334
Views
0
CrossRef citations to date
0
Altmetric
Review

miRNA Therapy Targeting Cancer Stem cells: a New Paradigm for Cancer Treatment and Prevention of Tumor Recurrence

, &
Pages 323-337 | Published online: 08 Apr 2015

References

  • Jemal A Bray F Center MM Ferlay J Ward E Forman D . Global cancer statistics. CA. Cancer J. Clin.61 (2), 69–90 (2011).
  • Hanahan D Weinberg RA . Hallmarks of cancer: the next generation. Cell144 (5), 646–674 (2011).
  • Reya T Morrison SJ Clarke MF et al. Stem cells, cancer, and cancer stem cells. Nature414, 105–111 (2001).
  • Alison MR Islam S Wright NA . Stem cells in cancer: instigators and propagators?J. Cell Sci.123, 2357–2368 (2010).
  • Friedman GK Gillespie GY . Cancer stem cells and pediatric solid tumors. Cancer3, 298–318 (2011).
  • Clarke MF Fuller M . Stem cells and cancer: two faces of eve. Cell124, 1111–1115 (2006).
  • Greaves M . Cancer stem cells: back to Darwin?Semin. Cancer Biol.20, 65–70 (2010).
  • Jordan CT Guzman ML Noble M . Cancer stem cells. N. Engl. J. Med.355, 1253–1261 (2006).
  • Cohnheim J . Congenitales, quergestreiftes Muskelsarkon der Nireren. Virchows Arch.65, 64–69 (1875).
  • Wicha MS Liu S Dontu G . Cancer stem cells: an old idea–a paradigm shift. Cancer Res.66, 1883–1890 (2006).
  • Creighton CJ Chang JC Rosen JM . Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implication in breast cancer. J. Mammary Gland Biol. Neoplasia.15 (2), 253–260 (2010).
  • Lee CJ Dosch J Simeone DM . Pancreatic cancer stem cells. J. Clin. Oncol.26 (17), 2806–2812 (2008).
  • Bonnet D Dick JE . Human acute myeloid leukemia is organized as hierarchy that originates from a primitive hematopoietic cell. Nat. Med.3, 730–737 (1997).
  • Singh SK Clarke ID Terasaki M et al. Identification of a cancer stem cell in human brain tumors. Cancer Res.63, 5821–5828 (2003).
  • Singh SK Hawkins C Phylogenies TF Compare EP . Identification of human brain tumour initiating cells. Nature432, 396–401 (2004).
  • Mao XG Zhang X Xue XY et al. Brain tumor stem-like cells identified by neural stem cell marker CD15. Transl. Oncol.2, 247–257 (2009).
  • Al-Hajj M Wicha MS Benito-Hernandez A Morrison SJ Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA100, 3983–3988 (2003).
  • Ginestier C Hur MH Charafe-Jauffret E et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell1 (5), 555–567 (2007).
  • O'Brien CA Pollett A Gallinger S Dick JE . A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature445, 106–110 (2007).
  • Ricci-Vitiani L Lombardi DG Pilozzi E et al. Identification and expansion of human colon-cancer initiating cells. Nature445, 111–115 (2007).
  • Dalerba P Dylla SJ Park IK et al. Phenotypic characterization of human colorectal cancer stem cells. Proc. Natl Acad. Sci. USA104, 10158–10163 (2007).
  • Meng E Long B Sullivan P et al. CD44+/CD24− ovarian cancer cells demonstrate cancer stem cell properties and correlate to survival. Clin. Exp. Metastasis29, 939–948 (2012).
  • Ferrandina G Bonanno G Pierelli L et al. Expression of CD133–1 and CD133–2 in ovarian cancer. Int. J. Gynecol. Cancer18, 506–514 (2008).
  • Luo L Zeng J Liang B et al. Ovarian cancer cells with the CD117 phenotype are highly tumorigenic and are related to chemotherapy outcome. Exp. Mol. Pathol.91, 596–602 (2011).
  • Collins AT Berry PA Hyde C et al. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res.65, 10946–10951 (2005).
  • Kim CFB Jackson EL Woolfenden AE et al. Identification of bronchioalveolar stem cells normal lung and lung cancer. Cell121, 823–835 (2005).
  • Eramo A Lotti F Sette G et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ.15, 504–514 (2008).
