73
Views
0
CrossRef citations to date
0
Altmetric
Review

Optically Modulated Cancer Therapeutic Delivery: Past, Present and Future

&
Pages 545-558 | Published online: 22 May 2015

References

  • Maeda H Wu J Sawa T Matsumura Y Hori K . Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control Release65 (1–2), 271–284 (2000).
  • Cuenca AG Jiang H Hochwald SN Delano M Cance WG Grobmyer SR . Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer107 (3), 459–466 (2006).
  • Jain RK . Transport of molecules in the tumor interstitium: a review. Cancer Res.47 (12), 3039–3051 (1987).
  • Matsumura Y Maeda H . A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Res.46 (12), 6387–6392 (1986).
  • Baxter LT Jain RK . Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc. Res.37 (1), 77–104 (1989).
  • Jain RK . Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer Metastasis Rev.9 (3), 253–266 (1990).
  • Slowing II Vivero-Escoto JL Wu C-W Lin VSY . Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev.60 (11), 1278–1288 (2008).
  • Vallet-Regí M Balas F Arcos D . Mesoporous materials for drug delivery. Angew. Chem. Int. Ed.46 (40), 7548–7558 (2007).
  • Huang X Li L Liu T et al. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano5 (7), 5390–5399 (2011).
  • Barenholz Y . Doxil®–The first FDA-approved nano-drug: lessons learned. J. Control. Release160 (2), 117–134 (2012).
  • Ponce AM Vujaskovic Z Yuan F Needham D Dewhirst MW . Hyperthermia mediated liposomal drug delivery. Int. J. Hyperthermia22 (3), 205–213 (2006).
  • Moghimi SM Hunter AC Murray JC . Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev.53 (2), 283–318 (2001).
  • Lemaire V Bélair J Hildgen P . Structural modeling of drug release from biodegradable porous matrices based on a combined diffusion/erosion process. Int. J. Pharm.258 (1–2), 95–107 (2003).
  • Bikram M West JL . Thermo-responsive systems for controlled drug delivery. Exp. Opin. Drug Deliv.5 (10), 1077–1091 (2008).
  • Hirsch LR Gobin AM Lowery AR et al. Metal Nanoshells. Ann. Biomed. Eng.34 (1), 15–22 (2006).
  • Zhang J Noguez C . Plasmonic optical properties and applications of metal nanostructures. Plasmonics3 (4), 127–150 (2008).
  • Kennedy LC Bickford LR Lewinski NA et al. A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small7 (2), 169–183 (2011).
  • Lasic DD . Liposomes: From Physics to Applications. (1st). Elsevier Science Ltd, Amsterdam, Netherlands, 1–575 (1993).
  • Torchilin VP . Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug. Discov.4 (2), 145–160 (2005).
  • Klibanov AL Maruyama K Torchilin VP Huang L . Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett.268 (1), 235–237 (1990).
  • Papahadjopoulos D . Stealth liposomes: From StericStabilization to Targeting. In:Stealth Liposomes.LasicDDMartinFJ ( Eds). CRC Press, Boca RatonFLUSA, 1–7 (1995).
  • Petros RA Desimone JM . Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov.9 (8), 615–627 (2010).
  • Qiu Y Park K . Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev.53 (3), 321–339 (2001).
  • Stuart MA Huck WT Genzer J et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater.9 (2), 101–113 (2010).
  • Niemz MH . Laser-Tissue Interactions:Fundamentals and Applications. (2nd). Springer, Berlin, 1–308 (2004).
  • Weissleder R . A clearer vision for in vivo imaging. Nat. Biotechnol.19 (4), 316–317 (2001).
  • Day ES Morton JG West JL . Nanoparticles for thermal cancer therapy. J. Biomech. Eng.131 (7), (2009).
  • Smith AM Mancini MC Nie S . Bioimaging: second window for in vivo imaging. Nat. Nanotechnol.4 (11), 710–711 (2009).
  • Lu J Choi E Tamanoi F Zink JI . Light-activated nanoimpeller-controlled drug release in cancer cells. Small4 (4), 421–426 (2008).
  • Yuan Q Zhang Y Chen T et al. Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid. ACS Nano6 (7), 6337–6344 (2012).
  • Vivero-Escoto JL Slowing II Wu C-W Lin VSY . Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere. J. Am. Chem. Soc.131 (10), 3462–3463 (2009).
  • Knezevic NZ Lin VSY . A magnetic mesoporous silica nanoparticle-based drug delivery system for photosensitive cooperative treatment of cancer with a mesopore-capping agent and mesopore-loaded drug. Nanoscale5 (4), 1544–1551 (2013).
  • Liu Y-C Le Ny A-LM Schmidt J Talmon Y Chmelka BF Lee CT . Photo-assisted gene delivery using light-responsive catanionic vesicles. Langmuir25 (10), 5713–5724 (2009).
  • Tong R Hemmati HD Langer R Kohane DS . Photoswitchable Nanoparticles for triggered tissue penetration and drug delivery. J. Am. Chem. Soc.134 (21), 8848–8855 (2012).
