265
Views
0
CrossRef citations to date
0
Altmetric
Review

Macrophages As Nanoparticle Delivery Vectors for Photothermal Therapy of Brain Tumors

, , &
Pages 371-384 | Published online: 08 Apr 2015

References

  • Fischbach MA Bluestone JA Lim WA . Cell-based therapeutics: the next pillar of medicine. Sci. Transl. Med.5 (179), ps7 (2013).
  • Basel MT Shrestha TB Bossmann SH Troyer DL . Cells as delivery vehicles for cancer therapeutics. Ther. Deliv.5 (5), 555–567 (2014).
  • Maeda H . The enhanced permeability and retention effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul.41, 189–207 (2001).
  • Gonzalez-Mejia ME Doseff AI . Regulation of monocytes and macrophages cell fate. Front. Biosci. (Landmark Ed.)14, 2413–2431 (2009).
  • Badie B Schartner JM . Flow cytometric characterization of tumor associated macrophages in experimental gliomas. Neurosurgery46 (4), 957–961 (2000).
  • Roggendorf W Strupp S Paulus W . Distribution and characterization of microglia/macrophages in human brain tumors. Acta Neuropathol.92, 288–293 (1996).
  • Strik HM Stoll M Meyermann R . Immune cell infiltration of intrinsic and metastatic intracranial tumours. Anticancer Res.24, 37–42 (2004).
  • Raynal I Prigent P Peyramaure S Najid A Rebuzzi C Corot C . Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran-10. Invest. Radiol.39, 56–63 (2004).
  • Valable S Barbier EL Bernaudin M et al. In vivo MRI tracking of exogenous monocytes/macrophages targeting brain tumors in a rat model of glioma. Neuroimage40 (2), 973–983 (2008).
  • Choi MR Stanton-Maxey KJ Stanley JK et al. A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors. Nano Lett.7 (12), 3759–3765 (2007).
  • Baek SK Makkouk AR Krasieva T Sun CH Madsen SJ Hirschberg H . Photothermal treatment of glioma; an in vitro study of macrophage-mediated delivery of gold nanoshells. J. Neurooncol.104 (2), 439–448 (2011).
  • Basel MT Balivada S Wang H et al. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model. Int. J. Nanomedicine7, 297–306 (2012).
  • Lewis CE Pollard JW . Distinct role of macrophages in different tumor microenvironments. Cancer Res.66 (2), 605–612 (2006).
  • Hickey VF . Leukocyte traffic in the central nervous system: the participants and their roles. Semin. Immunol.11, 125–137 (1999).
  • Fleige G Nolte C Synowitz M et al. Magnetic labeling of activated microglia in experimental gliomas. Neoplasia3, 489–499 (2001).
  • Petrecca K Guiot MC Panet-Raymond V et al. Failure pattern following complete resection plus radiotherapy and temozolomide is at the resection margin in patients with Glioblastoma. J. Neurooncol.111, 19–23 (2013).
  • Ballabh P Braun A Nedergaard M . The blood-brain barrier: an overview: structure, regulation and clinical implications. Neurobiol. Dis.16, 1–13 (2004).
  • Huber J Egleton R Davis T . Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trend. Neurosci.24, 719–725 (2001).
  • Abbott N . Physiology of the blood-brain barrier and its consequences for drug transport to the brain. International Congress Series1277, 3–18 (2005).
  • Madsen SJ Angell-Petersen A Spetalen S Carper SW Ziegler SA Hirschberg H . Photodynamic therapy of newly implanted glioma cells in the rat brain. Lasers Surg. Med.38 (5), 540–548 (2006).
  • Strik HM Stoll M Meyermann R . Immune cell infiltration of intrinsic and metastatic intracranial tumours. Anticancer Res.24 (1), 37–42 (2004).
  • Hirsch LR Gobin AM Lowery AR Tam F Jalas NJ . Metal nanoshells. Ann. Biomed. Eng.334, 15–22 (2006).
  • Everts M . Thermal scalpel to target cancer. Expert Rev. Med. Devices4 (2), 131–136 (2007).
  • Loo C Lin A Hirsch L et al. Nanoshells-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat.3, 33–40 (2004).
