509
Views
0
CrossRef citations to date
0
Altmetric
Review

Amorphous Solid dispersions: a Robust Platform to Address Bioavailability Challenges

, &
Pages 247-261 | Published online: 18 Feb 2015

References

  • Padden BE Miller JM Robbins T et al. Amorphous solid dispersions as enabling formulations for discovery and early development. Am. Pharm. Rev.14 (1), 68–70 (2010).
  • Newman A Knipp G Zografi G . Assessing the performance of amorphous solid dispersions. J. Pharm. Sci.101 (4), 1355–1377 (2012).
  • Chiow WL Riegelman S . Pharmaceutical applications of solid dispersion systems. J. Pharm. Sci.60 (9), 1281–1302 (1971).
  • Hancock BC Parks M . What is the true solubility advantage for amorphous pharmaceuticals?Pharm. Res.17 (4), 397–404 (2000).
  • Friesen DT Shanker R Crew M Smithey DT Curatolo WJ Nightingale JA . Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: an overview. Mol. Pharm.5 (6), 1003–1019 (2008).
  • Wyttenbach N Janas C Siam M et al. Miniaturized screening of polymers for amorphous drug stabilization (SPADS): rapid assessment of solid dispersion systems. Eur. J. Pharm. Biopharm.84 (3), 583–598 (2013).
  • Rumondor AC Ivanisevic I Bates S Alonzo DE Taylor LS . Evaluation of drug-polymer miscibility in amorphous solid dispersion systems. Pharm. Res.26 (11), 2523–2534 (2009).
  • Newman A Munson E . XRD-characterizing miscibility in amorphous solid dispersions. Amer. Pharm. Rev.15 (3), 92–98 (2012).
  • Marsac PJ Shamblin SL Taylor LS . Theoretical and practical approaches for prediction of drug-polymer miscibility and solubility. Pharm. Res.23 (10), 2417–2426 (2006).
  • Tao J Sun Y Zhang GG Yu L . Solubility of small-molecule crystals in polymers: d-mannitol in PVP, indomethacin in PVP/VA, and nifedipine in PVP/VA. Pharm. Res.26 (4), 855–864 (2009).
  • Nagapudi K Jona J . Amorphous active pharmaceutical ingredients in preclinical studies: preparation, characterization, and formulation. Curr. Bioact. Compd.4 (4), 213–224 (2008).
  • Fujii M Harada K Kakinuma K Matsumoto M . Dissolution and bioavailability of phenobarbital in solid dispersion with phosphatidylcholine. Chem. Pharm. Bull.39 (7), 1886–1888 (1991).
  • Lahiani-Skiba M Barbot C Bounoure F Joudieh S Skiba M . Solubility and dissolution rate of progesterone-cyclodextrin-polymer systems. Drug Dev. Ind. Pharm.32 (9), 1043–1058 (2006).
  • Janssens S Nagels S Armas HND D'autry W Van Schepdael A Van Den Mooter G . Formulation and characterization of ternary solid dispersions made up of Itraconazole and two excipients, TPGS 1000 and PVPVA 64, that were selected based on a supersaturation screening study. Eur. J. Pharm. Biopharm.69 (1), 158–166 (2008).
  • Kohri N Yamayoshi Y Xin H et al. Improving the oral bioavailability of albendazole in rabbits by the solid dispersion technique. J. Pharm. Pharmacol.51 (2), 159–164 (1999).
  • Van Eerdenbrugh B Van Speybroeck M Mols R et al. Itraconazole/TPGS/Aerosil® 200 solid dispersions: characterization, physical stability and in vivo performance. Eur. J. Pharm. Sci.38 (3), 270–278 (2009).
  • Ghebremeskel AN Vemavarapu C Lodaya M . Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: selection of polymer–surfactant combinations using solubility parameters and testing the processability. Int. J. Pharm.328 (2), 119–129 (2007).
  • Ivanisevic I . Physical stability studies of miscible amorphous solid dispersions. J. Pharm. Sci.99 (9), 4005–4012 (2010).
  • Amidon GL Lennernäs H Shah VP Crison JR . A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res.12 (3), 413–420 (1995).
  • Malet-Martino M Martino R . Clinical studies of three oral prodrugs of 5-fluorouracil (capecitabine, UFT, S-1): a review. Oncologist7 (4), 288–323 (2002).
  • Stella VJ Rajewski RA . Cyclodextrins: their future in drug formulation and delivery. Pharm. Res.14 (5), 556–567 (1997).
  • Lee J . Drug nano-and microparticles processed into solid dosage forms: physical properties. J. Pharm. Sci.92 (10), 2057–2068 (2003).
  • Watts P Davies M Melia C . Microencapsulation using emulsification/solvent evaporation: an overview of techniques and applications. Crit. Rev. Drug Carrier Syst.7 (3), 235–259 (1989).
  • Porter CJ Trevaskis NL Charman WN . Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat. Rev. Drug Discov.6 (3), 231–248 (2007).
  • Hauss DJ . Oral lipid-based formulations. Adv. Drug Deliv. Rev.59 (7), 667–676 (2007).
