290
Views
0
CrossRef citations to date
0
Altmetric
Review

Delivery of Drugs Bound to erythrocytes: New Avenues for an Old Intravascular Carrier

, , , , &
Pages 795-826 | Published online: 31 Jul 2015

References

  • Abuchowski A McCoy JR Palczuk NC van Es T Davis FF . Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J. Biol. Chem.252 (11), 3582–3586 (1977).
  • Dumez H Reinhart WH Guetens G de Bruijn EA . Human red blood cells: rheological aspects, uptake, and release of cytotoxic drugs. Crit. Rev. Clin. Lab. Sci.41 (2), 159–188 (2004).
  • Farrell CL Pardridge WM . Blood–brain barrier glucose transporter is asymmetrically distributed on brain capillary endothelial lumenal and ablumenal membranes: an electron microscopic immunogold study. Proc. Natl Acad. Sci. USA88 (13), 5779–5783 (1991).
  • Haspel HC Stephenson KN Davies-Hill T et al. Effects of barbiturates on facilitative glucose transporters are pharmacologically specific and isoform selective. J. Membr. Biol.169 (1), 45–53 (1999).
  • Waite CL Roth CM . Nanoscale drug delivery systems for enhanced drug penetration into solid tumors: current progress and opportunities. Crit. Rev. Biomed. Eng.40 (1), 21–41 (2012).
  • Wang D Pascual JM Yang H et al. Glut-1 deficiency syndrome: clinical, genetic, and therapeutic aspects. Ann. Neurol.57 (1), 111–118 (2005).
  • Yang H Wang D Engelstad K et al. Glut1 deficiency syndrome and erythrocyte glucose uptake assay. Ann. Neurol.70 (6), 996–1005 (2011).
  • Armstead WM Ganguly K Kiessling JW et al. Signaling, delivery and age as emerging issues in the benefit/risk ratio outcome of tPA For treatment of CNS ischemic disorders. J. Neurochem.113 (2), 303–312 (2010).
  • Collen D Lijnen HR . Thrombolytic agents. Thromb. Haemost.93 (4), 627–630 (2005).
  • Farokhzad OC Langer R . Impact of nanotechnology on drug delivery. ACS Nano3 (1), 16–20 (2009).
  • Muro S Garnacho C Champion JA et al. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol. Ther. J. Am. Soc. Gene Ther.16 (8), 1450–1458 (2008).
  • Nordt TK Bode C . Thrombolysis: newer thrombolytic agents and their role in clinical medicine. Heart Br. Card. Soc.89 (11), 1358–1362 (2003).
  • Petros RA DeSimone JM . Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov.9 (8), 615–627 (2010).
  • Shuvaev VV Ilies MA Simone E et al. Endothelial targeting of antibody-decorated polymeric filomicelles. ACS Nano5 (9), 6991–6999 (2011).
  • Magnani M . Erythrocytes as carriers for drugs: the transition from the laboratory to the clinic is approaching. Expert Opin. Biol. Ther.12 (2), 137–138 (2012).
  • Muzykantov VR . Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opin. Drug Deliv.7 (4), 403–427 (2010).
  • Coller BS Springer KT Beer JH et al. Thromboerythrocytes. In vitro studies of a potential autologous, semi-artificial alternative to platelet transfusions. J. Clin. Invest.89 (2), 546–555 (1992).
  • Dale GL Kuhl W Beutler E . Incorporation of glucocerebrosidase into Gaucher's disease monocytes in vitro. Proc. Natl Acad. Sci. USA76 (1), 473–475 (1979).
  • Muzykantov VR Sakharov DV Smirnov MD Samokhin GP Smirnov VN . Immunotargeting of erythrocyte-bound streptokinase provides local lysis of a fibrin clot. Biochim. Biophys. Acta884 (2), 355–362 (1986).
  • Ihler GM Glew RH Schnure FW . Enzyme loading of erythrocytes. Proc. Natl Acad. Sci. USA70 (9), 2663–2666 (1973).