  • Shanmugam V Selvakumar S Yeh CS . Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem. Soc. Rev.43, 6254 (2014).
  • Oldenburg SJ Averitt RD Westcott SL . Nanoengineering of optical resonances. Chem. Phys. Lett.288, 243–247 (1998).
  • Oldenburg SJ Jackson JB Westcott SL Halas NJ . Infrared extinction properties of gold nanoshells. Appl. Phys. Lett.75, 2897–2899 (1999).
  • Aslan K Lakowicz J Geddes CR . Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. Curr. Opin. Chem. Biol.9, 538–544 (2005).
  • Huang X Jain PK El-Sayed IH El-Sayed MA . Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci.23, 217–218 (2008).
  • Cole JR Mirin NA Knight MW Goodrich GP Halas NJ . Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications. J. Phys. Chem.113, 12090–12094 (2009).
  • Huang X El-Sayed IH Qian W El-Sayed MA . Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc.128, 2115–2120 (2006).
  • Thorek DL Chen AK Czupryna J Tsourkas A . Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann. Biomed. Eng.4, 23–38 (2006).
  • Weissleder R Stark DD Engelstad BL et al. Superparamagnetic iron oxide: pharmacokinetics and toxicity. Am. J. Roentgenol.152 (1), 167–173 (1989).
  • Weinstein JS Varallyay CG Dosa E et al. Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J. Cereb. Blood Flow Metab.30, 15–35 (2010).
  • Jordan A Scholz R Maier-Hauff K et al. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J. Neurooncol.78 (1), 7–14 (2006).
  • Maier-Hauff K Rothe R Scholz R et al. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J. Neurooncol.81 (1), 53–60 (2007).
  • Kah JC Wong KY Neoh KG et al. Critical parameters in the pegylation of gold nanoshells for biomedical applications: an in vitro macrophage study. J. Drug Target.17, 181–193 (2009).
  • Metz S Bonaterra G Rudelius M Settles M Rummeny EJ Daldrup-Link HE . Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur. Radiol.14, 1851–1858 (2004).
  • Trinidad A Hong SJ Peng Q Madsen SJ Hirschberg H . Combined concurrent photodynamic and gold nanoshell loaded macrophage-mediated photothermal therapies: an in vitro study on squamous cell head and neck carcinoma. Lasers Surg. Med.46 (4), 310–318 (2014).
  • Chhetri S Hirschberg H Madsen SJ . Photothermal therapy of human glioma spheroids with gold-silica nanoshells and gold nanorods: a comparative study. Proceedings SPIE, Photonic Therapeutics & Diagnostics8928 (89280U), 1–8 (2014).
  • Kah JC Wong KY Neoh KG et al. Critical parameters in the pegylation of gold nanoshells for biomedical applications: an in vitro macrophage study. J. Drug Target17 (3), 181–193 (2009).
  • Owen MR Byrne HM Lewis CE . Mathematical modeling of the use of macrophages as vehicles for drug delivery to hypoxic tumour sites. J. Theor. Biol.226, 377–391 (2004).
  • Madsen SJ Sun CH Tromberg BJ Cristine V DeMagalhaes N Hirschberg H . Multicell tumor spheroids in photodynamic therapy. Lasers Surg. Med.38, 555–564 (2006).
  • Knowles HJ Harris AL . Macrophages and the hypoxic tumour microenvironment. Front. Biosci.12, 4298–4314 (2007).
  • Choi MR Bardhan R Stanton-Maxey KJ et al. Delivery of nanoparticles to brain metastases of breast cancer using a cellular Trojan horse. Cancer Nanotechnol.3, 1–6, 47–54 (2012).
  • Hirschberg H Samset E Hole PK Lote K . Impact of intraoperative MRI on the results of surgery for high grade gliomas. Minim. Invasive Neurosurg.48 (2), 77–84 (2006).
  • Stummer W Pichlmeier U Meinel T Wiestler OD Zanella F Reulen HJ . Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomized controlled multicentre phase III trial. Lancet Oncol.7, 392–401 (2006).
  • Wu J Yang S Luo H Zeng L Ye L Lu Y . Quantitative evaluation of monocyte transmigration into the brain following chemical opening of the blood-brain barrier in mice. Brain Res.1098, 79–85 (2006).
