2,205
Views
11
CrossRef citations to date
0
Altmetric
Review

PLGA: a Unique Polymer for Drug Delivery

, , , , &
Pages 41-58 | Published online: 07 Jan 2015

References

  • Biondi M Ungaro F Quaglia F Netti P . Controlled drug delivery in tissue engineering. Adv. Drug Del. Rev.60 (2), 229–242 (2008).
  • Thakral S Thakral N Majumdar D . Eudragit: a technology evaluation. Expert Opin. Drug Deliv.10 (1), 131–149 (2013).
  • Doctor H . Evaluation of various prosthetic material and newer meshes for hernia repairs. J. Minim. Access Surg.2 (3), 110–116 (2006).
  • Acton A . Siloxanes–Advances in Research and Application.Scholarly Editions, Atlanta, Georgia (2013).
  • Deshpande A Heller J Gurny R . Bioerodible polymers for ocular drug delivery. Crit. Rev. Ther. Drug Care Syst.15 (4), 381–420 (1998).
  • Astete C Sabliov C . Synthesis and characterization of PLGA nanoparticles. J. Biomater. Sci. Polym. Ed.17 (3), 247–289 (2006).
  • Ratner B Horbelt T Hoffman A Mallschka S . Cell adhesion to polymeric materials: implication with respect to biocompatibility. J. Biomed. Mater. Res.9, 407–423 (1975).
  • Khatri K Goyal A Vyas S . Potential of nanocarriers in genetic immunization. Recent Pat. Drug Deliv. Formul.2 (1), 68–82 (2008).
  • Postlethwait R . Poly(glycolic acid) surgical suture. Arch. Surg.101, 489–494 (1970).
  • Horton C . Vicryl synthetic absorbable sutures. Am. J. Surg.40, 729–731 (1974).
  • Benicewicz B Oser Z Clemow A Shalaby S . Artificial absorbable ligament or tendon prostheses containing lactide or glycolide-lactide polymeric fibers. European Patent Application 302, 979, (1987).
  • Benicewicz B Shalaby S Clemow A Oser Z . In vitro and in vivo degradation of poly(l-lactide) braided multifilament yarns. In : Agriculture and Synthetic Polymers, GlassJeSwiftG ( Eds). American Chemical Society, Washington DC, USA, Chapter 14 (1990).
  • Hwang N Varghese S Elisseeff J . Controlled differentiation of stem cells. Adv. Drug Del. Rev.60 (2), 199–214 (2008).
  • Ballestrero A Boy D Moran E Cirmena G Brossart P Nencioni A . Immunotherapy with dendritic cells for cancer. Adv. Drug Deliv. Rev.60 (2), 173–183 (2008).
  • Chaubal M . Polylactides/glycolides–excipients for injectable drug delivery and beyond. Drug Deliv. Tech.2, 34–36 (2002).
  • Gupta A Kumar V . New emerging trends in synthetic biodegradable polymers - polylactide: a critique. Eur. Polymer J.43, 4053–4074 (2007).
  • Lewis D . Controlled release of bioactive agents from lactide/glycolide polymers In : Biodegradable Polymers as Drug Delivery Systems, ChasinMLangerR ( Eds). Marcel Dekker, New York, USA (1990).
  • Berkland C Pollauf E Pack D Kim K . Uniform double-walled polymer microspheres of controllable shell thickness. J. Cont. Rel.96, 101–111 (2004).
  • Wako : Biodegradable Polymers (PLA. PLGA) (October 2010), (2010).
  • Durect. Lactel Absorbable Polymers : poly(D,L-lactide-co-glycolide)www.absorbables.com.
  • Wu L Zhang J Jing D Ding J . Wet state mechanical properties of three dimensional polyester porous scaffolds. J. Biomed. Mater. Res. A.76, 264–271 (2006).
  • Graham P Brodbeck K Mchugh A . Phase inversion dynamics of PLGA solutions related to drug delivery. J. Cont. Rel.58, 233–245 (1999).
  • Lamprecht A Ubrich N Perez M Lehr C Hoffman M Maincent P . Influences of process parameters on nanoparticle preparation performed by a double emulsion pressure homogenization technique. Int. J. Pharm.196, 177–182 (2000).
  • Park T . Degradation of poly(lactic- co-glycolic acid) microspheres: effect of copolymer composition. Biomaterials16, 1123–1130 (1995).
  • Makadia H Siegel S . Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers3, 1377–1397 (2011).
