • Mcelroy MC , KirtonC, GliddonD, WolffRK. Inhaled biopharmaceutical drug development: nonclinical considerations and case studies. Inhal. Toxicol.25(4), 219–232 (2013).
  • Davis SN . The role of inhaled insulin in the treatment of type 2 diabetes. J. Diabetes Complications22(6), 420–429 (2008).
  • Garcia-Contreras L , MorcolT, BellS, HickeyAJ. Evaluation of novel calcium phosphate particles as pulmonary delivery systems for insulin in rats. AAPS PharmSci3(3), E9 (2001).
  • Chono S , FukuchiR, SekiT, MorimotoK. Aerosolized liposomes with dipalmitoyl phosphatidylcholine enhance pulmonary insulin delivery. J. Control. Release137(2), 104–109 (2009).
  • Liu J , GongT, FuHet al. Solid lipid nanoparticles for pulmonary delivery of insulin. Int. J. Pharm. 356(1–2), 333–344 (2008).
  • Al-Qadi S , GrenhaA, Carrion-RecioD, SeijoB, Remunan-LopezC. Microencapsulated chitosan nanoparticles for pulmonary protein delivery: in vivo evaluation of insulin-loaded formulations. J. Control. Release157(3), 383–390 (2012).
  • Forbes B , AsgharianB, DaileyLAet al. Challenges in inhaled product development and opportunities for open innovation. Adv. Drug Deliv. Rev. 63(1–2), 69–87 (2011).
  • Lipworth BJ . Pharmacokinetics of inhaled drugs. Br. J. Clin. Pharmacol.42(6), 697–705 (1996).
  • Patton JS , BrainJD, DaviesLAet al. The particle has landed – characterizing the fate of inhaled pharmaceuticals. J. Aerosol Med. Pulm. Drug Deliv. 23(Suppl. 2), S71–S87 (2010).
  • Bo Olsson EB , BorgströmL, EdsbäckerSet al. Pulmonary drug metabolism, clearance, and absorption. In: Controlled Pulmonary Drug Delivery, 21, Advances in Delivery Science and Technology. Smith HDC, Hickey AJ (Eds). Springer (2011).
  • Sporty JL , HoralkovaL, EhrhardtC. In vitro cell culture models for the assessment of pulmonary drug disposition. Expert Opin. Drug Metab. Toxicol.4(4), 333–345 (2008).
  • Patton JS , ByronPR. Inhaling medicines: delivering drugs to the body through the lungs. Nat. Rev. Drug Discov.6(1), 67–74 (2007).
  • Patton JS . Mechanisms of macromolecules absorption in the lungs. Adv. Drug Deliv. Rev.19, 34 (1996).
  • Labiris NR , DolovichMB. Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br. J. Clin. Pharmacol.56(6), 588–599 (2003).
  • Forbes II . Human airway epithelial cell lines for in vitro drug transport and metabolism studies. Pharm. Sci. Technol. Today3(1), 18–27 (2000).
  • Dahan A , MillerJM, AmidonGL. Prediction of solubility and permeability class membership: provisional BCS classification of the world‘s top oral drugs. AAPS J.11(4), 740–746 (2009).
  • Gumbleton M , HollinsAJ, OmidiY, CampbellL, TaylorG. Targeting caveolae for vesicular drug transport. J. Control. Release87(1–3), 139–151 (2003).
  • Florea BI , CassaraML, JungingerHE, BorchardG. Drug transport and metabolism characteristics of the human airway epithelial cell line Calu-3. J. Control. Release87, 131–138 (2003).
  • Kim K -J, Borok Z, Crandall ED. A useful in vitro model for transport studies of alveolar epithelial barrier.Pharm. Res.18(3), 253–255 (2001).
  • Kim K -J, Malik AB. Protein transport across the lung epithelial barrier. Am. J. Physiol.284(2 Pt. 1), L247–L259 (2003).
  • Weers JG , BellJ, ChanHKet al. Pulmonary formulations: what remains to be done? J. Aerosol Med. Pulm. Drug Deliv. 23(Suppl. 2), S5–S23 (2010).