  • Agasti SS Chompoosor A You CC Ghosh P Kim CK Rotello VM . Photoregulated release of caged anticancer drugs from gold nanoparticles. J. Am. Chem. Soc.131 (16), 5728–5729 (2009).
  • Shamay Y Adar L Ashkenasy G David A . Light induced drug delivery into cancer cells. Biomaterials32 (5), 1377–1386 (2011).
  • Azagarsamy MA Alge DL Radhakrishnan SJ Tibbitt MW Anseth KS . Photocontrolled nanoparticles for on-demand release of proteins. Biomacromolecules13 (8), 2219–2224 (2012).
  • Meng L Huang W Wang D Huang X Zhu X Yan D . Chitosan-based nanocarriers with pH and light dual response for anticancer drug delivery. Biomacromolecules14 (8), 2601–2610 (2013).
  • Jiang J Tong X Morris D Zhao Y . Toward photocontrolled release using light-dissociable block copolymer micelles. Macromolecules39 (13), 4633–4640 (2006).
  • Babin J Pelletier M Lepage M Allard JF Morris D Zhao Y . A new two-photon-sensitive block copolymer nanocarrier. Angew. Chem. Int. Ed.48 (18), 3329–3332 (2009).
  • Lin Q Huang Q Li C et al. Anticancer drug release from a mesoporous silica based nanophotocage regulated by either a one- or two-photon process. J. Am. Chem. Soc.132 (31), 10645–10647 (2010).
  • Hildebrandt B Wust P Ahlers O et al. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol.43 (1), 33–56 (2002).
  • Hahn GM . Potential for therapy of drugs and hyperthermia. Cancer Res.39 (6 Pt 2), 2264–2268 (1979).
  • Marmor JB . Interactions of hyperthermia and chemotherapy in animals. Cancer Res.39 (6 Pt 2), 2269–2276 (1979).
  • Issels RD . Hyperthermia adds to chemotherapy. Eur. J. Cancer44 (17), 2546–2554 (2008).
  • Faraday M . The Bakerian lecture: experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc. London147, 145–181 (1857).
  • Kelly KL Coronado E Zhao LL Schatz GC . The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B107 (3), 668–677 (2002).
  • Qin G Li Z Xia R et al. Partially polymerized liposomes: stable against leakage yet capable of instantaneous release for remote controlled drug delivery. Nanotechnology22 (15), 155605 (2011).
  • Xiao Z Ji C Shi J et al. DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy. Angew. Chem., Int. Ed.51 (47), 11853–11857 (2012).
  • Chang YT Liao PY Sheu HS Tseng YJ Cheng FY Yeh CS . Near-infrared light-responsive intracellular drug and sirna release using au nanoensembles with oligonucleotide-capped silica shell. Adv. Mater.24 (25), 3309–3314 (2012).
  • Yang X Liu X Liu Z Pu F Ren J Qu X . Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles. Adv. Mater.24 (21), 2890–2895 (2012).
  • Yang X Liu Z Li Z Pu F Ren J Qu X . Near-infrared-controlled, targeted hydrophobic drug-delivery system for synergistic cancer therapy. Chem. Eur. J.19 (31), 10388–10394 (2013).
  • Anderson LJE Hansen E Lukianova-Hleb EY Hafner JH Lapotko DO . Optically guided controlled release from liposomes with tunable plasmonic nanobubbles. J. Control. Release144 (2), 151–158 (2010).
  • Park JH Von Maltzahn G Ong LL et al. Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery. Adv. Mater.22 (8), 880–885 (2010).
  • Agarwal A Mackey MA El-Sayed MA Bellamkonda RV . Remote triggered release of doxorubicin in tumors by synergistic application of thermosensitive liposomes and gold nanorods. ACS Nano4919–4926 (2011).
  • Ma Y Liang X Tong S Bao G Ren Q Dai Z . Gold nanoshell nanomicelles for potential magnetic resonance imaging, light-triggered drug release, and photothermal therapy. Adv. Funct. Mat.23 (7), 815–822 (2013).
  • Strong LE Dahotre SN West JL . Hydrogel-nanoparticle composites for optically modulated cancer therapeutic delivery. J. Control. Release178, 63–68 (2014).
  • You J Zhang G Li C . Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano4 (2), 1033–1041 (2010).
  • You J Zhang R Zhang G et al. Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: a platform for near-infrared light-trigged drug release. J. Control. Release158 (2), 319–328 (2012).
  • You J Zhang R Xiong C et al. effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EphB4 receptors in tumors. Cancer Res.72 (18), 4777–4786 (2012).
  • You J Shao R Wei X Gupta S Li C . Near-infrared light triggers release of Paclitaxel from biodegradable microspheres: photothermal effect and enhanced antitumor activity. Small6 (9), 1022–1031 (2010).
  • Yang J Shen D Zhou L et al. Spatially confined fabrication of core–shell gold nanocages@mesoporous silica for near-infrared controlled photothermal drug release. Chem. Mater.25 (15), 3030–3037 (2013).
