276
Views
0
CrossRef citations to date
0
Altmetric
Review

Design and Processing of Nanogels As Delivery Systems for Peptides and Proteins

, , &
Pages 691-708 | Published online: 04 Aug 2014

References

  • Banting FG Best CH Collip JB Campbell WR Fletcher AA . Pancreatic extracts in the treatment of diabetes mellitus . Can. Med. Assoc. J.7 , 141 – 146 ( 1922 ).
  • Leader B Baca QJ Golan DE . Protein therapeutics: a summary and pharmacological classification . Nat. Rev. Drug Discov.7 ( 1 ), 21 – 39 ( 2008 ).
  • Frokjaer S Otzen DE . Protein drug stability: a formulation challenge . Nat. Rev. Drug Discov.4 ( 4 ), 298 – 306 ( 2005 ).
  • Manning MC Patel K Borchardt RT . Stability of protein pharmaceuticals . Pharmaceut. Res.6 ( 11 ), 903 – 918 ( 1989 ).
  • Taverna DM Goldstein RA . Why are proteins marginally stable?Proteins46 ( 1 ), 105 – 109 ( 2002 ).
  • Fields GB Alonso DOV Stigter D Dill KA . Theory for the aggregation of proteins and copolymers . J. Phys. Chem. A96 ( 10 ), 3974 – 3981 ( 1992 ).
  • Wang W . Protein aggregation and its inhibition in biopharmaceutics . Int. J. Pharm.289 ( 1–2 ), 1 – 30 ( 2005 ).
  • Moghimi SM Hamad I Andresen TL Jorgensen K Szebeni J . Methylation of the phosphate oxygen moiety of phospholipid-methoxy(polyethylene glycol) conjugate prevents PEGylated liposome-mediated complement activation and anaphylatoxin production . FASEB J.20 ( 14 ), 2591 – 2593 ( 2006 ).
  • US FDA . FDA approved PEG drugs. FDA Approved Drug Products . FDA , MD, USA ( 2013 ).
  • Webster R Elliott V Park BK Walker D Hankin M Taupin P . PEG and PEG conjugates toxicity: towards an understanding of the toxicity of PEG and its relevance to PEGylated biologicals . In: PEGylated Protein Drugs: Basic Science and Clinical Applications.VeroneseF (Eds). Birkhäuser , Basel, Switzerland , 127 – 146 ( 2009 ).
  • Van De Weert M Jorgensen L Horn Moeller E Frokjaer S . Factors of importance for a successful delivery system for proteins . Expert Opin. Drug Deliv.2 ( 6 ), 1029 – 1037 ( 2005 ).
  • Pautler M Brenner S . Nanomedicine: promises and challenges for the future of public health . Int. J. Nanomedicine5 , 803 – 809 ( 2010 ).
  • Min Y Akbulut M Kristiansen K Golan Y Israelachvili J . The role of interparticle and external forces in nanoparticle assembly . Nat. Mater.7 ( 7 ), 527 – 538 ( 2008 ).
  • Sasaki Y Akiyoshi K . Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications . Chem. Rec.10 ( 6 ), 366 – 376 ( 2010 ).
  • Shimoda A Yamamoto Y Sawada S Akiyoshi K . Biodegradable nanogel-integrated hydrogels for sustained protein delivery . Macromol. Res.20 ( 3 ), 266 – 270 ( 2012 ).
  • Hendrickson GR Smith MH South AB Lyon LA . Design of multiresponsive hydrogel particles and assemblies . Adv. Funct. Mater.20 ( 11 ), 1697 – 1712 ( 2010 ).
  • Raemdonck K Demeester J De Smedt S . Advanced nanogel engineering for drug delivery . Soft Matter5 ( 4 ), 707 – 715 ( 2009 ).
  • Oh JK Drumright R Siegwart DJ Matyjaszewski K . The development of microgels/nanogels for drug delivery applications . Prog. Polym. Sci.33 ( 4 ), 448 – 477 ( 2008 ).
  • Vinogradov S Batrakova E Kabanov A . Poly(ethylene glycol)-polyethyleneimine NanoGel (TM) particles: novel drug delivery systems for antisense oligonucleotides . Colloid Surf. B16 ( 1–4 ), 291 – 304 ( 1999 ).