  • Sakagami M . In vivo, in vitro and ex vivo models to assess pulmonary absorption and disposition of inhaled therapeutics for systemic delivery. Adv. Drug Deliv. Rev.58(9–10), 1030–1060 (2006).
  • Steimer A , HaltnerE, LehrCM. Cell culture models of the respiratory tract relevant to pulmonary drug delivery. J. Aerosol Med.18(2), 137–182 (2005).
  • Forbes B , EhrhardtC. Human respiratory epithelial cell culture for drug delivery applications. Eur. J. Pharm. Biopharm.60(2), 193–205 (2005).
  • Tronde A , NordenB, JeppssonABet al. Drug absorption from the isolated perfused rat lung – correlations with drug physicochemical properties and epithelial permeability. J. Drug Target. 11(1), 61–74 (2003).
  • Florea BI , CassaraML, JungingerHE, BorchardG. Drug transport and metabolism characteristics of the human airway epithelial cell line Calu-3. J. Control. Release87(1–3), 131–138 (2003).
  • Salomon JJ , EhrhardtC. Organic cation transporters in the blood–air barrier: expression and implications for pulmonary drug delivery. Ther. Deliv.3(6), 735–747 (2012).
  • Ehrhardt C , KneuerC, LaueM, SchaeferUF, Kim K-J, Lehr C-M. 16HBE14o-human bronchial epithelial cell layers express P-glycoprotein, lung resistance-related protein, and caveolaen-1. Pharm. Res.20(4), 545–551 (2003).
  • Puri N , PrakashO, ManoharlalR, SharmaM, GhoshI, PrasadR. Analysis of physico-chemical properties of substrates of ABC and MFS multidrug transporters of pathogenic Candida albicans.Eur. J. Med. Chem.45(11), 4813–4826 (2010).
  • Bur M , HuwerH, LehrCMet al. Assessment of transport rates of proteins and peptides across primary human alveolar epithelial cell monolayers. Eur. J. Pharm. Sci. 28(3), 196–203 (2006).
  • Rothen-Rutishauser BM , KiamaSG, GehrP. A three-dimensional cellular model of the human respiratory tract to study the interaction with particles. Am. J. Respir. Cell Mol. Biol.32(4), 281–289 (2005).
  • Cheek JM , Kim K-J, Crandall ED. Tight monolayers of rat alveolar epithelial cells: bioelectric properties and active sodium transport. Am. J. Physiol.256(25), C688–C693 (1989).
  • Matsukawa Y , YamaharaH, YamashitaF, LeeVHL, CrandallED, Kim K-J. Rates of protein transport across rat alveolar epithelial cell monolayers. J. Drug Target.7, 335–342 (2000).
  • Frank JA . Claudins and alveolar epithelial barrier function in the lung. Ann. NY Acad. Sci.1257, 175–183 (2012).
  • Koval M . Tight junctions, but not too tight: fine control of lung permeability by claudins. Am. J. Physiol. Lung Cell Mol. Physiol.297(2), L217–L218 (2009).
  • Schneeberger EE , LynchRD. The tight junction: a multifunctional complex. Am. J. Physiol. Cell Physiol.286(6), C1213–C1228 (2004).
  • Frank PG , WoodmanSE, ParkDS, LisantiMP. Caveolaen, caveolae, and endothelial cell function. Arterioscler. Thromb. Vasc. Biol.23(7), 1161–1168 (2003).
  • Stewart CE , TorrEE, Mohd Jamili NH, Bosquillon C, Sayers I. Evaluation of differentiated human bronchial epithelial cell culture systems for asthma research. J. Allergy (Cairo) Article ID 943982 (2012) (2012).
  • Konsoula R , BarileFA. Correlation of in vitro cytotoxicity with paracellular permeability in Caco-2 cells. Toxicol. In Vitro19(5), 675–684 (2005).
  • Vllasaliu D , CasettariL, FowlerRet al. Absorption-promoting effects of chitosan in airway and intestinal cell lines: a comparative study. Int. J. Pharm. 430(1–2), 151–160 (2012).
  • Murata M , TamaiI, SaiY, NagataO, KatoH, TsujiA. Carrier-mediated lung distribution of HSR-903, a new quinolone antibacterial agent. J. Pharmacol. Exp. Ther.289(1), 79–84 (1999).