  • Alvarez FJ Herráez A Murciano JC Jordán JA Díez JC Tejedor MC . In vivo survival and organ uptake of loaded carrier rat erythrocytes. J. Biochem. (Tokyo)120 (2), 286–291 (1996).
  • Pérez MT Alvarez FJ García-Pérez AI Lucas L Tejedor MC Sancho P . Heterogeneity of hypotonically loaded rat erythrocyte populations as detected by counter-current distribution in aqueous polymer two-phase systems. J. Chromatogr. B Biomed. Appl.677 (1), 45–51 (1996).
  • Ktavtzoff R Desbois I Doinel C et al. Immunological response to L-asparaginase loaded into red blood cells. Adv. Exp. Med. Biol.326, 175–182 (1992).
  • Rossi L Serafini S Cappellacci L et al. Erythrocyte-mediated delivery of a new homodinucleotide active against human immunodeficiency virus and herpes simplex virus. J. Antimicrob. Chemother.47 (6), 819–827 (2001).
  • Tonetti M Astroff B Satterfield W De Flora A Benatti U DeLoach JR . Construction and characterization of adriamycin-loaded canine red blood cells as a potential slow delivery system. Biotechnol. Appl. Biochem.12 (6), 621–629 (1990).
  • Kim S-H Kim E-J Hou J-H et al. Opsonized erythrocyte ghosts for liver-targeted delivery of antisense oligodeoxynucleotides. Biomaterials30 (5), 959–967 (2009).
  • Teisseire B Ropars C Villeréal MC Nicolau C . Long-term physiological effects of enhanced O2 release by inositol hexaphosphate-loaded erythrocytes. Proc. Natl Acad. Sci. USA84 (19), 6894–6898 (1987).
  • Bax BE Bain MD Fairbanks LD Webster AD Chalmers RA . In vitro and in vivo studies with human carrier erythrocytes loaded with polyethylene glycol-conjugated and native adenosine deaminase. Br. J. Haematol.109 (3), 549–554 (2000).
  • Hambÿe AS Verbeke KA Vandermeiren RP Joosens EJ Verbruggen AM De Roo MJ . Comparison of modified technetium-99m albumin and technetium-99m red blood cells for equilibrium ventriculography. J. Nucl. Med. Off. Publ. Soc. Nucl. Med.38 (10), 1521–1528 (1997).
  • Kravtzoff R Colombat PH Desbois I et al. Tolerance evaluation of L-asparaginase loaded in red blood cells. Eur. J. Clin. Pharmacol.51 (3–4), 221–225 (1996).
  • Kravtzoff R Desbois I Lamagnere JP et al. Improved pharmacodynamics of L-asparaginase-loaded in human red blood cells. Eur. J. Clin. Pharmacol.49 (6), 465–470 (1996).
  • Hamidi M Zarrin A Foroozesh M Mohammadi-Samani S . Applications of carrier erythrocytes in delivery of biopharmaceuticals. J. Control. Release118 (2), 145–160 (2007).
  • Krantz A . Red cell-mediated therapy: opportunities and challenges. Blood Cells. Mol Dis.23 (1), 58–68 (1997).
  • Patel PD Dand N Hirlekar RS Kadam VJ . Drug loaded erythrocytes: as novel drug delivery system. Curr. Pharm. Des.14 (1), 63–70 (2008).
  • Pierigè F Serafini S Rossi L Magnani M . Cell-based drug delivery. Adv. Drug Deliv. Rev.60 (2), 286–295 (2008).
  • Rossi L Serafini S Pierigé F et al. Erythrocyte-based drug delivery. Expert Opin. Drug Deliv.2 (2), 311–322 (2005).
  • Bax BE Bain MD Fairbanks LD et al. A 9-yr evaluation of carrier erythrocyte encapsulated adenosine deaminase (ADA) therapy in a patient with adult-type ADA deficiency. Eur. J. Haematol.79 (4), 338–348 (2007).
  • Bax BE Bain MD Scarpelli M Filosto M Tonin P Moran N . Clinical and biochemical improvements in a patient with MNGIE following enzyme replacement. Neurology81 (14), 1269–1271 (2013).