  • Takaishi S Okumura T Tu S et al. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells27, 1006–1020 (2009).
  • Yamashita T Honda M Nio K et al. Oncostatin m renders epithelial cell adhesion molecule-positive liver cancer stem cells sensitive to 5-Fluorouracil by inducing hepatocytic differentiation. Cancer Res.70, 4687–4697 (2010).
  • Hermann PC Huber SL Herrler T et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell1, 313–323 (2007).
  • Clarke MF Dick JE Dirks PB et al. Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res.66, 9339–9344 (2006).
  • Bauerschmitz GJ Ranki T Kangasniemi L et al. Tissue-specific promoter active in CD44+CD24-/low breast cancer cells. Cancer Res.68 (14), 5533–5539 (2008).
  • Lee CJ Dosch J Simeone DM . Pancreatic cancer stem cells. J. Clin. Oncol.26, 2806–2812 (2008).
  • Chen KL Pan F Jiang H et al. Highly enriched CD133(+) CD44(+) stem-like cells with CD133(+) CD44(high) metastatic subset in _hCT116 colon cancer cells. Clin. Exp. Metastasis28 (8), 751–763 (2011).
  • Lapidot T Sirard C Vormoor J et al. A cell initiating human acute myeloid leukemia after transplantation into SCID mice. Nature367, 645–648 (1994).
  • Colmont CS Harding KG Piguet V Patel GK . Human skin cancer stem cells: a tale of mice and men. Exp. Dermatol.21, 576–580 (2012).
  • Kreso A Dick JE . Evolution of the cancer stem cell model. Cell Stem Cell14 (3), 275–291 (2014).
  • Chen T Dent SYR . Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat. Rev. Genet.15 (2), 93–106 (2014).
  • Sun L Mathews LA Cabarcas SM et al. Epigenetic regulation of SOX9 by the NF-κB signaling pathway in pancreatic cancer stem cells. Stem Cells31 (8), 1454–1466 (2013).
  • Suvà ML Riggi N Bernstein BE . Epigenetic reprogramming in cancer. Science339 (6127), 1567–1570 (2013).
  • Wend P Fang L Zhu Q et al. Wnt/β-catenin signalling induces MLL to create epigenetic changes in salivary gland tumours. EMBO J.32 (14), 1977–1989 (2013).
  • Jamieson CH Ailles LE Dylla SJ et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med.351, 657–667 (2004).
  • Korkaya H Paulson A Charafe-Jauffret E et al. Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol.7 (6), e1000121 (2009).
  • Hoey T Yen WC Axelrod F et al. DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell5, 168–177 (2009).
  • Taketo MM . Reflections on the spread of metastasis to cancer prevention. Cancer Prev. Res.4, 324–328 (2011).
  • Liu S Dontu G Mantle ID et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res.66 (12), 6063–6071 (2006).
  • Varnat F Duquet A Malerba M et al. Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signaling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol. Med.1, 338–351 (2009).
  • Takezaki T Hide T Takanaga H Nakamura H Kuratsu J Kondo T . Essential role of the Hedgehog signaling pathway in human glioma-initiating cells. Cancer Sci.102, 1306–1312 (2011).
  • Nimmo RA Slack FJ . An elegant mirror: microRNAs in stem cells, developmental timing and cancer. Chromosoma118 (4), 405–418 (2009).
  • Liu B Sun L Song E . Non-coding RNAs regulate tumor cell plasticity. Sci. China Life Sci.56 (10), 886–890 (2013).
  • Bartel DP . MicroRNAs: Genomics biogenesis, mechanism, and function. Cell116, 281–297 (2004).
  • Stefani G Slack FJ . Small noncoding RNAs in animal development. Nat. Rev. Mol. Cell Biol.9, 219–230 (2008).
  • Denli AM Tops BBJ Plasterk RHA Ketting REF Hannon GJ . Processing of primary microRNAs by the Microprocessor complex. Nature432, 231–235 (2004).
  • Gregory RI Yan KP Amuthan G et al. The Microprocessor complex mediates the genesis of microRNAs. Nature432, 235–240 (2004).
  • Hutvágner G Zamore PD . A microRNA in a multiple-turnover RNAi enzyme complex. Science297, 2056–2030 (2002).
  • Hammond SM . Dicing and slicing: The core machinery of the RNA interference pathway. FEBS Lett.579 (26), 5822–5829 (2005).