  • Bencherif SA Siegwart DJ Srinivasan A et al. Nanostructured hybrid hydrogels prepared by a combination of atom transfer radical polymerization and free radical polymerization . Biomaterials30 ( 29 ), 5270 – 5278 ( 2009 ).
  • Akiyama E Morimoto N Kujawa P Ozawa Y Winnik FM Akiyoshi K . Self-assembled nanogels of cholesteryl-modified polysaccharides: effect of the polysaccharide structure on their association characteristics in the dilute and semidilute regimes . Biomacromolecules8 ( 8 ), 2366 – 2373 ( 2007 ).
  • Kabanov AV Vinogradov SV . Nanogels as pharmaceutical carriers: finite networks of infinite capabilities . Angew. Chem. Int. Ed.48 ( 30 ), 5418 – 5429 ( 2009 ).
  • Moya-Ortega MD Alvarez-Lorenzo C Concheiro A Loftsson T . Cyclodextrin-based nanogels for pharmaceutical and biomedical applications . Int. J. Pharm.428 ( 1–2 ), 152 – 163 ( 2012 ).
  • Nomura Y Ikeda M Yamaguchi N Aoyama Y Akiyoshi K . Protein refolding assisted by self-assembled nanogels as novel artificial molecular chaperone . FEBS Lett.553 ( 3 ), 271 – 276 ( 2003 ).
  • Nochi T Yuki Y Takahashi H et al. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines . Nat. Mater.9 ( 7 ), 572 – 578 ( 2010 ).
  • Ayame H Morimoto N Akiyoshi K . Self-assembled cationic nanogels for intracellular protein delivery . Bioconjug. Chem.19 ( 4 ), 882 – 890 ( 2008 ).
  • Vermonden T Censi R Hennink WE . Hydrogels for protein delivery . Chem. Rev.112 ( 5 ), 2853 – 2888 ( 2012 ).
  • Rowan SJ Cantrill SJ Cousins GRL Sanders JKM Stoddart JF . Dynamic covalent chemistry . Angew. Chem. Int. Ed.41 ( 6 ), 898 – 952 ( 2002 ).
  • Argentiere S Blasi L Morello G Gigli G . A Novel pH-responsive nanogel for the controlled uptake and release of hydrophobic and cationic solutes . J. Phys. Chem. C115 ( 33 ), 16347 – 16353 ( 2011 ).
  • Kim Y Thapa M Hua DH Chang KO . Biodegradable nanogels for oral delivery of interferon for norovirus infection . Antivir. Res.89 ( 2 ), 165 – 173 ( 2011 ).
  • Molinos M Carvalho V Silva DM Gama FM . Development of a hybrid dextrin hydrogel encapsulating dextrin nanogel as protein delivery system . Biomacromolecules13 ( 2 ), 517 – 527 ( 2012 ).
  • Hoare T Timko BP Santamaria J et al. Magnetically triggered nanocomposite membranes: a versatile platform for triggered drug release . Nano Lett.11 ( 3 ), 1395 – 1400 ( 2011 ).
  • Salmaso S Caliceti P . Self assembling nanocomposites for protein delivery: supramolecular interactions of soluble polymers with protein drugs . Int. J. Pharm.440 ( 1 ), 111 – 123 ( 2013 ).
  • Uskokovic V . Isn't self-assembly a misnomer? Multi-disciplinary arguments in favor of co-assembly . Adv Colloid Interfac141 ( 1–2 ), 37 – 47 ( 2008 ).
  • Daoud-Mahammed S Couvreur P Bouchemal K et al. Cyclodextrin and polysaccharide-based nanogels: entrapment of two hydrophobic molecules, benzophenone and tamoxifen . Biomacromolecules10 ( 3 ), 547 – 554 ( 2009 ).
  • Socoliuc V Vekas L Turcu R . Magnetically induced phase condensation in an aqueous dispersion of magnetic nanogels . Soft Matter9 ( 11 ), 3098 – 3105 ( 2013 ).
  • Yu SY Yao P Jiang M Zhang GZ . Nanogels prepared by self-assembly of oppositely charged globular proteins . Biopolymers83 ( 2 ), 148 – 158 ( 2006 ).