  • Godfrin Y Horand F Franco R et al. International seminar on the red blood cells as vehicles for drugs. Expert Opin. Biol. Ther.12 (1), 127–133 (2012).
  • Domenech C Thomas X Chabaud S et al. l-asparaginase loaded red blood cells in refractory or relapsing acute lymphoblastic leukaemia in children and adults: results of the GRASPALL 2005–01 randomized trial. Br. J. Haematol.153 (1), 58–65 (2011).
  • Bossa F Latiano A Rossi L et al. Erythrocyte-mediated delivery of dexamethasone in patients with mild-to-moderate ulcerative colitis, refractory to mesalamine: a randomized, controlled study. Am. J. Gastroenterol.103 (10), 2509–2516 (2008).
  • Bossa F Annese V Valvano MR et al. Erythrocytes-mediated delivery of dexamethasone 21-phosphate in steroid-dependent ulcerative colitis: a randomized, double-blind Sham-controlled study. Inflamm. Bowel Dis.19 (9), 1872–1879 (2013).
  • Mohandas N Gallagher PG . Red cell membrane: past, present, and future. Blood112 (10), 3939–3948 (2008).
  • Sosa JM Nielsen ND Vignes SM Chen TG Shevkoplyas SS . The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network. Clin. Hemorheol. Microcirc.57 (3), 275–289 (2013).
  • Tracz MJ Alam J Nath KA . Physiology and pathophysiology of heme: implications for kidney disease. J. Am. Soc. Nephrol.18 (2), 414–420 (2007).
  • Schaer DJ Buehler PW Alayash AI Belcher JD Vercellotti GM . Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood121 (8), 1276–1284 (2013).
  • Janatpour KA Kalmin ND Jensen HM Holland PV . Clinical outcomes of ABO-incompatible RBC transfusions. Am. J. Clin. Pathol.129 (2), 276–281 (2008).
  • Pasini EM Kirkegaard M Mortensen P Lutz HU Thomas AW Mann M . In-depth analysis of the membrane and cytosolic proteome of red blood cells. Blood108 (3), 791–801 (2006).
  • Kalfa TA Pushkaran S Mohandas N et al. Rac GTPases regulate the morphology and deformability of the erythrocyte cytoskeleton. Blood108 (12), 3637–3645 (2006).
  • Vink H Duling BR . Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ. Res.79 (3), 581–589 (1996).
  • Nans A Mohandas N Stokes DL . Native ultrastructure of the red cell cytoskeleton by cryo-electron tomography. Biophys. J.101 (10), 2341–2350 (2011).
  • Sathi A Viswanad V Aneesh TP Kumar BA . Pros and cons of phospholipid asymmetry in erythrocytes. J. Pharm. Bioallied Sci.6 (2), 81–85 (2014).
  • Lubin B Chiu D Bastacky J Roelofsen B Van Deenen LL . Abnormalities in membrane phospholipid organization in sickled erythrocytes. J. Clin. Invest.67 (6), 1643–1649 (1981).
  • An X Mohandas N . Disorders of red cell membrane. Br. J. Haematol.141 (3), 367–375 (2008).
  • Barcellini W Bianchi P Fermo E et al. Hereditary red cell membrane defects: diagnostic and clinical aspects. Blood Transfus. Trasfus. Sangue.9 (3), 274–277 (2011).
  • Reliene R Mariani M Zanella A et al. Splenectomy prolongs in vivo survival of erythrocytes differently in spectrin/ankyrin- and band 3-deficient hereditary spherocytosis. Blood100 (6), 2208–2215 (2002).
  • Ganguly K Murciano J-C Westrick R Leferovich J Cines DB Muzykantov VR . The glycocalyx protects erythrocyte-bound tissue-type plasminogen activator from enzymatic inhibition. J. Pharmacol. Exp. Ther.321 (1), 158–164 (2007).