  • Schultheiss N Newman A . Pharmaceutical cocrystals and their physicochemical properties. Crystal Growth Des.9 (6), 2950–2967 (2009).
  • Hancock BC Zografi G . Characteristics and significance of the amorphous state in pharmaceutical systems. J. Pharm. Sci.86 (1), 1–12 (1997).
  • Stanton MK Bak A . Physicochemical properties of pharmaceutical co-crystals: a case study of ten AMG 517 co-crystals. Crystal Growth Des.8 (10), 3856–3862 (2008).
  • Stanton MK Tufekcic S Morgan C Bak A . Drug substance and former structure property relationships in 15 diverse pharmaceutical co-crystals. Crystal Growth Des.9 (3), 1344–1352 (2009).
  • Noyes AA Whitney WR . The rate of solution of solid substances in their own solutions. J. Am. Chem. Soc.19 (12), 930–934 (1897).
  • Dokoumetzidis A Macheras P . A century of dissolution research: from Noyes and Whitney to the biopharmaceutics classification system. Int. J. Pharm.321 (1), 1–11 (2006).
  • Stahl PH Wermuth CG . Handbook of Pharmaceutical Salts: Properties, Selection, and Use.Wiley-Vch Weinheim, Germany, 2 (2002).
  • Berge SM Bighley LD Monkhouse DC . Pharmaceutical salts. J. Pharm. Sci.66 (1), 1–19 (1977).
  • Loftsson T Brewster ME . Pharmaceutical applications of cyclodextrins: basic science and product development. J. Pharm. Pharmacol.62 (11), 1607–1621 (2010).
  • Weuts I Van Dycke F Voorspoels J et al. Physicochemical properties of the amorphous drug, cast films, and spray dried powders to predict formulation probability of success for solid dispersions: Etravirine. J. Pharm. Sci.100 (1), 260–274 (2011).
  • Breitenbach J . Melt extrusion: from process to drug delivery technology. Eur. J. Pharm. Biopharm.54 (2), 107–117 (2002).
  • Dobry DE Settell DM Baumann JM Ray RJ Graham LJ Beyerinck RA . A model-based methodology for spray-drying process development. J. Pharm. Innov.4 (3), 133–142 (2009).
  • Wegiel LA Mauer LJ Edgar KJ Taylor LS . Crystallization of amorphous solid dispersions of resveratrol during preparation and storage–impact of different polymers. J. Pharm. Sci.102 (1), 171–184 (2013).
  • Kennedy M Hu J Gao P et al. Enhanced bioavailability of a poorly soluble VR1 antagonist using an amorphous solid dispersion approach: a case study. Mol. Pharm.5 (6), 981–993 (2008).
  • Clas S-D Faizer R O'connor R Vadas E . Quantification of crystallinity in blends of lyophilized and crystalline MK-0591 using X-ray powder diffraction. Int. J. Pharm.121 (1), 73–79 (1995).
  • Hancock BC Shamblin SL Zografi G . Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm. Res.12 (6), 799–806 (1995).
  • Andronis V Yoshioka M Zografi G . Effects of sorbed water on the crystallization of indomethacin from the amorphous state. J. Pharm. Sci.86 (3), 346–351 (1997).
  • Alsenz J Kansy M . High throughput solubility measurement in drug discovery and development. Adv. Drug Deliv. Rev.59 (7), 546–567 (2007).
  • Alsenz J Meister E Haenel E . Development of a partially automated solubility screening (PASS) assay for early drug development. J. Pharm. Sci.96 (7), 1748–1762 (2007).
  • Aso Y Yoshioka S Kojima S . Relationship between the crystallization rates of amorphous nifedipine, phenobarbital, and flopropione, and their molecular mobility as measured by their enthalpy relaxation and 1H NMR relaxation times. J. Pharm. Sci.89 (3), 408–416 (2000).
  • Alie J Menegotto J Cardon P et al. Dielectric study of the molecular mobility and the isothermal crystallization kinetics of an amorphous pharmaceutical drug substance. J. Pharm. Sci.93 (1), 218–233 (2004).
  • Aso Y Yoshioka S Kojima S . Explanation of the crystallization rate of amorphous nifedipine and phenobarbital from their molecular mobility as measured by 13C nuclear magnetic resonance relaxation time and the relaxation time obtained from the heating rate dependence of the glass transition temperature. J. Pharm. Sci.90 (6), 798–806 (2001).
  • Zhou D Zhang GGZ Law D Grant DJW Schmitt EA . Physical stability of amorphous pharmaceuticals: importance of configurational thermodynamic quantities and molecular mobility. J. Pharm. Sci.91 (8), 1863–1872 (2002).
  • Zhu L Jona J Nagapudi K Wu T . Fast surface crystallization of amorphous griseofulvin below Tg. Pharm. Res.27 (8), 1558–1567 (2010).
  • Zhu L Wong L Yu L . Surface-enhanced crystallization of amorphous nifedipine. Mol. Pharm.5 (6), 921–926 (2008).