  • Morimoto N Hirano S Takahashi H Loethen S Thompson DH Akiyoshi K . Self-assembled pH-sensitive cholesteryl pullulan nanogel as a protein delivery vehicle . Biomacromolecules14 ( 1 ), 56 – 63 ( 2013 ).
  • Bhuchar N Sunasee R Ishihara K Thundat T Narain R . Degradable thermoresponsive nanogels for protein encapsulation and controlled release . Bioconjug. Chem.23 ( 1 ), 75 – 83 ( 2012 ).
  • Kim J-Y Choi WI Kim YH et al. In-vivo tumor targeting of pluronic-based nano-carriers . J. Control. Release147 ( 1 ), 109 – 117 ( 2010 ).
  • Gudeman LF Peppas NA . Preparation and characterization of Ph-sensitive, interpenetrating networks of poly(vinyl alcohol) and poly(acrylic acid) . J. Appl. Polym. Sci.55 ( 6 ), 919 – 928 ( 1995 ).
  • Kim SJ Lee KJ Kim SI Lee YM Chung TD Lee SH . Electrochemical behavior of an interpenetrating polymer network hydrogel composed of poly(propylene glycol) and poly(acrylic acid) . J. Appl. Polym. Sci.89 ( 9 ), 2301 – 2305 ( 2003 ).
  • Kim SY Lee YM . Drug release behavior of electrical responsive poly(vinyl alcohol)/poly(acrylic acid) IPN hydrogels under an electric stimulus . J. Appl. Polym. Sci.74 ( 7 ), 1752 – 1761 ( 1999 ).
  • Laguecir A Ulrich S Labille J Fatin-Rouge N Stoll S Buffle J . Size and pH effect on electrical and conformational behavior of poly(acrylic acid): simulation and experiment . Eur. Polym. J.42 ( 5 ), 1135 – 1144 ( 2006 ).
  • Staples CA Murphy SR Mclaughlin JE Leung HW Cascieri TC Farr CH . Determination of selected fate and aquatic toxicity characteristics of acrylic acid and a series of acrylic esters . Chemosphere40 ( 1 ), 29 – 38 ( 2000 ).
  • Athanasiou KA Niederauer GG Agrawal CM . Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid polyglycolic acid copolymers . Biomaterials17 ( 2 ), 93 – 102 ( 1996 ).
  • Maurus PB Kaeding CC . Bioabsorbable implant material review . Oper. Techn. Sport Med.12 ( 3 ), 158 – 160 ( 2004 ).
  • Pasut G Veronese FM . State of the art in PEGylation: the great versatility achieved after forty years of research . J. Control. Release161 ( 2 ), 461 – 472 ( 2012 ).
  • Perry JL Reuter KG Kai MP et al. PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics . Nano Lett.12 ( 10 ), 5304 – 5310 ( 2012 ).
  • Kim K Bae B Kang YJ Nam JM Kang S Ryu JH . Natural polypeptide-based supramolecular nanogels for stable noncovalent encapsulation . Biomacromolecules14 ( 10 ), 3515 – 3522 ( 2013 ).
  • Xing T Mao CQ Lai B Yan LF . Synthesis of disulfide-crosslinked polypeptide nanogel conjugated with a near-infrared fluorescence probe for direct imaging of reduction-induced drug release . ACS Appl. Mater. Inter.4 ( 10 ), 5662 – 5672 ( 2012 ).
  • Ferreira SA Gama FM Vilanova M . Polymeric nanogels as vaccine delivery systems . Nanomed. Nanotechnol.9 ( 2 ), 159 – 173 ( 2013 ).
  • Kimoto T Shibuya T Shiobara S . Safety studies of a novel starch, pullulan: chronic toxicity in rats and bacterial mutagenicity . Food Chem. Toxicol.35 ( 3–4 ), 323 – 329 ( 1997 ).
  • Kageyama S Kitano S Hirayama M et al. Humoral immune responses in patients vaccinated with 1–146 HER2 protein complexed with cholesteryl pullulan nanogel . Cancer Sci.99 ( 3 ), 601 – 607 ( 2008 ).