  • Gregory RI Chendrimada TP Cooch N Shiekhattar R . Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell123, 631–640 (2005).
  • Eini R Dorssers LCJ Looijenga LHJ . Role of stem cell proteins and microRNAs in embryogenesis and germ cell cancer. Int. J. Dev. Biol.57, 319–332 (2013).
  • Lee RC Feinbaum RL Ambros V . The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell75, 843–854 (1993).
  • Lau NC Lim LP Weinstein EG Bartel DP . An abundant class of tiny RNAs with probable regulatory roles in C. elegans. Science294, 858–862 (2001).
  • miRBase: the miRNA database . www.mirbase.org.
  • Bentwich I Avniel A Karov Y et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat. Genet.37, 766–770 (2005).
  • Lagos-Quintana M Rauhut R Meyer J et al. New microRNAs from mouse and human. RNA9, 175–179 (2003).
  • Bernstein E Kim SY Carmell MA et al. Dicer is essential for mouse development. Nat. Genet.35, 215–217 (2003).
  • Kanellopoulou C Muljo SA Kung AL et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev.19, 489–501 (2005).
  • Wang Y Medvid R Melton C Jaenisch R Blelloch R . DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat. Genet.39, 380–385 (2007).
  • Choi YJ Lin CP Ho JJ et al. miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat. Cell Biol.13, 1353–1360 (2011).
  • Yu J Vodyanik MA Smuga-Otto K et al. Induced pluripotent stem cell lines derived from human somatic cells. Science318, 1917–1920 (2007).
  • Guessous F Zhang Y Kofman A et al. microRNA-34a is tumor suppressive in brain tumors and glioma stem cells. Cell Cycle9, 1031–1036 (2010).
  • Godlewski J Nowicki MO Bronisz A et al. MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol. Cell37, 620–632 (2010).
  • Silber J Lim DA Petritsch C et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med.6, 14 (2008).
  • Godlewski J Nowicki MO Bronisz A et al. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res.68, 9125–9130 (2008).
  • Garzia L Andolfo I Cusanelli E et al. MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma. PLoS ONE4, e4998 (2009).
  • Gal H Pandi G Kanner AA et al. MIR-451 and imatinib mesylate inhibit tumor growth of glioblastoma stem cells. Biochem. Biophys. Res. Commun.376, 86–90 (2008).
  • Johansson J Berg T Kurzejamska E et al. MiR-155-mediated loss of C/EBPβ shifts the TGF-β response from growth inhibition to epithelial-mesenchymal transition, invasion and metastasis in breast cancer. Oncogene32 (50), 5614–5624 (2013).
  • Huang S Chen L . miR-888 regulates side population properties and cancer metastasis in breast cancer cells. Biochem. Biophys. Res. Commun.450, 1234–1240 (2014).
  • Yu F Yao H Zhu P et al. Let-7 regulates self-renewal and tumorigenicity of breast cancer cells. Cell131, 1109–1123 (2007).
  • Zhang H Cai K Wang J et al. MiR-7, inhibited indirectly by LincRNA HOTAIR, directly inhibits SETDB1 and reverses the EMT of breast cancer stem cells by downregulating the STAT3 pathway. Stem Cells32 (11), 2858–2868 (2014).
  • Shimono Y Zabala M Cho RW et al. Downregulation of miR-200c links breast cancer stem cells with normal stem cells. Cell138, 592–603 (2009).
  • Yu Y Kanwar SS Patel BB et al. MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGFβR2) in colon cancer cells. Carcinogenesis33, 68–76 (2012).
  • Song B Wang Y Xi Y et al. Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene28, 4065–4074 (2009).
  • Nicolas FE Pais H Schwach F et al. Experimental identification of microRNA-140 targets by silencing and overexpressing miR-140. RNA14, 2513–2520 (2008).
  • Song B Wang Y Titmus MA et al. Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells. Mol. Cancer9, 96 (2010).
  • Bu P Chen KY Chen JH et al. A microRNA-34a-regulated bimodal switch targets notch in colon cancer stem cells. Cell Stem Cell12, 602–615 (2013).
  • Yu XF Zou J Bao ZJ Dong J . miR-93 suppresses proliferation and colony formation of human colon cancer stem cells. World J. Gastroenterol.17, 4711–4717 (2011).