  • Bosquillon C . Drug transporters in the lung – do they play a role in the biopharmaceutics of inhaled drugs? J. Pharm. Sci.99(5), 2240–2255 (2010).
  • Gumbleton M , Al-JayyoussiG, Crandon-LewisAet al. Spatial expression and functionality of drug transporters in the intact lung: objectives for further research. Adv. Drug Deliv. Rev. 63(1–2), 110–118 (2011).
  • Horvath G , SchmidN, FragosoMAet al. Epithelial organic cation transporters ensure pH-dependent drug absorption in the airway. Am. J. Respir. Cell Mol. Biol. 36(1), 53–60 (2007).
  • Nakanishi T , HasegawaY, HarutaT, WakayamaT, TamaiI. In vivo evidence of organic cation transporter-mediated tracheal accumulation of the anticholinergic agent ipratropium in mice. J. Pharm. Sci. doi:10.1002/jps.23603 (2013) (Epub ahead of print).
  • Roth M , ObaidatA, HagenbuchB. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br. J. Pharmacol.165(5), 1260–1287 (2012).
  • Groneberg DA , NickolausM, SpringerJ, DoringF, DanielH, FischerA. Localization of the peptide transporter PEPT2 in the lung: implications for pulmonary oligopeptide uptake. Am. J. Pathol.158(2), 707–714 (2001).
  • Groneberg DA , EynottPR, DoringFet al. Distribution and function of the peptide transporter PEPT2 in normal and cystic fibrosis human lung. Thorax 57(1), 55–60 (2002).
  • Hamilton KO , YazdanianMA, AudusKL. Modulation of P-glycoprotein activity in Calu-3 cells using steroids and beta-ligands. Int. J. Pharm.228(1–2), 171–179 (2001).
  • Bandi N , KompellaUB. Budesonide reduces multidrug resistance-associated protein 1 expression in an airway epithelial cell line (Calu-1). Eur. J. Pharmacol.437(1–2), 9–17 (2002).
  • Al-Jayyoussi G , PriceDF, FrancombeDet al. Selectivity in the impact of P-glycoprotein upon pulmonary absorption of airway-dosed substrates: a study in ex vivo lung models using chemical inhibition and genetic knockout. J. Pharm. Sci. doi:10.1002/jps.23587 (2013) (Epub ahead of print).
  • Van Der Deen M , De Vries EG, Timens W, Scheper RJ, Timmer-Bosscha H, Postma DS. ATP-binding cassette (ABC) transporters in normal and pathological lung. Respir. Res.6, 59 (2005).
  • Lehmann T , KohlerC, WeidauerE, TaegeC, FothH. Expression of MRP1 and related transporters in human lung cells in culture. Toxicology167(1), 59–72 (2001).
  • Endter S , BeckerU, DaumNet al. P-glycoprotein (MDR1) functional activity in human alveolar epithelial cell monolayers. Cell Tissue Res. 328(1), 77–84 (2007).
  • Gumbleton M . Caveolae as potential macromolecule trafficking compartments within alveolar epithelium. Adv. Drug Deliv. Rev.49(3), 281–300 (2001).
  • Drab M , VerkadeP, ElgerMet al. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolaen-1 gene-disrupted mice. Science 293(5539), 2449–2452 (2001).
  • Parkar NS , AkpaBS, NitscheLCet al. Vesicle formation and endocytosis: function, machinery, mechanisms, and modeling. Antioxid. Redox Signal. 11(6), 1301–1312 (2009).
  • Herd H , DaumN, JonesAT, HuwerH, GhandehariH, LehrCM. Nanoparticle geometry and surface orientation influence mode of cellular uptake. ACS Nano7(3), 1961–1973 (2013).
  • Mall MA . Role of cilia, mucus, and airway surface liquid in mucociliary dysfunction: lessons from mouse models. J. Aerosol Med. Pulm. Drug Deliv.21(1), 13–24 (2008).
  • Stannard W , O‘CallaghanC. Ciliary function and the role of cilia in clearance. J. Aerosol Med.19(1), 110–115 (2006).