  • Chang TMS . From artificial red blood cells, oxygen carriers, and oxygen therapeutics to artificial cells, nanomedicine, and beyond. Artif. Cells Blood Substit. Immobil. Biotechnol.40 (3), 197–199 (2012).
  • Habler O Pape A Meier J Zwissler B . [Artificial oxygen carriers as an alternative to red blood cell transfusion]. Anaesthesist54 (8), 741–754 (2005).
  • Zaltzman AB Van den Berg CW Muzykantov VR Morgan BP . Enhanced complement susceptibility of avidin-biotin-treated human erythrocytes is a consequence of neutralization of the complement regulators CD59 and decay accelerating factor. Biochem. J.307 (Pt 3), 651–656 (1995).
  • Oldenborg PA Zheleznyak A Fang YF Lagenaur CF Gresham HD Lindberg FP . Role of CD47 as a marker of self on red blood cells. Science288 (5473), 2051–2054 (2000).
  • Ishikawa-Sekigami T Kaneko Y Okazawa H et al. SHPS-1 promotes the survival of circulating erythrocytes through inhibition of phagocytosis by splenic macrophages. Blood107 (1), 341–348 (2006).
  • Burger P Hilarius-Stokman P de Korte D van den Berg TK van Bruggen R . CD47 functions as a molecular switch for erythrocyte phagocytosis. Blood119 (23), 5512–5521 (2012).
  • Kuriyama T Takenaka K Kohno K et al. Engulfment of hematopoietic stem cells caused by down-regulation of CD47 is critical in the pathogenesis of hemophagocytic lymphohistiocytosis. Blood120 (19), 4058–4067 (2012).
  • Kinoshita T Medof ME Silber R Nussenzweig V . Distribution of decay-accelerating factor in the peripheral blood of normal individuals and patients with paroxysmal nocturnal hemoglobinuria. J. Exp. Med.162 (1), 75–92 (1985).
  • Medof ME Kinoshita T Nussenzweig V . Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (DAF) into their membranes. J. Exp. Med.160 (5), 1558–1578 (1984).
  • Nicholson-Weller A March JP Rosenfeld SI Austen KF . Affected erythrocytes of patients with paroxysmal nocturnal hemoglobinuria are deficient in the complement regulatory protein, decay accelerating factor. Proc. Natl Acad. Sci. USA80 (16), 5066–5070 (1983).
  • Pangburn MK Schreiber RD Müller-Eberhard HJ . Deficiency of an erythrocyte membrane protein with complement regulatory activity in paroxysmal nocturnal hemoglobinuria. Proc. Natl Acad. Sci. USA80 (17), 5430–5434 (1983).
  • Schultz DR . Erythrocyte membrane protein deficiencies in paroxysmal nocturnal hemoglobinuria. Am. J. Med.87 (3N), 22N–29N (1989).
  • Sugita Y Ito K Shiozuka K et al. Recombinant soluble CD59 inhibits reactive haemolysis with complement. Immunology82 (1), 34–41 (1994).
  • Beppu M Mizukami A Nagoya M Kikugawa K . Binding of anti-band 3 autoantibody to oxidatively damaged erythrocytes. Formation of senescent antigen on erythrocyte surface by an oxidative mechanism. J. Biol. Chem.265 (6), 3226–3233 (1990).
  • Galili U Flechner I Knyszynski A Danon D Rachmilewitz EA . The natural anti-alpha-galactosyl IgG on human normal senescent red blood cells. Br. J. Haematol.62 (2), 317–324 (1986).
  • Giger U Sticher B Naef R Burger R Lutz HU . Naturally occurring human anti-band 3 autoantibodies accelerate clearance of erythrocytes in guinea pigs. Blood85 (7), 1920–1928 (1995).
  • Kay MM . Isolation of the phagocytosis-inducing IgG-binding antigen on senescent somatic cells. Nature289 (5797), 491–494 (1981).
  • Cambos M Scorza T . Robust erythrophagocytosis leads to macrophage apoptosis via a hemin-mediated redox imbalance: role in hemolytic disorders. J. Leukoc. Biol.89 (1), 159–171 (2011).