  • Xu XT Xu Q Tong JL et al. MicroRNA expression profiling identifies miR-328 regulates cancer stem cell-like SP cells in colorectal cancer. Br. J. Cancer106, 1320–1330 (2012).
  • Bitarte N Bandres E Boni V et al. MicroRNA-451 is involved in the self-renewal, tumorigenicity, and chemoresistance of colorectal cancer stem cells. Stem Cells29, 1661–1671 (2011).
  • Xu CX Xu M Tan L et al. microRNA miR-214 regulates ovarian cancer cell stemness by targeting p53/Nanog. J. Biol. Chem.287 (42), 34970–34978 (2012).
  • Cheng W Liu T Wan X Gao Y Wang H . MicroRNA-199a targets CD44 to suppress the tumorigenicity and multidrug resistance of ovarian cancer-initiating cells. FEBS J.279, 2047–2059 (2012).
  • Wang Z Ting Z Li Y Chen G Lu Y Hao X . microRNA-199a is able to reverse cisplatin resistance in human ovarian cancer cells through the inhibition of mammalian target of rapamycin. Oncol. Lett.6 (3), 789–794 (2013).
  • Wu Q Guo R Lin M Zhou B Wang Y . microRNA-200a inhibits CD133/1+ ovarian cancer stem cells migration and invasion by targeting E-cadherin repressor ZEB2. Gynecol. Oncol.122 (1), 149–154 (2011).
  • Liu C Kelnar K Liu B et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat. Med.17, 211–215 (2011).
  • Kashat M Azzouz L Sarkar SH Kong D Li Y Sarkar FH . Inactivation of AR and Notch-1 signaling by miR-34a attenuates prostate cancer aggressiveness. Am. J. Transl. Res.4, 432–442 (2012).
  • Li K Liu C Zhou B et al. Role of EZH2 in the Growth of Prostate Cancer Stem Cells Isolated from LNCaP Cells. Int. J. Mol. Sci.14 (6), 11981–11993 (2013).
  • Jin M Zhang T Liu C et al. miRNA-128 Suppresses Prostate Cancer by Inhibiting BMI-1 to Inhibit Tumor-Initiating Cells. Cancer Res.74 (15), 4183–4195 (2014).
  • Hsieh IS Chang KC Tsai YT et al. MicroRNA-320 suppresses the stem cell-like characteristics of prostate cancer cells by downregulating the Wnt/beta-catenin signaling pathway. Carcinogenesis34 (3), 530–538 (2013).
  • Stupp R Gander M Leyvraz S Newlands E . Current and future developments in the use of temozolomide for the treatment of brain tumours. Lancet Oncol.2, 552–560 (2001).
  • Ostrom QT Gittleman H Farah P et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro. Oncol.15, ii1–ii56 (2013).
  • Ricard D Idbaih A Ducray F Lahutte M Hoang-Xuan K Delattre JY . Primary brain tumours in adults. Lancet379, 1984–1996 (2012).
  • Miraglia S Godfrey W Yin A et al. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood90, 5013–5021 (1997).
  • Yin AH Miraglia S Zanjani ED et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood90, 5002–5012 (1997).
  • Yu L Baxter PA Voicu H et al. A clinically relevant orthotopic xenograft model of ependymoma that maintains the genomic signature of the primary tumor and preserves cancer stem cells in vivo. Neuro. Oncol.12, 580–594 (2010).
  • Li Y Guessous F Zhang Y et al. MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res.69, 7569–7576 (2009).
  • Li KKW Pang JC Ching AK et al. miR-124 is frequently down-regulated in medulloblastoma and is a negative regulator of SLC16A1. Hum. Pathol.40, 1234–1243 (2009).
  • Xia H Cheung WKC Ng SS et al. Loss of brain-enriched miR-124 microRNA enhances stem-like traits and invasiveness of glioma cells. J. Biol. Chem.287, 9962–9971 (2012).
  • Ginestier C Hur MH Charafe-Jauffret E et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell1, 555–567 (2007).
  • Prud'homme GJ . Cancer stem cells and novel targets for antitumor strategies. Curr. Pharm. Des.18, 2838–2849 (2012).
  • Okuda H Xing F Pandey PR et al. miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res.73, 1434–1444 (2013).
  • Gregory PA Bert AG Paterson EL et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol.10, 593–601 (2008).