  • Sunamoto J Iwamoto K Takada M Yuzuriha T Katayama K . Improved Drug Delivery to Target Specific Organs Using Liposomes as Coated with Polysaccharides . In: Polymers in Medicine.ChielliniEGiustiP (Eds). Springer , NY, USA , 157 – 168 ( 1983 ).
  • Sunamoto J Sato T Hirota M Fukushima K Hiratani K Hara K . A newly developed immunoliposome – an egg phosphatidylcholine liposome coated with pullulan bearing both a cholesterol moiety and an IgMs fragment . Biochim. Biophys. Acta898 ( 3 ), 323 – 330 ( 1987 ).
  • Akiyoshi K Yamaguchi S Sunamoto J . Self-aggregates of hydrophobic polysaccharide derivatives . Chem Lett.20 ( 7 ), 1263 – 1266 ( 1991 ).
  • Akiyoshi K Sasaki Y Sunamoto J . Molecular chaperone-like activity of hydrogel nanoparticles of hydrophobized pullulan: thermal stabilization with refolding of carbonic anhydrase B . Bioconjug. Chem.10 ( 3 ), 321 – 324 ( 1999 ).
  • Akiyoshi K Kobayashi S Shichibe S et al. Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: complexation and stabilization of insulin . J. Control. Release54 ( 3 ), 313 – 320 ( 1998 ).
  • Nishikawa T Akiyoshi K Sunamoto J . Supramolecular assembly between nanoparticles of hydrophobized polysaccharide and soluble-protein complexation between the self-aggregate of cholesterol-bearing pullulan and alpha-chymotrypsin . Macromolecules27 ( 26 ), 7654 – 7659 ( 1994 ).
  • Ferreira SA Coutinho PJG Gama FM . Synthesis and characterization of self-assembled nanogels made of pullulan . Materials4 ( 4 ), 601 – 620 ( 2011 ).
  • Kumar D Saini N Pandit V Ali S . An insight to pullulan: a biopolymer in pharmaceutical approaches . Int. J. Basic App. Sci.1 ( 3 ) 202 – 219 ( 2012 ).
  • Yang W-Z Zhang Q-Q Chen H-L et al. Preparation and physicochemical characteristics of self-assembled nanoparticles of cholesterol succinate modified pullulan conjugates . In: 7th Asian-Pacific Conference on Medical and Biological Engineering.PengYWengX (Eds). Springer, Berlin Heidelberg , Germany , 13 – 17 ( 2008 ).
  • Polysaccharide produced by aureobasidium pullulans ferm p4257 ii toxicity test and antitumor effect ( 1986 ). http://eurekamag.com/research/032/864/polysaccharide-produced-aureobasidium-pullulans-ferm-p4257-ii-toxicity-test-antitumor-influence.php
  • Trautwein C Boker K Manns MP . Hepatocyte and immune system: acute phase reaction as a contribution to early defence mechanisms . Gut35 ( 9 ), 1163 – 1166 ( 1994 ).
  • Shiku H Wang L Ikuta Y et al. Development of a cancer vaccine: peptides, proteins, and DNA . Cancer Chemother. Pharmacol.46 ( Suppl. ), S77 – S82 ( 2000 ).
  • Ferreira SA Pereira P Sampaio P Coutinho PJG Gama FM . Supramolecular assembled nanogel made of mannan . J. Colloid Interf. Sci.361 ( 1 ), 97 – 108 ( 2011 ).
  • Akiyoshi K Deguchi S Moriguchi N Yamaguchi S Sunamoto J . Self-aggregates of hydrophobized polysaccharides in water – formation and characteristics of nanoparticles . Macromolecules26 ( 12 ), 3062 – 3068 ( 1993 ).
  • Lee KY Jo WH Kwon IC Kim YH Jeong SY . Structural determination and interior polarity of self-aggregates prepared from deoxycholic acid-modified chitosan in water . Macromolecules31 ( 2 ), 378 – 383 ( 1998 ).
  • Lee KY Jo WH Kwon IC Kim YH Jeong SY . Physicochemical characteristics of self-aggregates of hydrophobically modified chitosans . Langmuir14 ( 9 ), 2329 – 2332 ( 1998 ).