  • Lu J Wang X Muller M et al. Current advances in research and clinical applications of PLGA based nanotechnology. 4 (9), 325–341 (2009).
  • Wu H Gopal J Abdelhamid H Hasan N . Quantum dot applications endowing novelty to analytical proteomics. 12 (19–20), 2949–2961 (2012).
  • Cong L Wissner-Gross A . Interrogating single molecules. Recent Pat. Nanotechnol.2 (1), 19–24 (2008).
  • Ranade V . Drug delivery systems: 3A. Role of polymers in drug delivery. J. Clin. Pharmacol.30, 10–23 (1990).
  • Estey T Kang J Schwendeman S Carpenter J . BSA degradation under acidic conditions: a model for protein instability during release from PLGA delivery systems. J. Pharm. Sci.95 (7), 1626–1639 (2006).
  • Leemhuis M Kruijtzer J Nostrum C Hennink W . In vitro hydrolytic degradation of hydroxyl-functionalized poly(r-hydroxy acid)s. Biomacromolecules8, 2943–2949 (2007).
  • Heller J . Fundamentals of polymer science. In : Controlled Drug Delivery: Fundamentals and Applications, RobinsonJrLeeVhl ( Eds). Marcel Dekker, New York, USA139–212 (1987).
  • Luan X Bodmeier R . Influence of the poly(lactide-co-glycolide) type on the leuprolide release from in situ forming microparticle systems. J. Cont. Rel.110 (2), 266–272 (2006).
  • Dong W Körber M López Esguerra V Bodmeier R . Stability of poly(d,l-lactide-co-glycolide) and leuprolide acetate in in-situ forming drug delivery systems. J. Cont. Rel.115 (2), 158–167 (2006).
  • Tsuji H Mizuno A Ikada Y . Properties and morphology of poly(L-lactide). III. Effects of initial crystallinity on long-term in vitro hydrolysis of high molecular weight poly(L-lactide) film in phosphate-buffered solution. J. Appl. Polym. Sci.77, 1452–1464 (2000).
  • Schliecker G Schmidt C Fuchs S Wombacher R Kissel T . Hydrolytic degradation of poly(lactide-co-glycolide) films: effect of oligomers on degradation rate and crystallinity. Int. J. Pharm.266, 39–49 (2003).
  • Park T . Degradation of poly(D,L-lactic acid) microspheres: effect of molecular weight. J. Cont. Rel.30 (2), 161–173 (1994).
  • Liggins R . Paclitaxel loaded poly(L-lactic acid) microspheres: properties of microspheres made with low molecular weight polymers. Int. J. Pharm.222, 19–33 (2001).
  • Holy C . In vitro degradation of a novel poly(lactide-co-glycolide) 75/25 foam. Biomaterials20, 1177–1185 (1999).
  • Zolnik B Burgess D . Effect of acidic pH on PLGA microsphere degradation and release. J. Cont. Rel.122, 338–344 (2007).
  • Frank A Rath S Venkatraman S . Controlled release from bioerodible polymers: effect of drug type and polymer composition. J. Cont. Rel.102, 333–344 (2005).
  • Siegel S Kahn J Metzger K Winey K Werner K Dan N . Effect of drug type on the degradation rate of PLGA matrices. Eur. J. Pharm. Biopharm.64, 287–293 (2006).
  • Grizzi I Garreau H Li S Vert M . Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence. Biomaterials16, 305–311 (1995).
  • Witt C . Morphological characterization of microspheres, films and implants prepared from poly(lactide-co-glycolide) and ABA triblock copolymers: is the erosion controlled by degradation, swelling or diffusion. Eur. J. Pharm. Biopharm.51, 171–181 (2001).
  • Eniola A Hammer D . Characterization of biodegradable drug delivery vehicles with the adhesive properties of leukocytes II. Effect of degradation on targeting activity. Biomaterials26, 661–670 (2005).
  • Jain A Gulbake A Shilpi S Hurkat P Jain S . Peptide and protein delivery using new drug delivery systems. Crit. Rev. Ther. Drug Carrier Syst.30 (4), 293–329 (2013).
  • Houchin M Topp E . Chemical degradation of peptides and proteins in PLGA. A review of reactions and mechanisms. J. Pharm. Sci.97, 2395–2404 (2008).
  • Mahapatro A Singh D . Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J. Nanobiotech.9, 55–66 (2011).
  • Moghimis M Hunter A Murray J . Nanomedicine: current status and future prospects. FASEB J.19 (3), 311–330 (2005).
