154
Views
0
CrossRef citations to date
0
Altmetric
Review

Pain Management Via Local Anesthetics and Responsive Hydrogels

, , , , , & show all
Pages 165-176 | Published online: 18 Feb 2015

References

  • Bonica J Loeser JD . Medical evaluation of the patient with pain. In : The Mangement of Pain. BonicaJChapmanCFordyceW ( Eds). Lea & Febiger, Philadelphia, PA, USA, 563–579 (1990).
  • Zarbock SF . Technology + teamwork = success. Home Care Provider4 (2), 56–57 (1999).
  • Woolf CJ Borsook D Koltzenburg M . Mechanism-based classifications of pain and analgesic drug delivery. In : Pain: Current Understanding, Emerging Therapies and Novel Approaches to Drug Discovery. BountraCMunglaniRSchmidtWK ( Eds). Marcel Dekker, New York, NY, USA (2003).
  • Lang JD . PAIN: a prelude. In : Critical Care Clinics. LangJDMcardleP ( Eds). W. B. Saunders Co., Philadelphia, PA, USA, 1–16 (1999).
  • Kotani K . Morphine use for at-home cancer patients in Japan. Tohoku J. Exp. Med.204 (2), 119–123 (2004).
  • Furlan AD Sandoval JA Mailis-Gagnon A Tunks E . Opioids for chronic noncancer pain: a meta-analysis of effectiveness and side effects. CMAJ174 (11), 1589–1594 (2006).
  • Sehgal N Smith HS Manchikanti L . Peripherally acting opioids and clinical implications for pain control. Pain Physician14 (3), 249–258 (2011).
  • White PF . The role of non-opioid analgesic techniques in the management of pain after ambulatory surgery. Anesth. Analg.94 (3), 577–585 (2002).
  • Becker DE Reed KL . Local anesthetics: review of pharmacological considerations. Anesth. Prog.59 (2), 90–101 (2012).
  • Scholz A . Mechanisms of (local) anaesthetics on voltage-gated sodium and other ion channels. Br. J. Anaesth.89 (1), 52–61 (2002).
  • Foley PL Ulery BD Kan HM et al. A chitosan thermogel for delivery of ropivacaine in regional musculoskeletal anesthesia. Biomaterials34 (10), 2539–2546 (2013).
  • Kundu S Achar S . Principles of office anesthesia: part II. Topical anesthesia. Am. Fam. Physician66 (1), 99–102 (2002).
  • Tadicherla S Berman B . Percutaneous dermal drug delivery for local pain control. Ther. Clin. Risk Manag.2 (1), 99–113 (2006).
  • Kravitz ND . The use of compound topical anesthetics: a review. J. Am. Dent. Assoc.138 (10), 1333–1339 (2007).
  • Cheung HM Lee SM Macleod BA Ries CR Schwarz SK . A comparison of the systemic toxicity of lidocaine versus its quaternary derivative QX-314 in mice. Can. J. Anaesth.58 (5), 443–450 (2011).
  • Little C Kelly OJ Jenkins MG Murphy D Mccarron P . The use of topical anaesthesia during repair of minor lacerations in Departments of Emergency Medicine: a literature review. Int. Emerg. Nurs.17 (2), 99–107 (2009).
  • Antil-Delbeke S Gaillard C Tamiya T et al. Molecular determinants by which a long chain toxin from snake venom interacts with the neuronal alpha 7-nicotinic acetylcholine receptor. J. Biol. Chem.275 (38), 29594–29601 (2000).
  • Alkondon M Albuquerque EX . Initial characterization of the nicotinic acetylcholine receptors in rat hippocampal neurons. J. Recept. Res.11 (6), 1001–1021 (1991).
  • Cheng BC Zhou XP Zhu Q et al. Cobratoxin inhibits pain-evoked discharge of neurons in thalamic parafascicular nucleus in rats: involvement of cholinergic and serotonergic systems. Toxicon54 (3), 224–232 (2009).
  • Bogduk N . Practice guidelines: spinal diagnostic & treatment procedures. International Spinal Intervention Society66–86 (2004).
  • Alanmanou E . Diagnostic neural blocks. In : Decision Making in Pain Management, (Second Edition). RogersSran ( Ed.) Philadelphia, PA, USA, 40–41 (2006).
  • Anderson DM Beyer JA . Local anesthetic choice. In : Decision Making in Pain Management (Second Edition). RogersSran ( Ed.) Philadelphia, PA, USA, 238–241 (2006).
  • Chu CR Coyle CH Chu CT et al. In vivo effects of single intra-articular injection of 0.5% bupivacaine on articular cartilage. J. Bone Joint Surg. Am.92 (3), 599–608 (2010).