  • Hirschberg H Sun CH Tromberg BJ Yeh AT Madsen SJ . Enhanced cytotoxic effects of 5- aminolevulinic acid-mediated photodynamic therapy by concurrent hyperthermia in glioma spheroids. J. Neurooncol.70, 289–299 (2004).
  • Hirschberg H Zhang MJ Gach HM et al. Targeted delivery of bleomycin to the brain using photo-chemical internalization of Clostridium perfringens epsilon prototoxin. J. Neurooncol.95 (3), 317–329 (2009).
  • Madsen SJ Sun CH Tromberg BJ Hirschberg H . Development of a novel indwelling balloon applicator for optimizing light delivery in photodynamic therapy. Lasers Surg. Med.29 (5), 406–412 (2001).
  • Madsen SJ Gach HM Hong SJ Uzal FA Peng Q Hirschberg H . Increased nanoparticle-loaded exogenous macrophage migration into the brain following PDT-induced blood-brain barrier disruption. Lasers Surg. Med.45 (8), 524–532 (2013).
  • Wust P Hildebrandt B Sreenivasa G et al. Hyperthermia in combined treatment of cancer. Lancet Oncol.3 (8), 487–497 (2002).
  • Valdagni R Liu FF Kapp DS . Important prognostic factors influencing outcome of combined radiation and hyperthermia. Int. J. Radiat. Biol. Phys.15, 959–972 (1988).
  • Huilgol NG Gupta S Dixit R . Chemoradiation with hyperthermia in the treatment of head and neck cancer. Int. J. Hyperthermia26 (1), 21–25 (2010).
  • Dahl O . Mechanism of thermal enhancement of chemotherapeutic cytotoxicity. Hyperthermia & Oncology4, 9–28 (1994).
  • Gazelle GS Goldberg SN Solbiati L Livraghi T . Tumor ablation with radio-frequency energy. Radiology217 (3), 633–646 (2000).
  • Jolesz FA Hynynen K . Magnetic resonance image-guided focused ultrasound surgery. Cancer J.8 (Suppl. 1), 100–112 (2002).
  • Schwartz JA Shetty AM Price RE et al. Feasibility study of particle-assisted laser ablation of brain tumors in orthotopic canine model. Cancer Res.69, 1659–1667 (2009).
  • Johannesen TB Watne K Lote K et al. Intracavity fractionated balloon brachytherapy in glioblastoma. Acta Neurochir. (Wien).141 (2), 127–133 (1999).
  • Hirschberg H Sun CH Tromberg BJ Yeh AT Madsen SJ . Enhanced cytotoxic effects of 5- aminolevulinic acid-mediated photodynamic therapy by concurrent hyperthermia in glioma spheroids. J. Neurooncol.70, 289–299 (2004).
  • Yanase S Nomura J Matsumura Y et al. Enhancement of the effect of 5-aminolevulinic acid-based photodynamic therapy by simultaneous hyperthermia. Int. J. Oncol.27 (1), 193–201 (2005).
  • Kah JC Wan RC Wong KY Mhaisalkar S Sheppard CJ Olivo M . Combinatorial treatment of photothermal therapy using gold nanoshells with conventional photodynamic therapy to improve treatment efficacy: an in vitro study. Lasers Surg. Med.40 (8), 584–589 (2008).
  • Kuo WS Chang YT Cho KC et al. Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy. Biomaterials33 (11), 3270–3278 (2012).
  • Kim JY Choi WI Kim M Tae G . Tumor-targeting nanogel that can function independently for both photodynamic and photothermal therapy and its synergy from the procedure of PDT followed by PTT. J. Control Release171 (2), 113–121 (2013).
  • Chen R Wang X Yao X Zheng X Wang J Jiang X . Near-IR-triggered photothermal/photodynamic dual-modality therapy system via chitosan hybrid nanospheres. Biomaterials34 (33), 8314–8322 (2013).
  • Prinsze C Dubbelman TMAR VanSteveninck J . Potentiation of the thermal inactivation of glyceraldehydes-3-phosphate dehydrogenase by photodynamic treatment. A possible model for the synergistic interaction between photodynamic therapy and hyperthermia. Biochem. J.276, 357–362 (1991).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.