  • Antunes MB , CohenNA. Mucociliary clearance – a critical upper airway host defense mechanism and methods of assessment. Curr. Opin. Allergy Clin. Immunol.7(1), 5–10 (2007).
  • Widdicombe JG . Airway liquid: a barrier to drug diffusion? Eur. Respir. J.10(10), 2194–2197 (1997).
  • Schuster BS , SukJS, WoodworthGF, HanesJ. Nanoparticle diffusion in respiratory mucus from humans without lung disease. Biomaterials34(13), 3439–3446 (2013).
  • Akella A , DeshpandeSB. Pulmonary surfactants and their role in pathophysiology of lung disorders. Indian J. Exp. Biol.51(1), 5–22 (2013).
  • Thum T , ErpenbeckVJ, MoellerJ, HohlfeldJM, KrugN, BorlakJ. Expression of xenobiotic metabolizing enzymes in different lung compartments of smokers and nonsmokers. Environ. Health Perspect.114(11), 1655–1661 (2006).
  • Foster KA , AveryML, YazdanianM, AudusKL. Characterization of the Calu-3 cell line as a tool to screen pulmonary drug delivery. Int. J. Pharm.208(1–2), 1–11 (2000).
  • Foster KA , OsterCG, MayerMM, AveryML, AudusKL. Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism. Exp. Cell Res.243(2), 359–366 (1998).
  • Somers GI , LindsayN, LowdonBMet al. A comparison of the expression and metabolizing activities of phase I and II enzymes in freshly isolated human lung parenchymal cells and cryopreserved human hepatocytes. Drug Metab. Dispos. 35(10), 1797–1805 (2007).
  • Leclerc J , Courcot-Ngoubo Ngangue E, Cauffiez C et al. Xenobiotic metabolism and disposition in human lung: transcript profiling in non-tumoral and tumoral tissues. Biochimie93(6), 1012–1027 (2011).
  • Rubins JB . Alveolar macrophages: wielding the double-edged sword of inflammation. Am. J. Respir. Crit. Care Med.167(2), 103–104 (2003).
  • Jakab GJ , RisbyTH, SehnertSS, HmieleskiRR, FarringtonJE. Suppression of alveolar macrophage membrane receptor-mediated phagocytosis by model and actual particle-adsorbate complexes. Initial contact with the alveolar macrophage membrane. Environ. Health Perspect.86, 337–344 (1990).
  • Edwards DA , HanesJ, CaponettiGet al. Large porous particles for pulmonary drug delivery. Science 276(5320), 1868–1871 (1997).
  • Chakravarthy KV , DavidsonBA, HelinskiJDet al. Doxorubicin-conjugated quantum dots to target alveolar macrophages and inflammation. Nanomedicine 7(1), 88–96 (2011).
  • Oberdorster G , FerinJ, GeleinR, SoderholmSC, FinkelsteinJ. Role of the alveolar macrophage in lung injury: studies with ultrafine particles. Environ. Health Perspect.97, 193–199 (1992).
  • Pang KS . Modeling of intestinal drug absorption: roles of transporters and metabolic enzymes (for the Gillette Review Series). Drug Metab. Dispos.31(12), 1507–1519 (2003).
  • Eixarch H , Haltner-UkomaduE, BeisswengerC, BockU. Drug delivery to the lung: permeability and physicochemical characteristics of drugs as the basis for a pulmonary biopharmaceutical classification system (pBCS). J. Epithel. Biol. Pharmacol.3, 15 (2010).
  • Schanker L , MitchelE, BrownR. Species comparison of drug absorption from the lung after inhalation or intratracheal injection. Drug Metab. Dispos.14, 79–88 (1986).
  • Patton JS , FishburnCS, WeersJG. The lungs as a portal of entry for systemic drug delivery. Proc. Am. Thorac. Soc.1(4), 338–344 (2004).
  • Tronde A , NordenB, MarchnerH, WendelAK, LennernasH, BengtssonUH. Pulmonary absorption rate and bioavailability of drugs in vivo in rats: structure–absorption relationships and physicochemical profiling of inhaled drugs. J. Pharm. Sci.92(6), 1216–1233 (2003).
  • Hussain A , ArnoldJJ, KhanMA, AhsanF. Absorption enhancers in pulmonary protein delivery. J. Control. Release94(1), 15–24 (2004).