  • Ilfeld BM Malhotra N Furnish TJ Donohue MC Madison SJ . Liposomal bupivacaine as a single-injection peripheral nerve block: a dose-response study. Anesth. Analg.117 (5), 1248–1256 (2013).
  • Lee KY Mooney DJ . Hydrogels for tissue engineering. Chem. Rev.101 (7), 1869–1879 (2001).
  • Hennink WE Van Nostrum CF . Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev.54 (1), 13–36 (2002).
  • Kost J Langer R . Responsive polymeric delivery systems. Adv. Drug Deliv. Rev.46 (1–3), 125–148 (2001).
  • Spiller KL Laurencin SJ Charlton D Maher SA Lowman AM . Superporous hydrogels for cartilage repair. Evaluation of the morphological and mechanical properties. Acta Biomater.4 (1), 17–25 (2008).
  • Bawa P Pillay V Choonara YE Du Toit LC . Stimuli-responsive polymers and their applications in drug delivery. Biomed. Mater.4 (2), 022001 (2009).
  • He C Kim SW Lee DS . In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J. Control. Release127 (3), 189–207 (2008).
  • Kim B Soo Lee H Kim J Kim SH . Microfluidic fabrication of photo-responsive hydrogel capsules. Chem. Comm.49 (18), 1865–1867 (2013).
  • Calejo MT Sande SA Nystrom B . Thermoresponsive polymers as gene and drug delivery vectors: architecture and mechanism of action. Exp. Opin. Drug Deliv.10 (12), 1669–1686 (2013).
  • Geever LM Cooney CC Lyons JG et al. Characterisation and controlled drug release from novel drug-loaded hydrogels. Eur. J. Pharm. Biopharm.69 (3), 1147–1159 (2008).
  • Prabaharan M Mano JF . Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials. Macromol. Biosci.6 (12), 991–1008 (2006).
  • Garbern JC Hoffman AS Stayton PS . Injectable pH- and temperature-responsive poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers for delivery of angiogenic growth factors. Biomacromolecules11 (7), 1833–1839 (2010).
  • Gil ES Hudson SM . Stimuli-reponsive polymers and their bioconjugates. Prog. Polym. Sci.29 (12), 1173–1222 (2004).
  • Nakayama M Okano T Miyazaki T Kohori F Sakai K Yokoyama M . Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J. Control. Release115 (1), 46–56 (2006).
  • Klouda L Mikos AG . Thermoresponsive hydrogels in biomedical applications. Eur. J. Pharm. Biopharm.68 (1), 34–45 (2008).
  • Eeckman F Moes AJ Amighi K . Poly(N-isopropylacrylamide) copolymers for constant temperature controlled drug delivery. Int. J. Pharm.273 (1–2), 109–119 (2004).
  • Eeckman F Moës AJ Amighi K . Synthesis and characterization of thermosensitive copolymers for oral controlled drug delivery. Eur. Polym. J.40 (4), 873–881 (2004).
  • Kim SJ Lee CK Lee YM Kim SI . Preparation and characterization of thermosensitive poly(N-isopropylacrylamide)/poly(ethylene oxide) semi-interpenetrating polymer networks. J. Appl. Polym. Sci.90 (11), 3032–3036 (2003).
  • Geever LM Devine DM Nugent MJD Kennedy JE Lyons JG Higginbotham CL . The synthesis, characterisation, phase behaviour and swelling of temperature sensitive physically crosslinked poly(1-vinyl-2-pyrrolidinone)/poly(N-isopropylacrylamide) hydrogels. Eur. Polym. J.42 (1), 69–80 (2006).
  • Caykara T Kiper S Demirel G . Thermosensitive poly(N-isopropylacrylamide-co-acrylamide) hydrogels: Synthesis, swelling and interaction with ionic surfactants. Eur. Polym. J.42 (2), 348–355 (2006).
  • Eeckman F Moes AJ Amighi K . Evaluation of a new controlled-drug delivery concept based on the use of thermoresponsive polymers. Int. J. Pharm.241 (1), 113–125 (2002).
  • Liu W Zhang B Lu WW et al. A rapid temperature-responsive sol-gel reversible poly(N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel. Biomaterials25 (15), 3005–3012 (2004).
  • Qiu Y Park K . Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev.53 (3), 321–339 (2001).
  • Tai H Tochwin A Wang W . Thermoresponsive hyperbranched polymers via in situ RAFT copolymerization of peg-based monomethacrylate and dimethacrylate monomers. J. Polym. Sci. Part A Polym. Chem.51 (17), 3751–3761 (2013).
  • Badi N Lutz JF . PEG-based thermogels: applicability in physiological media. J. Control. Release140 (3), 224–229 (2009).