  • Baik HJ Oh NM Oh YT et al. 3-Diethylaminopropyl-bearing glycol chitosan as a protein drug carrier . Colloids Surf. B Biointerf.84 ( 2 ), 585 – 590 ( 2011 ).
  • Lee J Lee C Kim TH et al. Self-assembled glycol chitosan nanogels containing palmityl-acylated exendin-4 peptide as a long-acting anti-diabetic inhalation system . J. Control. Release161 ( 3 ), 728 – 734 ( 2012 ).
  • Nakai T Hirakura T Sakurai Y Shimoboji T Ishigai M Akiyoshi K . Injectable hydrogel for sustained protein release by salt-induced association of hyaluronic acid nanogel . Macromol. Biosci.12 ( 4 ), 475 – 483 ( 2012 ).
  • Takahashi H Sawada S Akiyoshi K . Amphiphilic polysaccharide nanoballs: a new building block for nanogel biomedical engineering and artificial chaperones . ACS Nano.5 ( 1 ), 337 – 345 ( 2011 ).
  • Chen W Zheng M Meng F et al. In situ forming reduction-sensitive degradable nanogels for facile loading and triggered intracellular release of proteins . Biomacromolecules14 ( 4 ), 1214 – 1222 ( 2013 ).
  • Rosenbaugh EG Roat JW Gao L et al. The attenuation of central angiotensin II-dependent pressor response and intra-neuronal signaling by intracarotid injection of nanoformulated copper/zinc superoxide dismutase . Biomaterials31 ( 19 ), 5218 – 5226 ( 2010 ).
  • Jung YS Park W Na K . Temperature-modulated noncovalent interaction controllable complex for the long-term delivery of etanercept to treat rheumatoid arthritis . J. Control. Release171 ( 2 ), 143 – 151 ( 2013 ).
  • Choi JH Jang JY Joung YK Kwon MH Park KD . Intracellular delivery and anti-cancer effect of self-assembled heparin-Pluronic nanogels with RNase A . J. Control.147 ( 3 ), 420 – 427 ( 2010 ).
  • Nguyen DH Joung YK Choi JH Moon HT Park KD . Targeting ligand-functionalized and redox-sensitive heparin-Pluronic nanogels for intracellular protein delivery . Biomed. Mater.6 ( 5 ), ( 2011 ).
  • Ozawa Y Sawada S Morimoto N Akiyoshi K . Self-assembled nanogel of hydrophobized dendritic dextrin for protein delivery . Macromol. Biosci.9 ( 7 ), 694 – 701 ( 2009 ).
  • Lim YT Shim SM Noh YW et al. Bioderived polyelectrolyte nanogels for robust antigen loading and vaccine adjuvant effects . Small7 ( 23 ), 3281 – 3286 ( 2011 ).
  • Li P Luo ZC Liu P et al. Bioreducible alginate-poly(ethylenimine) nanogels as an antigen-delivery system robustly enhance vaccine-elicited humoral and cellular immune responses . J. Control. Release168 ( 3 ), 271 – 279 ( 2013 ).
  • Rejinold NS Chennazhi KP Tamura H Nair SV Jayakumar R . Multifunctional chitin nanogels for simultaneous drug delivery, bioimaging, and biosensing . ACS Appl. Mater. Inter.3 ( 9 ), 3654 – 3665 ( 2011 ).
  • Thomann-Harwood LJ Kaeuper P Rossi N Milona P Herrmann B Mccullough KC . Nanogel vaccines targeting dendritic cells: Contributions of the surface decoration and vaccine cargo on cell targeting and activation . J. Control. Release166 ( 2 ), 95 – 105 ( 2013 ).
  • Dionisio M Cordeiro C Remunan-Lopez C Seijo B Da Costa AMR Grenha A . Pullulan-based nanoparticles as carriers for transmucosal protein delivery . Eur. J. Pharm. Sci.50 ( 1 ), 102 – 113 ( 2013 ).
  • Rampino A Borgogna M Blasi P Bellich B Cesaro A . Chitosan nanoparticles: Preparation, size evolution and stability . Int. J. Pharm.455 ( 1–2 ), 219 – 228 ( 2013 ).