  • Haslam IS , JonesK, ColemanT, SimmonsNL. Rifampin and digoxin induction of MDR1 expression and function in human intestinal (T84) epithelial cells. Br. J. Pharmacol.154(1), 246–255 (2008).
  • Garcia-Contreras L , HickeyAJ. Pharmaceutical and biotechnological aerosols for cystic fibrosis therapy. Adv. Drug Deliv. Rev.54(11), 1491–1504 (2002).
  • Ohta H , ChibaS, EbinaM, FuruseM, NukiwaT. Altered expression of tight junction molecules in alveolar septa in lung injury and fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol.302(2), L193–L205 (2012).
  • Nicolazzo JA . Transporters in the pathogenesis of alzheimer‘s disease. Presented at: AAPS Workshop on Drug Transporters in ADME: From the Bench to the Bedside. Bethesda, MD, USA, 17–20 March (2013).
  • Fountaine R , MiltonA, ChecchioTet al. Acute passive cigarette smoke exposure and inhaled human insulin (Exubera) pharmacokinetics. Br. J. Clin. Pharmacol. 65(6), 864–870 (2008).
  • Lickteig AJ , FisherCD, AugustineLMet al. Efflux transporter expression and acetaminophen metabolite excretion are altered in rodent models of nonalcoholic fatty liver disease. Drug Metab. Dispos. 35(10), 1970–1978 (2007).
  • Mizuno N , NiwaT, YotsumotoY, SugiyamaY. Impact of drug transporter studies on drug discovery and development. Pharmacol. Rev.55(3), 425–461 (2003).
  • Kim I , ByeonHJ, KimTHet al. Doxorubicin-loaded highly porous large PLGA microparticles as a sustained-release inhalation system for the treatment of metastatic lung cancer. Biomaterials 33(22), 5574–5583 (2012).
  • Latimer P , MenchacaM, SnyderRMet al. Aerosol delivery of liposomal formulated paclitaxel and vitamin E analog reduces murine mammary tumor burden and metastases. Exp. Biol. Med. (Maywood) 234(10), 1244–1252 (2009).
  • Selting K , WaldrepJC, ReineroCet al. Feasibility and safety of targeted cisplatin delivery to a select lung lobe in dogs via the AeroProbe intracorporeal nebulization catheter. J. Aerosol Med. Pulm. Drug Deliv. 21(3), 255–268 (2008).
  • Bauldoff GS , NunleyDR, ManzettiJD, DauberJH, KeenanRJ. Use of aerosolized colistin sodium in cystic fibrosis patients awaiting lung transplantation. Transplantation64(5), 748–752 (1997).
  • Claridge JA , EdwardsNM, SwansonJet al. Aerosolized ceftazidime prophylaxis against ventilator-associated pneumonia in high-risk trauma patients: results of a double-blind randomized study. Surg. Infect. (Larchmt) 8(1), 83–90 (2007).
  • Falagas ME , AgrafiotisM, AthanassaZ, SiemposII. Administration of antibiotics via the respiratory tract as monotherapy for pneumonia. Expert Rev. Anti Infect. Ther.6(4), 447–452 (2008).
  • Garcia-Contreras L , FiegelJ, TelkoMJet al. Inhaled capreomycin large porous particles for the treatment of tuberculosis in the guinea pig model. Antimicrob. Agents Chemother. 51(8), 2830–2836 (2007).
  • Garcia-Contreras L , SethuramanV, KazantsevaM, HickeyAJ. Evaluation of dosing regimen of respirable rifampicin biodegradable microspheres doses in the treatment of tuberculosis in the guinea pig. J. Antimicrob. Chemother.58(9), 980–986 (2006).
  • Goldstein I , WalletF, Nicolas-RobinA, FerrariF, MarquetteCH, RoubyJJ. Lung deposition and efficiency of nebulized amikacin during Escherichia coli pneumonia in ventilated piglets. Am. J. Respir. Crit. Care Med.166(10), 1375–1381 (2002).