  • Thompson M . A tremendous research opportunity for analytical chemists. Analyst129, 671–685 (2004).
  • Kumari A Yadav S Yadav S . Biodegradable polymeric nanoparticles based drug delivery systems. Coll. Surf B Interfaces.75, 1–18 (2010).
  • Zambaux M Bonneaux F Gref R et al. Influence of experimental parameters on the chararcteristics of poly (lactic acid) nanoparticles prepared by double emulsion method. J. Control. Release50, 31–40 (1998).
  • Stevanovic M Ignjatovic N Jordovic B Uskokovic D . Stereological analysis of the poly (DL lactide-co glycolide) submicron sphere prepared by solvent/non solvent chemical methods and centrifugal processing. J. Mater. Sci. Mater. Med.18 (7), 1339–1344 (2007).
  • Niwa T Takeuchi H Hinto T Kunou N Kawashima Y . Preparation of biodegradable nanoparticles of water soluble and insoluble drugs with DL lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method and the drug release behaviour. J. Cont. Rel.25, 89–98 (1993).
  • Arshady R . Preparation of biodegradable microspheres and microcapsules: 2.polyactides and related polyesters. J. Cont. Rel.17, 1–21 (1991).
  • Chaisri W Hennink W Okonogi S . Preparation and characterization of cephalexin loaded PLGA microspheres. Curr. Drug Deliv.6, 69–75 (2009).
  • Maos Xu J Cai C Germershaus O Schaper A Kissel T . Effect of wow process parameters onmorphology and burst release of FTIC dextran loaded PLGA microspheres. Int. J. Pharm.334, 137–148 (2007).
  • Thomasin C Merkle H Gander B . Drug microencapsulation by PLA/PLGA coacervation in the light of thermodynamics. Parameters determining microsphere formation. J. Pharm. Sci.87, 269–275 (1998).
  • Edelman R Russell R Losonsky G et al. Immunization of rabbits with enterotoxigenic E. coli colonization factor antigen (CFA/I) encapsulated in biodegradable microspheres of poly (lactide-co-glycolide). Vaccine11, 155–158 (1993).
  • Hua F Park T Lee D . A facile preparation of highly interconnected macroporous poly(D,Llactic acid-co-glycolic acid) (PLGA) scaffolds by liquid-liquid phase separation of a PLGAdioxane-water ternary system. Polymer44, 1911–1920 (2003).
  • Mu L Feng S . Fabrication, characterization and in vitro release of paclitaxel (Taxol®) loaded poly (lactic-co-glycolic acid) microspheres prepared by spray drying technique with lipid/cholesterol emulsifiers. J. Cont. Rel.76, 239–254 (2001).
  • Gavini E Chetoni P Cossu M Alvarez M Saettone M Giunchedi P . PLGA microspheres for the ocular delivery of a peptide drug, vancomycin using emulsification/spray-drying as the preparation method: In vitro/in vivo studies. Eur. J. Pharm. Biopharm.57, 207–212 (2004).
  • Nie H Lee L Tong H Wang C . PLGA/chitosan composites from a combination of spray drying and supercritical fluid foaming techniques: new carriers for DNA delivery. J. Cont. Rel.129, 207–214 (2008).
  • Wagenaar B Muller B . Piroxicam release from spray-dried biodegradable microspheres. Biomaterials15, 49–54 (1994).
  • Castelli F Conti B Conte U Puglisi G . Effect of molecular weight and storage times on tolmetin release from poly-lactide microspheres to lipid model membrane. A calorimetric study. J. Cont. Rel.40, 277–284 (1996).
  • Loscertales I Barrero A Guerrero I Cortijo R Marquez M Ganan-Calvo A . Micro/Nano encapsulation via electrified coaxial liquid jets. Science295, 1695–1698 (2002).
  • Christoper G Raghavan C Siddharth K Kumar M Prasad R . Formulation and optimization of coated PLGA- Zidovudine nanoparticles using factorial design and in vitro in vivo evaluations to determine brain targeting efficiency. Saudi Pharm. J. (2013) ( In Press).
  • Moghimi S Hunter A Murray J . Nanomedicine: current status and future prospects. FASEB J.19 (3), 311–330 (2005).
  • Hans M Lowman A . Biodegradable nanoparticles for drug delivery and targeting. Solid State Mater. Sci.6, 319–327 (2002).
  • Murakami H Kobayashi M Takeuchi H Kawashima Y . Preparation of poly(D,L-lactide-coglycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method. Int. J. Pharm.187, 143–152 (1999).