  • Yavuz MS Cheng Y Chen J et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater.8 (12), 935–939 (2009).
  • Lee SM Park H Choi JW Park YN Yun CO Yoo KH . Multifunctional nanoparticles for targeted chemophotothermal treatment of cancer cells. Angew. Chem. Int. Ed.50 (33), 7581–7586 (2011).
  • Lee S-M Kim HJ Kim SY et al. Drug-loaded gold plasmonic nanoparticles for treatment of multidrug resistance in cancer. Biomaterials35 (7), 2272–2282 (2014).
  • Galaev IY Mattiasson B . ‘Smart’ polymers and what they could do in biotechnology and medicine. Trends Biotechnol.17 (8), 335–340 (1999).
  • Schild HG . Poly(N-isopropylacrylamide): experiment, theory and application. Prog. Polym. Sci.17 (2), 163–249 (1992).
  • Sasak S Kawasaki H Maeda H . Volume phase transition behavior of n-isopropylacrylamide gels as a function of the chemical potential of water molecules. Macromolecules30 (6), 1847–1848 (1996).
  • Jeong B Gutowska A . Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends Biotechnol.20 (7), 305–311 (2002).
  • Yoshida R Sakai K Okano T Sakurai Y . Modulating the phase transition temperature and thermosensitivity in N-isopropylacrylamide copolymer gels. J. Biomater. Sci. Polym. Ed.6 (6), 585–598 (1994).
  • Sershen SR Ng M Halas NJ West JL . Optically controllable materials: Potential valves and actuators in microfluidics and MEMs. Ann. Int. Conf. IEEE Eng. Med. Biol. Proc.3, 1822–1823 (2002).
  • Sershen SR Mensing GA Ng M Halas NJ Beebe DJ West JL . Independent optical control of microfluidic valves formed from optomechnically responsive nanocomposite hydrogels. Adv. Mater.17 (11), 1366–1368 (2005).
  • Satarkar NS Zhang W Eitel RE Hilt JZ . Magnetic hydrogel nanocomposites as remote controlled microfluidic valves. Lab Chip9 (12), 1773–1779 (2009).
  • Kim J Serpe MJ Lyon LA . Photoswitchable microlens arrays. Angew. Chem. Int. Ed.44 (9), 1333–1336 (2005).
  • Zolnik BS Leary PE Burgess DJ . Elevated temperature accelerated release testing of PLGA microspheres. J. Control. Release112 (3), 293–300 (2006).
  • Yang J Lee J Kang J et al. Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer. Adv. Mater.21 (43), 4339–4342 (2009).
  • Park H Yang J Seo S et al. Multifunctional nanoparticles for photothermally controlled drug delivery and magnetic resonance imaging enhancement. Small4 (2), 192–196 (2008).
  • Park H Yang J Lee J Haam S Choi I-H Yoo K-H . Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. ACS Nano3 (10), 2919–2926 (2009).
  • Lee S-M Park H Yoo K-H . Synergistic cancer therapeutic effects of locally delivered drug and heat using multifunctional nanoparticles. Adv. Mater.22 (36), 4049–4053 (2010).
  • Dromi S Frenkel V Luk A et al. Pulsed-high intensity focused ultrasound and low temperature–sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin. Cancer Res.13 (9), 2722–2727 (2007).
  • Needham D Anyarambhatla G Kong G Dewhirst MW . A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res.60 (5), 1197–1201 (2000).
  • Troutman TS Leung SJ Romanowski M . Light-induced content release from plasmon-resonant liposomes. Adv. Mater.21 (22), 2334–2338 (2009).
  • Leung SJ Romanowski M . NIR-activated content release from plasmon resonant liposomes for probing single-cell responses. ACS Nano6 (11), 9383–9391 (2012).
  • Aubel-Sadron G Londos-Gagliardi D . Daunorubicin and doxorubicin, anthracycline antibiotics, a physicochemical and biological review. Biochimie66 (5), 333–352 (1984).
  • Chaires JB Herrera JE Waring MJ . Preferential binding of daunomycin to 5’TACG and 5’TAGC sequences revealed by footprinting titration experiments. Biochemistry29 (26), 6145–6153 (1990).
  • Kim AR Shin SW Cho SW Lee JY Kim DI Um SH . A Light-driven anti-cancer dual-therapeutic cassette enhances solid tumour regression. Adv. Healthc. Mater.2 (9), 1252–1258 (2013).
  • Needham D . Materials engineering of lipid bilayers for drug carrier performance. MRS Bull.24 (10), 32–41 (1999).
  • Weissleder R Ntziachristos V . Shedding light onto live molecular targets. Nat. Med.9 (1), 123–128 (2003).
  • Dong X Mumper RJ . Nanomedicinal strategies to treat multidrug-resistant tumors: current progress. Nanomedicine5 (4), 597–615 (2010).
  • Li S-D Huang L . Pharmacokinetics and biodistribution of nanoparticles. Mol. Pharm.5 (4), 496–504 (2008).
  • Van Vlerken L Vyas T Amiji M . Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm. Res.24 (8), 1405–1414 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.