  • Park SM Gaur AB Lengyel E Peter ME . The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev.22, 894–907 (2008).
  • Kong W Yang H He L et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol. Cell. Biol.28 (22), 6773–6784 (2008).
  • Ma L Young J Prabhala H et al. miR-9, aMYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat. Cell Biol.12 (3), 247–256 (2010).
  • Gwak JM Kim HJ Kim EJ et al. MicroRNA-9 is associated with epithelial-mesenchymal transition, breast cancer stem cell phenotype, and tumor progression in breast cancer. Breast Cancer Res. Treat.147 (1), 39–49 (2014).
  • Huang EH Hynes MJ Zhang T et al. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res.69, 3382–3389 (2009).
  • Lengyel E . Ovarian cancer development and metastasis. Am. J. Pathol.177, 1053–1064 (2010).
  • Klonisch T Wiechec E Hombach-Klonisch S et al. Cancer stem cell markers in common cancers - therapeutic implications. Trends Mol. Med.14 (10), 450–460 (2008).
  • Gottesman MM Fojo T Bates SE . Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer2, 48–58 (2002).
  • Golebiewska A Brons NHC Bjerkvig R Niclou SP . Critical appraisal of the side population assay in stem cell and cancer stem cell research. Cell Stem Cell8 (2), 136–147 (2011).
  • Xu XT Xu Q Tong JL et al. MicroRNA expression profiling identifies miR-328 regulates cancer stem cell-like SP cells in colorectal cancer. Br. J. Cancer106 (7), 1320–1330 (2012).
  • Bitarte N Bandres E Boni V et al. MicroRNA-451 is involved in the self-renewal, tumorigenicity, and chemoresistance of colorectal cancer stem cells. Stem Cells29, 1661–1671 (2011).
  • Aziz MH Kumar R Ahmad N . Cancer chemoprevention by resveratrol: in vitro and in vivo studies and the underlying mechanism. Int. J. Oncol.23, 17–28 (2003).
  • Hagiwara K Kosaka N Yoshioka Y Takahashi RU Takeshita F Ochiya T . Stilbene derivatives promote Ago-2-dependent tumour-suppressive microRNA activity. Sci. Rep.2, 314 (2012).
  • Yang F Nam S Brown CE et al. A novel berbamine derivative inhibits cell viability and induces apoptosis in cancer stem-like cells of human glioblastoma, via up-regulation of miRNA-4284 and JNK/AP-1 signaling. PLoS ONE9 (4), e94443 (2014).
  • Bao B Ali S Ahmad A et al. Hypoxia-induced aggressiveness of pancreatic cancer cells is due to increased expression of VEGF, IL-6 and miR-21, which can be attenuated by CDF treatment. PLoS ONE7 (12), e50165 (2012).
  • Ono M Kosaka N Tominaga N et al. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci. Signal.7 (332), ra63 (2014).
  • Rombouts K Carloni V Mello T et al. Myristoylated alanine-rich protein kinase C substrate (MARCKS) expression modulates the metastatic phenotype in human and murine colon carcinoma in vitro and in vivo. Cancer Lett.333, 244–252 (2013).
  • Zhu S Pan W Song X et al. The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-a. Nat. Med.18, 1077–1086 (2012).
  • Pihlmann M Askou AL Aagaard L et al. Adeno-associated virus-delivered polycistronic microRNA-clusters for knockdown of vascular endothelial growth factor in vivo. J. Gene Med.14, 328–338 (2012).
  • Kasinski AL Slack FJ . miRNA-34 prevents cancer initiation and progression in a therapeutically resistant K-ras and p53-induced mouse model of lung adenocarcinoma. Cancer Res.72, 5576–5587 (2012).
  • Pfeifer A Verma IM . Gene therapy: promises and problems. Annu. Rev. Genomics Hum. Genet.2, 177–211 (2001).
  • Thomas CE Ehrhardt A Kay MA . Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet.4, 346–358 (2003).
  • Tomanin R Scarpa M . Why do we need new gene therapy viral vectors? Characteristics, limitations and future perspectives of viral vector transduction. Curr. Gene Ther.4, 357–372 (2004).
  • Markman JL Rekechenetskiy A Holler E Ljubimova JY . Nanomedicine therapeutic approaches to overcome cancer. Adv. Drug Deliv. Rev.65, 1866–1879 (2013).