  • Konan Y Cerny R Favet J Berton M Gurny R Allemann E . Preparation and characterization of sterile sub-200 nm meso-tetra(4-hydroxylphenyl)porphyrin-loaded nanoparticles for photodynamic therapy. Eur. J. Pharm. Biopharm.55, 115–124 (2003).
  • Tom J Debenedetti P . Particle formation with superritical fluids- A review. J. Aerosol. Sci.22, 555–584 (1991).
  • Randolph T Randolph A Mebes M Yeung S . Submicron sized biodegradable particles of poly (L-lactic acid) via the gas antisolvent spray precipitation process. Biotechnol.9, 429–435 (1993).
  • Mishima K Matsuryama K Tanabe D Yamauchi S . Microencapsulation of proteins by rapid expansion of supercritical solution with a non solvent. AIChE J.46, 857–865 (2000).
  • Koushik K Kompella U . Preparation of large porous Deslorelin-PLGA microparticles with reduced residual solvent and cellular uptake using a supercritical carbon dioxide process. Pharm. Res.21, 524–535 (2004).
  • Davies O Lewis A Whitaker M Tai H Shakesheff K Howdle S . Applications of supercritical CO2 in the fabrication of polymer systems for drug delivery and tissue engineering. Adv. Drug Del. Rev.60 (3), 373–387 (2008).
  • Hile D Amirpour M Akgerman A Pishko M . Active growth factor delivery from poly (D,L-lactide-co-glycolide) foams prepared in supercritical CO2. J. Cont. Rel.66, 177–185 (2000).
  • Rabin C Liang Y Ehrlichman R et al. In vitro and in vivo demonstration of risperidone implants in mice. Schizophr Res.98, 66–78 (2008).
  • Widmer M . Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration. Biomaterials19, 1945–1955 (1998).
  • Wang C Wang W Meyer R Liang Y Winey K Siegel S . A rapid method for creating drug implants: translating laboratory-based methods into a scalable manufacturing process. J. Biomed. Mater. Res. Part B Appl. Biomater.93, 562–572 (2010).
  • Alarcon C Pennadam S Alexander C . Stimuli responsive polymers for biomedical applications. Chem. Soc. Rev.34, 276–285 (2005).
  • Sah H . Protein behaviour at the water methylene chloride interface. J. Pharm. Sci.88, 1320–1325 (1999).
  • Veronese F . Peptide and protein pegylation: a review of problems and solutions. Biomaterials22, 405–417 (2001).
  • Vasita R Mani G Aggarwal M Katti D . Degradation behavior of electrospun microfibres of blends of poly (lactide-co-glycolide) and pluronic F-108. Polymer Degradation Stability95, 1605–1613 (2010).
  • Paillard-Giteau A Tran V Thomas O et al. Effect of various additives and polymers on lysozyme release from PLGA microspheres prepared by an s/o/w emulsion technique. Eur. J. Pharma. Biopharm.75, 128–136 (2010).
  • Mundargi R Babu V Rangaswamy V Patel P Aminabhavi T . Nano/micro technologies for delivering macromolecular therapeutics using poly(d,l-lactide-co-glycolide) and its derivatives. J. Cont. Rel.125 (3), 193–209 (2008).
  • Samati Y Yuksel N Tarimci N . Preparation and characterization of poly(D,L-lactic-co-glycolic acid) microspheres containing flurbiprofen sodium. Drug Del.13, 105–111 (2005).
  • Chaudhari K Kumar A Khandelwal V et al. Bone metastasis targeting: a novel approach to reach bone using Zoledronate anchored PLGA nanoparticle as carrier system loaded with Docetaxel. J. Cont. Rel.158, 470–478 (2012).
  • Gaignauxa A Reeffa J Siepmannb F et al. Development and evaluation of sustained-release clonidine-loaded PLGA microparticles. Int. J. Pharm.437, 20–28 (2012).
  • Reyes R Riva B Delgado A Hernandez A Sanchez E Evora C . Effect of triple growth factor controlled delivery by a brushite-PLGA system on a bone defect. Int. J. Care Injured43, 334–342 (2012).
  • Ozekia T Kaneko D Hashizawa K Imai Y Tagami T Okada H . Improvement of survival in C6 rat glioma model by a sustained drug release from localized PLGA microspheres in a thermoreversible hydrogel. Int. J. Pharm.427, 299–304 (2012).