  • Wu T Sun Y Li N De Villiers Melgardt M Yu L . Inhibiting surface crystallization of amorphous indomethacin by nanocoating. Langmuir23 (9), 5148–5153 (2007).
  • Cai T Zhu L Yu L . Crystallization of organic glasses: effects of polymer additives on bulk and surface crystal growth in amorphous nifedipine. Pharm. Res.28 (10), 2458–2466 (2011).
  • Baird Jared A Taylor Lynne S . Evaluation of amorphous solid dispersion properties using thermal analysis techniques. Adv. Drug Deliv. Rev.64 (5), 396–421 (2012).
  • Rumondor ACF Marsac PJ Stanford LA Taylor LS . Phase behavior of poly(vinylpyrrolidone) containing amorphous solid dispersions in the presence of moisture. Mol. Pharm.6 (5), 1492–1505 (2009).
  • Rumondor ACF Taylor LS . Effect of polymer hygroscopicity on the phase behavior of amorphous solid dispersions in the presence of moisture. Mol. Pharm.7 (2), 477–490 (2010).
  • Rumondor ACF Wikstroem H Van Eerdenbrugh B Taylor LS . Understanding the tendency of amorphous solid dispersions to undergo amorphous-amorphous phase separation in the presence of absorbed moisture. AAPS PharmSciTech12 (4), 1209–1219 (2011).
  • Pham TN Watson SA Edwards AJ et al. Analysis of amorphous solid dispersions using 2D solid-state NMR and 1H T1 relaxation measurements. Mol. Pharm.7 (5), 1667–1691 (2010).
  • Calahan JL Zanon RL Alvarez-Nunez F Munson EJ . Isothermal microcalorimetry to investigate the phase separation for amorphous solid dispersions of AMG 517 with HPMC-AS. Mol. Pharm.10 (5), 1949–1957 (2013).
  • Marsac PJ Li T Taylor LS . Estimation of drug-polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. Pharm. Res.26 (1), 139–151 (2009).
  • Thakral S Thakral NK . Prediction of drug-polymer miscibility through the use of solubility parameter based Flory–Huggins interaction parameter and the experimental validation: PEG as model polymer. J. Pharm. Sci.102 (7), 2254–2263 (2013).
  • Tian Y Booth J Meehan E Jones David S Li S Andrews Gavin P . Construction of drug-polymer thermodynamic phase diagrams using Flory–Huggins interaction theory: identifying the relevance of temperature and drug weight fraction to phase separation within solid dispersions. Mol. Pharm.10 (1), 236–248 (2013).
  • Tian Y Caron V Jones DS Healy A-M Andrews GP . Using Flory–Huggins phase diagrams as a pre-formulation tool for the production of amorphous solid dispersions: a comparison between hot-melt extrusion and spray drying. J. Pharm. Pharmacol.66 (2), 256–274 (2014).
  • Augustijns P Brewster ME . Supersaturating drug delivery systems: fast is not necessarily good enough. J. Pharm. Sci.101 (1), 7–9 (2012).
  • Guzman HR Tawa M Zhang Z et al. Combined use of crystalline salt forms and precipitation inhibitors to improve oral absorption of celecoxib from solid oral formulations. J. Pharm. Sci.96 (10), 2686–2702 (2007).
  • Bevernage J Brouwers J Brewster ME Augustijns P . Evaluation of gastrointestinal drug supersaturation and precipitation: strategies and issues. Int. J. Pharm.453 (1), 25–35 (2013).
  • Bevernage J Forier T Brouwers J Tack J Annaert P Augustijns P . Excipient-mediated supersaturation stabilization in human intestinal fluids. Mol. Pharm.8 (2), 564–570 (2011).
  • Brouwers J Brewster ME Augustijns P . Supersaturating drug delivery systems: the answer to solubility-limited oral bioavailability?J. Pharm. Sci.98 (8), 2549–2572 (2009).
  • Neervannan S . Preclinical formulations for discovery and toxicology: physicochemical challenges. Expert Opin. Drug Metab. Toxicol.2 (5), 715–731 (2006).
  • Chiang P-C Cui Y Ran Y et al. In vitro and in vivo evaluation of amorphous solid dispersions generated by different bench-scale processes, using griseofulvin as a model compound. AAPS J.15 (2), 608–617 (2013).
  • Chiang P-C Ran Y Chou K-J et al. Evaluation of drug load and polymer by using a 96-well plate vacuum dry system for amorphous solid dispersion drug delivery. AAPS PharmSciTech13 (2), 713–722 (2012).
  • Van Eerdenbrugh B Taylor LS . Small-scale screening to determine the ability of different polymers to inhibit drug crystallization upon rapid solvent evaporation. Mol. Pharm.7 (4), 1328–1337 (2010).
  • Skiba M Lahiani-Skiba M Milon N Bounoure F Fessi H . Preparation and characterization of amorphous solid dispersions of nimesulide in cyclodextrin copolymers. J. Nanosci. Nanotech.14 (4), 2772–2779 (2014).
  • Dressman JB Reppas C . In vitro–in vivo correlations for lipophilic, poorly water-soluble drugs. Eur. J. Pharm. Sci.11, s73–s80 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.