  • Horianopoulou M , LambropoulosS, PapafragasE, FalagasME. Effect of aerosolized colistin on multidrug-resistant Pseudomonas aeruginosa in bronchial secretions of patients without cystic fibrosis. J. Chemother.17(5), 536–538 (2005).
  • Muttil P , KaurJ, KumarK, YadavAB, SharmaR, MisraA. Inhalable microparticles containing large payload of anti-tuberculosis drugs. Eur. J. Pharm. Sci.32(2), 140–150 (2007).
  • Palmer LB , SmaldoneGC, ChenJJet al. Aerosolized antibiotics and ventilator-associated tracheobronchitis in the intensive care unit. Crit. Care Med. 36(7), 2008–2013 (2008).
  • Pandey R , SharmaA, ZahoorA, SharmaS, KhullerGK, PrasadB. Poly (D,L-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J. Antimicrob. Chemother.52(6), 981–986 (2003).
  • Safdar A , ShelburneSA, EvansSE, DickeyBF. Inhaled therapeutics for prevention and treatment of pneumonia. Expert Opin. Drug Saf.8(4), 435–449 (2009).
  • Tsapis N , BennettD, O‘DriscollKet al. Direct lung delivery of para-aminosalicylic acid by aerosol particles. Tuberculosis 83(6), 379–385 (2003).
  • Adi H , YoungPM, ChanHK, StewartP, AgusH, TrainiD. Cospray dried antibiotics for dry powder lung delivery. J. Pharm. Sci.97(8), 3356–3366 (2008).
  • Gappa M , SteinkampG, TummlerB, Von Der Hardt H. Long-term tobramycin aerosol therapy of chronic Pseudomonas aeruginosa infection in patients with cystic fibrosis. Scand. J. Gastroenterol.143, 74–76 (1988).
  • Gueders MM , BertholetP, PerinFet al. A novel formulation of inhaled doxycycline reduces allergen-induced inflammation, hyperresponsiveness and remodeling by matrix metalloproteinases and cytokines modulation in a mouse model of asthma. Biochem. Pharmacol. 75(2), 514–526 (2008).
  • Hodson ME , PenketARL, BatenJC. Aerosol carbenicillin and gentamicin treatment of Pseudomonas aeruginosa infection in patients with cystic fibrosis. Lancet2, 1137–1139 (1981).
  • Jensen T , PedersenSS, GarneS, HeilmanC, HoibyN, KochC. Colistin inhalation therapy in cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. J. Antimicrob. Ther.19, 831–838 (1987).
  • Stead RJ , HodsonME, BatenJC. Inhaled ceftazidime compared with gentamicin and carbenicillin in older patients with cystic fibrosis infected with Pseudomonas aeruginosa.Br. J. Dis. Chest81, 272–279 (1987).
  • Vaughan WC , CarvalhoG. Use of nebulized antibiotics for acute infections in chronic sinusitis. Otolaryngol. Head Neck Surg.127(6), 558–568 (2002).
  • America ATSIDSO. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am. J. Respir. Crit. Care Med.171(4), 388–416 (2005).
  • Michalopoulos A , FotakisD, VirtziliSet al. Aerosolized colistin as adjunctive treatment of ventilator-associated pneumonia due to multidrug-resistant Gram-negative bacteria: a prospective study. Respir. Med. 102(3), 407–412 (2008).
  • Standridge JB , AliffCL. Aerosolized amikacin in the treatment of Pseudomonas pneumonia in the nursing home setting. South Med. J.94(2), 244–246 (2001).
  • Mubareka S , RubinsteinE. Aerosolized colistin for the treatment of nosocomial pneumonia due to multidrug-resistant Gram-negative bacteria in patients without cystic fibrosis. Crit. Care9(1), 29–30 (2005).
  • Pereira GH , MullerPR, LevinAS. Salvage treatment of pneumonia and initial treatment of tracheobronchitis caused by multidrug-resistant Gram-negative bacilli with inhaled polymyxin B. Diagn. Microbiol. Infect. Dis.58(2), 235–240 (2007).
  • Dhuley JN . Aerosol hamycin is effective for prophylaxis and therapy in a rat model of pulmonary aspergillosis. Rocz. Akad. Med. Bialymst.46, 317–325 (2001).