  • Jung M Shim I Chung H et al. Local BMP-7 release from a PLGA scaffolding-matrix for the repair of osteochondral defects in rabbits. J. Cont. Rel.162, 485–491 (2012).
  • Van De Vena H Vermeersch M Matheeussen A et al. PLGA nanoparticles loaded with the antileishmanial saponin β-aes` in vitro efficacy evaluation. Int. J. Pharm.420, 122–132 (2011).
  • Wiebera A Selzera T Kreuter J . Characterisation and stability studies of a hydrophilic decapeptide in different adjuvant drug delivery systems: a comparative study of PLGA nanoparticles versus chitosan-dextran sulphate microparticles versus DOTAP-liposomes. Int. J. Pharm.421, 151–159 (2011).
  • Ungaro F Angelo I Coletta C et al. Dry powders based on PLGA nanoparticles for pulmonary delivery of antibiotics: modulation of encapsulation efficiency, release rate and lung deposition pattern by hydrophilic polymers. J. Cont. Rel.157, 149–159 (2012).
  • Cole A David A Wang J Galbán C Yang V . Magnetic brain tumor targeting and biodistribution of long-circulating PEG-modified, cross-linked starch-coated iron oxide nanoparticles. Biomaterials32 (26), 6291–6301 (2011).
  • Lanao R Leeuwenburgh S Wolke J Jansen J . In vitro degradation rate of apatitic calcium phosphate cement with incorporated PLGA microspheres. Acta Biomat.7, 3459–3468 (2011).
  • Parveen S Sahoo S . Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. Eur. J. Pharmacol.670, 372–383 (2011).
  • Chang-Lin J Attar M Acheampong A et al. Pharmacokinetics and pharmacodynamics of a sustained-release dexamethasone intravitreal implant. Invest. Oph. Vis. Sci.52 (1), 80–86 (2011).
  • Steele T Huang C Widjaja E Boey F Loo J Venkatraman S . The effect of polyethylene glycol structure on paclitaxel drug release and mechanical properties of PLGA thin films. Acta Biomaterialia7, 1973–1983 (2011).
  • Sendil D Bonney I Carr D Lipkowski A Wise D Hasirci V . Antinociceptive effects of hydromorphone, bupivacaine and biphalin released from PLGA polymer after intrathecal implantation in rats. Biomaterials24, 1969–1976 (2003).
  • Fredriksen B Sævareid K Mcauley L Lane M B⊘gwald J Dalmo R . Early immune responses in Atlantic salmon (Salmo salar L.) after immunization with PLGA nanoparticles loaded with a model antigen and β-glucan. Vaccine29, 8338–8349 (2011).
  • Chakravarthi S Robinson D . Enhanced cellular association of paclitaxel delivered in chitosan-PLGA particles. Int. J. Pharm.409, 111–120 (2011).
  • Andreas K Zehbe R Kazubek M et al. Biodegradable insulin-loaded PLGA microspheres fabricated by three different emulsification techniques: Investigation for cartilage tissue engineering. Acta Biomat.7, 1485–1495 (2011).
  • Jensen D Jensen L Koocheki S et al. Design of an inhalable dry powder formulation of DOTAP-modified PLGA nanoparticles loaded with siRNA. J. Cont. Rel.157, 141–148 (2012).
  • Acharya S Sahoo S . PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv. Drug Del. Rev.63, 170–183 (2011).
  • Kocbek P Obermajer N Cegnar M Kos J Kristl J . Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. J. Cont. Rel.120 (1–2), 18–26 (2007).
  • Tahara K Miyazaki Y Kawashima Y Kreuter J Yamamoto H . Brain targetting with surface- modified poly (D,L-lactic-co-glycolic acid) nanoparticles delivered via carotid artery administration. Eur. J. Pharma. Biopharm.77, 84–88 (2011).
  • Lai P Hong D Lin C Chen L Chen W Chu I . Effect of mixing ceramics with a thermosensitive biodegradable hydrogel as composite graft. Composites Part B43, 3088–3095 (2012).
  • Fan D Rosa E Murphy M et al. Mesoporous silicon-PLGA composite microspheres for the double controlled release of biomolecules for orthopedic tissue engineering. Advanced Functional Materials22 (2), 282–293 (2012).
  • Razak S Sharif N Rehman W . Biodegradable polymers and their bone applications: A review. Int. J. Basic Appl. Ssci.12 (1), 31–50 (2012).