  • Loegering DJ Commins LM Minnear FL Gary LA Hill LA . Effect of Kupffer cell phagocytosis of erythrocytes and erythrocyte ghosts on susceptibility to endotoxemia and bacteremia. Infect. Immun.55 (9), 2074–2080 (1987).
  • Mebius RE Kraal G . Structure and function of the spleen. Nat. Rev. Immunol.5 (8), 606–616 (2005).
  • Alvarez FJ Jordán JA Calleja P et al. Cross-linking treatment of loaded erythrocytes increases delivery of encapsulated substance to macrophages. Biotechnol. Appl. Biochem.27 (Pt 2), 139–143 (1998).
  • Chiarantini L Rossi L Fraternale A Magnani M . Modulated red blood cell survival by membrane protein clustering. Mol. Cell. Biochem.144 (1), 53–59 (1995).
  • Paulitschke M Nash GB Anstee DJ Tanner MJ Gratzer WB . Perturbation of red blood cell membrane rigidity by extracellular ligands. Blood86 (1), 342–348 (1995).
  • Rancourt C Robertson MW Wang M et al. Endothelial cell vehicles for delivery of cytotoxic genes as a gene therapy approach for carcinoma of the ovary. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res.4 (2), 265–270 (1998).
  • Turrini F Arese P Yuan J Low PS . Clustering of integral membrane proteins of the human erythrocyte membrane stimulates autologous IgG binding, complement deposition, and phagocytosis. J. Biol. Chem.266 (35), 23611–23617 (1991).
  • Lisovskaya IL Shcherbachenko IM Volkova RI Ataullakhanov FI . Clotrimazole enhances lysis of human erythrocytes induced by t-BHP. Chem. Biol. Interact.180 (3), 433–439 (2009).
  • Turrini F Mannu F Arese P Yuan J Low PS . Characterization of the autologous antibodies that opsonize erythrocytes with clustered integral membrane proteins. Blood81 (11), 3146–3152 (1993).
  • Geldwerth D Helley D de Jong K et al. Detection of phosphatidylserine surface exposure on human erythrocytes using annexin V-ferrofluid. Biochem. Biophys. Res. Commun.258 (1), 199–203 (1999).
  • Closse C Dachary-Prigent J Boisseau MR . Phosphatidylserine-related adhesion of human erythrocytes to vascular endothelium. Br. J. Haematol.107 (2), 300–302 (1999).
  • Chiarantini L Johnson J Deloach JR . Optimized recirculation survival of mouse carrier erythrocytes. Blood Cells17 (3), 607–617 ; discussion 618–622 (1991).
  • Eichler HG Gasic S Bauer K Korn A Bacher S . In vivo clearance of antibody-sensitized human drug carrier erythrocytes. Clin. Pharmacol. Ther.40 (3), 300–303 (1986).
  • Grover GJ Loegering DJ . Effect of red blood cell stroma on the reticuloendothelial system clearance and killing of Streptococcus pneumoniae. Circ. Shock14 (1), 39–47 (1984).
  • Van Wijk R van Solinge WW . The energy-less red blood cell is lost: erythrocyte enzyme abnormalities of glycolysis. Blood106 (13), 4034–4042 (2005).
  • Dejam A Hunter CJ Pelletier MM et al. Erythrocytes are the major intravascular storage sites of nitrite in human blood. Blood106 (2), 734–739 (2005).
  • Alvarez FJ Jordán JA Herráez A Díez JC Tejedor MC . Hypotonically loaded rat erythrocytes deliver encapsulated substances into peritoneal macrophages. J. Biochem. (Tokyo)123 (2), 233–239 (1998).
  • Humphreys JD Ihler G . Enhanced stability of erythrocyte-entrapped glucocerebrosidase activity. J. Lab. Clin. Med.96 (4), 682–692 (1980).
  • Chiarantini L Antonelli A Rossi L Fraternale A Magnani M . Red blood cell phagocytosis following hexokinase inactivation. Cell Biochem. Funct.12 (3), 217–220 (1994).