  • Monforte V , RomanA, GavaldáJet al. Nebulized amphotericin B concentration and distribution in the respiratory tract of lung-transplanted patients. Transplantation 75(9), 1571–1574 (2003).
  • Tolman JA , WiederholdNP, McConvilleJTet al. Inhaled voriconazole for prevention of invasive pulmonary aspergillosis. Antimicrob. Agents Chemother. 53(6), 2613–2615 (2009).
  • Niven RW . Toward managing chronic rejection after lung transplant: the fate and effects of inhaled cyclosporine in a complex environment. Adv. Drug Deliv. Rev.63(1–2), 88–109 (2011).
  • Jonas DE , WinesRCM, DelmonteMet al. Drug class review: controller medications for asthma. Final Update 1 Report. Oregon Health and Science University, Portland, OR, USA (2011).
  • Hitzman CJ , WattenbergLW, WiedmannTS. Pharmacokinetics of 5-fluorouracil in the hamster following inhalation delivery of lipid-coated nanoparticles. J. Pharm. Sci.95(6), 1196–1211 (2006).
  • Rodriguez CO , CrabbsTA, WilsonDWet al. Aerosol gemcitabine: preclinical safety and in vivo antitumor activity in osteosarcoma-bearing dogs. J. Aerosol Med. Pulm. Drug Deliv. 22(4), 1–10 (2009).
  • Cipolla DC , GondaI, ShakS, KovesdiI, CrystalR, SweeneyTD. Coarse spray delivery to a localized region of the pulmonary airways for gene therapy. Hum. Gene Ther.11(2), 361–371 (2000).
  • Hubbard R , CrystalRG. Strategies for aerosol therapy of alpha 1-antitrypsin deficiency by the aerosol route. Lung168, 564–578 (1990).
  • Hubbard R , McelvaneyNG, BirrerPet al. A preliminary study of recombinant human desoxyribonuclease I in the treatment of cystic fibrosis. N Eng. J. Med. 326, 812–815 (1992).
  • Gibbons A , Padilla-CarlinD, KellyCet al. The effect of liposome encapsulation on the pharmacokinetics of recombinant secretory leukocyte protease inhibitor (rSLPI) therapy after local delivery to a guinea pig asthma model. Pharm. Res. 28(9), 2233–2245 (2011).
  • Jansen M , DarbyI, AbribatT, DubreuilP, FerdinandiES, HardyJG. Pulmonary delivery of TH9507, a growth hormone releasing factor analogue, in the dog. Int. J. Pharm.276(1–2), 75–81 (2004).
  • Shoyele SA , SivadasN, CryanSA. The effects of excipients and particle engineering on the biophysical stability and aerosol performance of parathyroid hormone (1–34) prepared as a dry powder for inhalation. AAPS PharmSciTech12(1), 304–311 (2011).
  • Zheng JY , FuluMY, LeeDY, BarberTE, AdjeiAL. Pulmonary peptide delivery: effect of taste-masking excipients on leuprolide suspension metered-dose inhalers. Pharm. Dev. Technol.6(4), 521–530 (2001).
  • Rackley CR , StrippBR. Building and maintaining the epithelium of the lung. J. Clin. Invest.122(8), 2724–2730 (2012).
  • Endter S , FrancombeD, EhrhardtC, GumbletonM. RT-PCR analysis of ABC, SLC and SLCO drug transporters in human lung epithelial cell models. J. Pharm. Pharmacol.61(5), 583–591 (2009).
  • Stentebjerg-Andersen A , NotlevsenIV, BrodinB, NielsenCU. Calu-3 cells grown under AIC and LCC conditions: implications for dipeptide uptake and transepithelial transport of substances. Eur. J. Pharm. Biopharm.78(1), 19–26 (2011).
  • Frohlich E , BonstinglG, HoflerAet al. Comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols. Toxicol. In Vitro 27(1), 409–417 (2013).
  • Geys J , CoenegrachtsL, VercammenJet al. In vitro study of the pulmonary translocation of nanoparticles: a preliminary study. Toxicol. Lett.160(3), 218–226 (2006).

Patent

  • Sen H, Jayanthi S, Sinha R, Sharma R, Muttil P: US 20070154408 A1 (2007).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.