  • Steinhilber D Witting M Zhang XJ et al. Surfactant free preparation of biodegradable dendritic polyglycerol nanogels by inverse nanoprecipitation for encapsulation and release of pharmaceutical biomacromolecules . J. Control. Release169 ( 3 ), 289 – 295 ( 2013 ).
  • Chen Y Zheng X Qian H Mao Z Ding D Jiang X . Hollow core-porous shell structure poly(acrylic acid) nanogels with a superhigh capacity of drug loading . ACS Appl. Mater. Interfaces2 ( 12 ), 3532 – 3538 ( 2010 ).
  • Bartlett RL , 2nd Sharma S Panitch A . Cell-penetrating peptides released from thermosensitive nanoparticles suppress pro-inflammatory cytokine response by specifically targeting inflamed cartilage explants . Nanomedicine9 ( 3 ), 419 – 427 ( 2013 ).
  • Smith MH Lyon LA . Tunable Encapsulation of Proteins within Charged Microgels . Macromolecules44 ( 20 ), 8154 – 8160 ( 2011 ).
  • Huang YJ Liu MZ Gao CM et al. Ultra-small and innocuous cationic starch nanospheres: Preparation, characterization and drug delivery study . Int. J. Biol. Macromol.58 , 231 – 239 ( 2013 ).
  • Qiu LY Bae YH . Polymer architecture and drug delivery . Pharmaceut. Res.23 ( 1 ), 1 – 30 ( 2006 ).
  • Nishikawa T Akiyoshi K Sunamoto J . Macromolecular complexation between bovine serum albumin and the self-assembled hydrogel nanoparticle of hydrophobized polysaccharides . J. Am. Chem. Soc.118 ( 26 ), 6110 – 6115 ( 1996 ).
  • Liu ZX Lu DN Yin L et al. Strengthening the stability of a tunnel-shaped homotetramer protein with Nanogels . J. Phys. Chem. B115 ( 28 ), 8875 – 8882 ( 2011 ).
  • Carvalho V Castanheira P Faria TQ et al. Biological activity of heterologous murine interleukin-10 and preliminary studies on the use of a dextrin nanogel as a delivery system . Int. J. Pharm.400 ( 1–2 ), 234 – 242 ( 2010 ).
  • Gonzalez-Toro DC Ryu JH Chacko RT Zhuang JM Thayumanavan S . Concurrent binding and delivery of proteins and lipophilic small molecules using polymeric nanogels . J. Am. Chem. Soc.134 ( 16 ), 6964 – 6967 ( 2012 ).
  • Zhao MX Biswas A Hu BL et al. Redox-responsive nanocapsules for intracellular protein delivery . Biomaterials32 ( 22 ), 5223 – 5230 ( 2011 ).
  • Choi WI Lee JH Kim JY Kim JC Kim YH Tae G . Efficient skin permeation of soluble proteins via flexible and functional nano-carrier . J. Control. Release157 ( 2 ), 272 – 278 ( 2012 ).
  • Kabanov AV Vinogradov SV . Nanogels as pharmaceutical carriers: finite networks of infinite capabilities . Angew. Chem.48 ( 30 ), 5418 – 5429 ( 2009 ).
  • Lee BR Oh KT Baik HJ Youn YS Lee ES . A charge-switched nano-sized polymeric carrier for protein delivery . Int. J. Pharm.392 ( 1–2 ), 78 – 82 ( 2010 ).
  • Jin HQ Tan H Zhao LL et al. Ultrasound-triggered thrombolysis using urokinase-loaded nanogels . Int. J. Pharm.434 ( 1–2 ), 384 – 390 ( 2012 ).
  • Singh S Topuz F Hahn K Albrecht K Groll J . Embedding of active proteins and living cells in redox-sensitive hydrogels and nanogels through enzymatic cross-linking . Angew. Chem. Int. Ed.52 ( 10 ), 3000 – 3003 ( 2013 ).
  • Nagahama K Ouchi T Ohya Y . Biodegradable nanogels prepared by self-assembly of poly(l-lactide)-grafted dextran: entrapment and release of proteins . Macromol. Biosci.8 ( 11 ), 1044 – 1052 ( 2008 ).
  • Sunamoto J Ushio K Hidaka M : US 20070042970 A1 ( 2007 ).