  • Dong Y Gunning P Cao H et al. Dual stimuli responsive PEG based hyperbranched polymers. Polym. Chem.1 (6), 827–830 (2010).
  • Censi R Vermonden T Deschout H et al. Photopolymerized thermosensitive poly(HPMAlactate)-PEG-based hydrogels: effect of network design on mechanical properties, degradation, and release behavior. Biomacromolecules11 (8), 2143–2151 (2010).
  • Dong Y Saeed AO Hassan W et al. “One-step” preparation of thiol-ene clickable PEG-based thermoresponsive hyperbranched copolymer for in situ crosslinking hybrid hydrogel. Macromol. Rapid Commun. doi:10.1002/marc.201100534 (2011) ( Epub ahead of print).
  • Kabanov AV Alakhov VY . Pluronic block copolymers in drug delivery: from micellar nanocontainers to biological response modifiers. Crit. Rev. Ther. Drug Carrier Syst.19 (1), 1–72 (2002).
  • Dumortier G Grossiord JL Agnely F Chaumeil JC . A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm. Res.23 (12), 2709–2728 (2006).
  • Payyappilly S Dhara S Chattopadhyay S . Thermoresponsive biodegradable PEG-PCL-PEG based injectable hydrogel for pulsatile insulin delivery. J. Biomed. Mater. Res. A102 (5), 1500–1509 (2014).
  • Li Z Zhang Z Liu KL Ni X Li J . Biodegradable hyperbranched amphiphilic polyurethane multiblock copolymers consisting of poly(propylene glycol), poly(ethylene glycol), and polycaprolactone as in situ thermogels. Biomacromolecules13 (12), 3977–3989 (2012).
  • Boffito M Sirianni P Di Rienzo AM Chiono V . Thermosensitive block copolymer hydrogels based on poly(varepsilon-caprolactone) and polyethylene glycol for biomedical applications: State of the art and future perspectives. J. Biomed. Mater. Res. A doi:10.1002/jbm.a.35253.(2014) ( Epub ahead of print).
  • Nair LS Starnes T Ko JW Laurencin CT . Development of injectable thermogelling chitosan-inorganic phosphate solutions for biomedical applications. Biomacromolecules8 (12), 3779–3785 (2007).
  • Cho J Heuzey MC Begin A Carreau PJ . Physical gelation of chitosan in the presence of beta-glycerophosphate: the effect of temperature. Biomacromolecules6 (6), 3267–3275 (2005).
  • Suzuki A Toyoichi T . Phase transition in polymer gels induced by visible light. Nature346 (6282), 345–347 (1990).
  • Amini AA Nair LS . Injectable hydrogels for bone and cartilage repair. Biomed. Mater.7 (2), 024105 (2012).
  • Rydholm AE Bowman CN Anseth KS . Degradable thiol-acrylate photopolymers: polymerization and degradation behavior of an in situ forming biomaterial. Biomaterials26 (22), 4495–4506 (2005).
  • Vernon B Tirelli N Bachi T Haldimann D Hubbell JA . Water-borne, in situ crosslinked biomaterials from phase-segregated precursors. J. Biomed. Mater. Res. Part A64 (3), 447–456 (2003).
  • Mchale MK Setton LA Chilkoti A . Synthesis and in vitro evaluation of enzymatically cross-linked elastin-like polypeptide gels for cartilaginous tissue repair. Tissue Eng.11 (11–12), 1768–1779 (2005).
  • Balakrishnan B Jayakrishnan A . Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials26 (18), 3941–3951 (2005).
  • Amini AA Nair LS . Recombinant human lactoferrin as a biomaterial for bone tissue engineering: mechanism of antiapoptotic and osteogenic activity. Adv. Healthc. Mat. (2013).
  • Saeed AO Newland B Pandit A Wang W . The reverse of polymer degradation: in situ crosslinked gel formation through disulfide cleavage. Chem. Commun.48 (4), 585–587 (2012).
  • Chaterji S Kwon IK Park K . Smart polymeric gels: redefining the limits of biomedical devices. Prog. Polym. Sci.32 (8–9), 1083–1122 (2007).
  • Watson P Jones AT Stephens DJ . Intracellular trafficking pathways and drug delivery: fluorescence imaging of living and fixed cells. Adv. Drug Deliv. Rev.57 (1), 43–61 (2005).
  • Schmaljohann D . Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev.58 (15), 1655–1670 (2006).
  • Ramesh Babu V Krishna Rao KSV Sairam M Naidu BVK Hosamani KM Aminabhavi TM . pH sensitive interpenetrating network microgels of sodium alginate-acrylic acid for the controlled release of ibuprofen. J. Appl. Polym. Sci.99 (5), 2671–2678 (2006).