  • Niu C Wang Z Lu G et al. Doxorubicin loaded superparamagnetic PLGA iron oxide multifunctional microbubbles for dual mode US/MR imaging and therapy of metastasis in lymph nodes. Biomaterials34, 2307–2317 (2013).
  • Schleich N Sibret P Danhier P et al. Dual anticancer drug/super paramagnetic iron oxide loaded PLGA based nanoparticles for cancer therapy and magnetic resonance imaging. Int. J. Pharm.447, 94–101 (2013).
  • Figueiredo M Esenaliev R . PLGA nanoparticles for ultrasound mediated gene delivery to solid tumors. J. Drug Deliv.2012, 1–12 (2012).
  • Sun B Ranganathan B Feng S . Multifunctional poly (D,L-lactide-co-glycolide)/montmorillonite nanoparticles decorated by Trastuzumab for targeted chemotherapy of breast cancer. Biomaterials29, 475–486 (2008).
  • Pejcic A Kesić L Obradović R Mirković D . Antibiotics in the management of periodontal disease. Scientific Journal of the Faculty of Medicie in NIŠ27 (2), 85–92 (2010).
  • Jain R Shah N Malick A Rhodes C . Controlled drug delivery by biodegradable poly(ester) devices: different preparative approaches. Drug Dev. Ind. Pharm.24 (8), 703–727 (1998).
  • Perugini P Genta I Conti B Modena T Pavanetto F . Periodontal delivery of ipriflavone: new chitosan/PLGA film delivery system for a lipophilic drug. Int. J. Pharm.252, 1–9 (2003).
  • Nafea E Massik M Khordagui L Marej M Khalafallah N . Alendronate PLGA microspheres with high loading efficiency for dental applications. J. Microencapsul.24 (6), 525–538 (2007).
  • Perugini P Simeoni S Scalia B et al. Effect of nanoparticle encapsulation on the photostability of the sunscreen agent, 2-ethylhexyl-p-methoxycinnamate. Int. J. Pharm.246, 37–45 (2002).
  • Tsujimoto H Hara K Tsukada Y et al. Evaluation of the permeability of hair growing ingredient encapsulated PLGA nanospheres to hair follicles and their hair growing effects. Bioorg. Med. Chem. Lett.17, 4771–4777 (2007).
  • Danhier F Ansorena E Silva J Coco R Breton A Preat V . PLGA-based nanoparticles: an overview of biomedical applications. J. Control. Release161, 505–522 (2012).
  • Lever M J . Cardiovascular assist. In : Biomaterials, artificial organs and tissue engineering.HenchLLJonesJR ( Eds). Woodhead publishing limited, Cambridge, England (2005).
  • Klugherz BD Jones PL Cui X . Gene delivery from a DNA controlled-release stent in porcine coronary arteries. Nat. Biotech.18, 1181–1184 (2000).
  • Ganaha F Kao E Y Wong H . Stent-based controlled release of intravascular angiostatin to limit plaque progression and in-stent restenosis. J. Vasc. Interv. Radiol.15, 601–608 (2004).
  • Banai S Gertz S D Gavish L . Tyrphostin AGL-2043 eluting stent reduces neointima formation in porcine coronary arteries. Cardiovasc. Res.64, 165–171 (2004).
  • Kerimoglu O Alarcin E . Poly(lactic-co-glycolic acid) based drug delivery devices for tissue engineering and regenerative medicine. Ankem Dergisi26 (2), 86–98 (2012).
  • Gadad A Vannuruswamy G Sharath C Dandagi P Mastiholimath V . Study of different properties and applications of poylactic-co-glycolic acid(PLGA). Nanotechnology12 (49), 5–23 (2012).
  • Zhu W masaki T Bae Y H Rathi R cheung A K Kern S E . Development of a sustained-release system for perivascular delivery of dipyridamole. J. Biomed. Mater. Res. B Appl. Biomater.77, 135–143 (2004).
  • Tomoda K Terashima H Suzuki K Inagi T Terada H Makino K . Enhanced transdermal delivery of indomethacin using combination of PLGA nanoparticles and iontophoresis in vivo Colloids Surf. B. Biointerfaces92, 50–54 (2012).
  • Luengo J Weiss B Schneider M et al. Influence of nanoencapsulation on human skin transport of flufenamic acid. Skin Pharmacol. Physiol.19 (4), 190–197 (2006).
  • Marimuthu M Bennet D Kim S . Self-assembled nanoparticles of PLGA-conjugated glucosamine as a sustained transdermal drug delivery vehicle. Polymer J.45, 202–209 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.