  • Akiyoshi K Kiyono H Yuki Y Nochi T : US 20110206729 A1 ( 2011 ).
  • Xia LW Xie R Ju XJ Wang W Chen QM Chu LY . Nano-structured smart hydrogels with rapid response and high elasticity . Nat. Commun.4 , 2226 ( 2013 ).
  • Yu SY Hu JH Pan XY Yao P Jiang M . Stable and pH-sensitive nanogels prepared by self-assembly of chitosan and ovalbumin . Langmuir22 ( 6 ), 2754 – 2759 ( 2006 ).
  • Tata BVR Brijitta J Joshi RG . Thermo-responsive nanogel dispersions: dynamics and phase behaviour . Int. J. Adv. Eng. Sci. Appl. Math.5 ( 4 ), 240 – 249 ( 2013 ).
  • Lowman AM Morishita M Kajita M Nagai T Peppas NA . Oral delivery of insulin using pH-responsive complexation gels . J. Pharm. Sci.88 ( 9 ), 933 – 937 ( 1999 ).
  • Uesugi Y Kawata H Jo J Saito Y Tabata Y . An ultrasound-responsive nano delivery system of tissue-type plasminogen activator for thrombolytic therapy . J. Control. Release147 ( 2 ), 269 – 277 ( 2010 ).
  • Sasaki Y Akiyoshi K . Development of an artificial chaperone system based on cyclodextrin . Curr. Pharm. Biotechnol.11 ( 3 ), 300 – 305 ( 2010 ).
  • Pan G Guo Q Cao C Yang H Li B . Thermo-responsive molecularly imprinted nanogels for specific recognition and controlled release of proteins . Soft Matter9 ( 14 ), 3840 – 3850 ( 2013 ).
  • Hayashi H Iijima M Kataoka K Nagasaki Y . pH-Sensitive Nanogel Possessing Reactive PEG Tethered Chains on the Surface . Macromolecules37 ( 14 ), 5389 – 5396 ( 2004 ).
  • Majorek KA Porebski PJ Dayal A et al. Structural and immunologic characterization of bovine, horse, and rabbit serum albumins . Mol. Immunol.52 ( 3–4 ), 174 – 182 ( 2012 ).
  • Lin MM Lu DN Zhu JY Yang C Zhang YF Liu Z . Magnetic enzyme nanogel (MENG): a universal synthetic route for biocatalysts . Chem. Commun.48 ( 27 ), 3315 – 3317 ( 2012 ).
  • Zhao MX Hu BL Gu Z Joo KI Wang P Tang Y . Degradable polymeric nanocapsule for efficient intracellular delivery of a high molecular weight tumor-selective protein complex . Nano. Today8 ( 1 ), 11 – 20 ( 2013 ).
  • Li S Meng F Wang Z et al. Biodegradable polymersomes with an ionizable membrane: facile preparation, superior protein loading, and endosomal pH-responsive protein release . Eur. J. Pharm. Biopharm.82 ( 1 ), 103 – 111 ( 2012 ).
  • Shima F Akagi T Uto T Akashi M . Manipulating the antigen-specific immune response by the hydrophobicity of amphiphilic poly(gamma-glutamic acid) nanoparticles . Biomaterials34 ( 37 ), 9709 – 9716 ( 2013 ).
  • Shen JM Xu L Lu Y et al. Chitosan-based luminescent/magnetic hybrid nanogels for insulin delivery, cell imaging, and antidiabetic research of dietary supplements . Int. J. Pharm.427 ( 2 ), 400 – 409 ( 2012 ).
  • Carvalho J Gonçalves C Gil AM Gama FM . Production and characterization of a new dextrin based hydrogel . Eur. Polym. J.43 ( 7 ), 3050 – 3059 ( 2007 ).
  • Carvalho V Castanheira P Madureira P et al. Self-assembled dextrin nanogel as protein carrier: controlled release and biological activity of IL-10 . Biotechnol. Bioeng.108 ( 8 ), 1977 – 1986 ( 2011 ).
  • Hasegawa U Sawada S Shimizu T et al. Raspberry-like assembly of cross-linked nanogels for protein delivery . J. Control. Release140 ( 3 ), 312 – 317 ( 2009 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.