  • Franchetti P Cappellacci L Petrelli R et al. Inhibition of HIV-1 replication in macrophages by red blood cell-mediated delivery of a heterodinucleotide of lamivudine and tenofovir. Nucleosides Nucleotides Nucleic Acids26 (8–9), 953–957 (2007).
  • Magnani M Casabianca A Fraternale A et al. Inhibition of murine AIDS by a new azidothymidine homodinucleotide. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol.17 (3), 189–195 (1998).
  • Rossi L Brandi G Schiavano GF et al. Heterodimer-loaded erythrocytes as bioreactors for slow delivery of the antiviral drug azidothymidine and the antimycobacterial drug ethambutol. AIDS Res. Hum. Retroviruses15 (4), 345–353 (1999).
  • Chiarantini L Droleskey R Magnani M DeLoach JR . In vitro targeting of erythrocytes to cytotoxic T-cells by coupling of Thy-1.2 monoclonal antibody. Biotechnol. Appl. Biochem.15 (2), 171–184 (1992).
  • Magnani M Rossi L Fraternale A et al. Erythrocyte-mediated delivery of drugs, peptides and modified oligonucleotides. Gene Ther.9 (11), 749–751 (2002).
  • Mukthavaram R Shi G Kesari S Simberg D . Targeting and depletion of circulating leukocytes and cancer cells by lipophilic antibody-modified erythrocytes. J. Control. Release183, 146–153 (2014).
  • Muzykantov VR Zaltsman AB Smirnov MD Samokhin GP Morgan BP . Target-sensitive immunoerythrocytes: interaction of biotinylated red blood cells with immobilized avidin induces their lysis by complement. Biochim. Biophys. Acta1279 (2), 137–143 (1996).
  • Magnani M Mancini U Bianchi M Fazi A . Comparison of uricase-bound and uricase-loaded erythrocytes as bioreactors for uric acid degradation. Adv. Exp. Med. Biol.326, 189–194 (1992).
  • Muzykantov VR Sakharov DV Domogatsky SP Goncharov NV Danilov SM . Directed targeting of immunoerythrocytes provides local protection of endothelial cells from damage by hydrogen peroxide. Am. J. Pathol.128 (2), 276–285 (1987).
  • Muzykantov VR Smirnov MD Zaltzman AB Samokhin GP . Tannin-mediated attachment of avidin provides complement-resistant immunoerythrocytes that can be lysed in the presence of activator of complement. Anal. Biochem.208 (2), 338–342 (1993).
  • Godfrey W Doe B Wallace EF Bredt B Wofsy L . Affinity targeting of membrane vesicles to cell surfaces. Exp. Cell Res.135 (1), 137–145 (1981).
  • Orr GA . The use of the 2-iminobiotin-avidin interaction for the selective retrieval of labeled plasma membrane components. J. Biol. Chem.256 (2), 761–766 (1981).
  • Roffman E Meromsky L Ben-Hur H Bayer EA Wilchek M . Selective labeling of functional groups on membrane proteins or glycoproteins using reactive biotin derivatives and 125I-streptavidin. Biochem. Biophys. Res. Commun.136 (1), 80–85 (1986).
  • Bayer EA Safars M Wilchek M . Selective labeling of sulfhydryls and disulfides on blot transfers using avidin-biotin technology: studies on purified proteins and erythrocyte membranes. Anal. Biochem.161 (2), 262–271 (1987).
  • Wilchek M Ben-Hur H Bayer EA . p-Diazobenzoyl biocytin–a new biotinylating reagent for the labeling of tyrosines and histidines in proteins. Biochem. Biophys. Res. Commun.138 (2), 872–879 (1986).
  • Muzykantov VR Smirnov MD Klibanov AL . Avidin attachment to red blood cells via a phospholipid derivative of biotin provides complement-resistant immunoerythrocytes. J. Immunol. Methods158 (2), 183–190 (1993).
  • Samokhin GP Smirnov MD Muzykantov VR Domogatsky SP Smirnov VN . Red blood cell targeting to collagen-coated surfaces. FEBS Lett.154 (2), 257–261 (1983).