  • Nakamura K Murray RJ Joseph JI Peppas NA Morishita M Lowman AM . Oral insulin delivery using P(MAA-g-EG) hydrogels: effects of network morphology on insulin delivery characteristics. J. Control. Release95 (3), 589–599 (2004).
  • Sethuraman VA Na K Bae YH . pH-responsive sulfonamide/PEI system for tumor specific gene delivery: an in vitro study. Biomacromolecules7 (1), 64–70 (2006).
  • Chen SC Wu YC Mi FL Lin YH Yu LC Sung HW . A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J. Control. Release96 (2), 285–300 (2004).
  • Burke SE Barrett CJ . pH-responsive properties of multilayered poly(L-lysine)/hyaluronic acid surfaces. Biomacromolecules4 (6), 1773–1783 (2003).
  • Park JS Han TH Lee KY et al. N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs: endocytosis, exocytosis and drug release. J. Control. Release115 (1), 37–45 (2006).
  • Hoare TR Kohane DS . Hydrogels in drug delivery: progress and challenges. Polymer49 (8), 1993–2007 (2008).
  • Seol D Magnetta MJ Ramakrishnan PS et al. Biocompatibility and preclinical feasibility tests of a temperature-sensitive hydrogel for the purpose of surgical wound pain control and cartilage repair. J. Biomed. Mater. Res. B Appl. Biomater.101 (8), 1508–1515 (2013).
  • Bernardo MV Blanco MD Olmo R Teijón JM . Delivery of bupivacaine included in poly(acrylamide-co-monomethyl itaconate) hydrogels as a function of the pH swelling medium. J. Appl. Polym. Sci.86 (2), 327–334 (2002).
  • Yin QQ Wu L Gou ML Qian ZY Zhang WS Liu J . Long-lasting infiltration anaesthesia by lidocaine-loaded biodegradable nanoparticles in hydrogel in rats. Acta Anaesthesiol. Scand.53 (9), 1207–1213 (2009).
  • Chen PC Kohane DS Park YJ Bartlett RH Langer R Yang VC . Injectable microparticle-gel system for prolonged and localized lidocaine release. II. In vivo anesthetic effects. J. Biomed. Mater. Res. A70 (3), 459–466 (2004).
  • Jimenez-Kairuz A Allemandi D Manzo RH . Mechanism of lidocaine release from carbomer–lidocaine hydrogels. J. Pharm. Sci.91 (1), 267–272 (2002).
  • Loughlin RG Tunney MM Donnelly RF Murphy DJ Jenkins M Mccarron PA . Modulation of gel formation and drug-release characteristics of lidocaine-loaded poly(vinyl alcohol)-tetraborate hydrogel systems using scavenger polyol sugars. Eur. J. Pharm. Biopharm69 (3), 1135–1146 (2008).
  • Hoare T Young S Lawlor MW Kohane DS . Thermoresponsive nanogels for prolonged duration local anesthesia. Acta Biomater.8 (10), 3596–3605 (2012).
  • Jia X Colombo G Padera R Langer R Kohane DS . Prolongation of sciatic nerve blockade by in situ cross-linked hyaluronic acid. Biomaterials25 (19), 4797–4804 (2004).
  • Hoare T Bellas E Zurakowski D Kohane DS . Rheological blends for drug delivery. II. Prolongation of nerve blockade, biocompatibility, and in vitro-in vivo correlations. J. Biomed. Mater. Res. A92 (2), 586–595 (2010).
  • Pignatello R Basile L Puglisi G . Chitosan glutamate hydrogels with local anesthetic activity for buccal application. Drug deliv.16 (3), 176–181 (2009).
  • McClure JH . Ropivacaine. Br. J. Anaesth.76 (2), 300–307 (1996).
  • Zink W Graf BM . Benefit-risk assessment of ropivacaine in the management of postoperative pain. Drug Saf.27 (14), 1093–1114 (2004).
  • Owen MD Dean LS . Ropivacaine. Expert Opin. Pharmacother.1 (2), 325–336 (2000).
  • Datta S Camann W Bader A Vanderburgh L . Clinical effects and maternal and fetal plasma concentrations of epidural ropivacaine versus bupivacaine for cesarean section. Anesthesiology82 (6), 1346–1352 (1995).
  • Ulery BD Kan HM Williams BA et al. Facile fabrication of polyanhydride/anesthetic nanoparticles with tunable release kinetics. Adv. Healthc. Mater.3 (6), 843–847 (2013).
  • Faucher LD Kleinbeck KR Kao WJ . Multifunctional photopolymerized semiinterpenetrating network (sIPN) system containing bupivacaine and silver sulfadiazine is an effective donor site treatment in a swine model. J. Burn. Care. Res.31 (1), 137–145 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.