  • S⊘rensen DR Leirdal M Sioud M . Gene silencing by systemic delivery of synthetic sirnas in adult mice. J. Mol. Biol.327, 761–766 (2003).
  • Verma UN Surabhi RM Schmaltieg A Schmaltieg A Becerra C Gaynor RB . Small interfering RNAs directed against b-catenin inhibit the in vitro and in vivo growth of colon cancer cells. Clin. Cancer Res.9, 1291–1300 (2003).
  • Yano J Hirabayashi K Nakagawa S-I et al. Antitumor activity of small interfering RNA/cationic liposome complex in mouse models of cancer. Clin. Cancer Res.10, 7721–7726 (2004).
  • Urban-Klein B Werth S Abuharbeid S Czubayko F Aigner A . RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther.12, 461–466 (2005).
  • Xu D Takeshita F Hino Y et al. miR-22 represses cancer progression by inducing cellular senescence. J. Cell Biol.193 (2), 409–424 (2011).
  • Civenni G Malek A Albino D et al. RNAi-mediated silencing of Myc transcription inhibits stem-like cell maintenance and tumorigenicity in prostate cancer. Cancer Res.73 (22), 6816–6827 (2013).
  • Tazawa H Tsuchiya N Izumiya M Nakagama H . Growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc. Natl Acad. Sci. USA104, 2–7 (2007).
  • Minakuchi Y Takeshita F Kosaka N et al. Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res.32, e109 (2004).
  • Takeshita F Minakuchi Y Nagahara S et al. Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. Proc. Natl Acad. Sci. USA102, 12177–12182 (2005).
  • Takeshita F Patrawala L Osaki M et al. Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol. Ther.18, 181–187 (2010).
  • Osaki M Takeshita F Sugimoto Y et al. MicroRNA-143 regulates human osteosarcoma metastasis by regulating matrix metalloprotease-13 expression. Mol. Ther.19 (6), 1123–1130 (2011).
  • Al-jamal KT Gherardini L Bardi G Nunes A Guo C Bussy C . Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing. Proc. Natl Acad. Sci. USA108, 10952–10957 (2011).
  • Kosaka N Iguchi H Ochiya T . Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci.101 (10), 2087–2092 (2010).
  • Weber JA Baxter DH Zhang S et al. The microRNA spectrum in 12 body fluids. Clin. Chem.56 (11), 1733–1741 (2010).
  • Kosaka N Izumi H Sekine K Ochiya T . microRNA as a new immune-regulatory agent in breast milk. Silence1 (1), 7 (2010).
  • Mitchell PS Parkin RK Kroh EM et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA105 (30), 10513–10518 (2008).
  • Park NJ Zhou H Elashoff D et al. Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin. Cancer Res.15 (17), 5473–5477 (2009).
  • Valadi H Ekstrom K Bossios A Sjostrand M Lee JJ Lotvall JO . Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol.9 (6), 654–659 (2007).
  • Zitvogel L Regnault A Lozier A et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell derived exosomes. Nat. Med.4 (5), 594–600 (1998).
  • Van Niel G Raposo G Candalh C et al. Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology121 (2), 337–349 (2001).
  • Wolfers J Lozier A Raposo G et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat. Med.7 (3), 297–303 (2001).
  • Pegtel DM Cosmopoulos K Thorley-Lawson DA van Eijndhoven MA Hopmans ES Lindenberg JL . Functional delivery of viral miRNAs via exosomes. Proc. Natl Acad. Sci. USA107 (14), 6328–6333 (2010).
  • Zhang Y Liu D Chen X Li J Li L Bian Z . Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol. Cell39 (1), 133–144 (2010).
  • Kosaka N Iguchi H Yoshioka Y Takeshita F Matsuki Y Ochiya T . Secretory mechanisms and intercellular transfer of microRNAs in living cells. J. Biol. Chem.285 (23), 17442–17452 (2010).
  • Kosaka N Iguchi H Yoshioka Y Hagiwara K Takeshita F Ochiya T . Competitive interactions of cancer cells and normal cells via secretory microRNAs. J. Biol. Chem.287 (2), 1397–1405 (2012).
  • Ohno S Takanashi M Sudo K Ueda S Ishikawa A Matsuyama N . Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol. Ther.21 (1), 185–191 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.