  • Cowley H Wojda U Cipolone KM Procter JL Stroncek DF Miller JL . Biotinylation modifies red cell antigens. Transfusion39 (2), 163–168 (1999).
  • Magnani M Chiarantini L Mancini U . Preparation and characterization of biotinylated red blood cells. Biotechnol. Appl. Biochem.20 (Pt 3), 335–345 (1994).
  • Magnani M Rossi L D'ascenzo M Panzani I Bigi L Zanella A . Erythrocyte engineering for drug delivery and targeting. Biotechnol. Appl. Biochem.28 (Pt 1), 1–6 (1998).
  • Muzykantov VR Sakharov DV Smirnov MD Domogatsky SP Samokhin GP . Targeting of enzyme immobilized on erythrocyte membrane to collagen-coated surface. FEBS Lett.182 (1), 62–66 (1985).
  • Smirnov MD Samokhin GP Muzykantov VR Idelson GL Domogatsky SP Smirnov VN . Type I and III collagens as a possible target for drug delivery to the injured sites of vascular bed. Biochem. Biophys. Res. Commun.116 (1), 99–105 (1983).
  • Muzykantov VR Smirnov MD Samokhin GP . Streptavidin-induced lysis of homologous biotinylated erythrocytes. Evidence against the key role of the avidin charge in complement activation via the alternative pathway. FEBS Lett.280 (1), 112–114 (1991).
  • Hoffman JF . On red blood cells, hemolysis and resealed ghosts. Adv. Exp. Med. Biol.326, 1–15 (1992).
  • Muzykantov VR Smirnov MD Samokhin GP . Avidin attachment to biotinylated erythrocytes induces homologous lysis via the alternative pathway of complement. Blood78 (10), 2611–2618 (1991).
  • Muzykantov VR Seregina N Smirnov MD . Fast lysis by complement and uptake by liver of avidin-carrying biotinylated erythrocytes. Int. J. Artif. Organs15 (10), 622–627 (1992).
  • Muzykantov VR Smirnov MD Klibanov AL . Avidin attachment to biotinylated amino groups of the erythrocyte membrane eliminates homologous restriction of both classical and alternative pathways of the complement. FEBS Lett.318 (2), 108–112 (1993).
  • Muzykantov VR Murciano JC . Attachment of antibody to biotinylated red blood cells: immuno-red blood cells display high affinity to immobilized antigen and normal biodistribution in rats. Biotechnol. Appl. Biochem.24 (Pt 1), 41–45 (1996).
  • Muzykantov VR Taylor RP . Attachment of biotinylated antibody to red blood cells: antigen-binding capacity of immunoerythrocytes and their susceptibility to lysis by complement. Anal. Biochem.223 (1), 142–148 (1994).
  • Muzykantov VR Smirnov MD Samokhin GP . Avidin acylation prevents the complement-dependent lysis of avidin-carrying erythrocytes. Biochem. J.273 (Pt 2), 393–397 (1991).
  • Muzykantov VR Smirnov MD Samokhin GP . Avidin-induced lysis of biotinylated erythrocytes by homologous complement via the alternative pathway depends on avidin's ability of multipoint binding with biotinylated membrane. Biochim. Biophys. Acta1107 (1), 119–125 (1992).
  • Muzykantov VR Murciano JC Taylor RP Atochina EN Herraez A . Regulation of the complement-mediated elimination of red blood cells modified with biotin and streptavidin. Anal. Biochem.241 (1), 109–119 (1996).
  • Chiarantini L Argnani R Zucchini S et al. Red blood cells as delivery system for recombinant HSV-1 glycoprotein B: immunogenicity and protection in mice. Vaccine15 (3), 276–280 (1997).
  • Smirnov VN Domogatsky SP Dolgov VV et al. Carrier-directed targeting of liposomes and erythrocytes to denuded areas of vessel wall. Proc. Natl Acad. Sci. USA83 (17), 6603–6607 (1986).
  • Gyimesi E Bankovich AJ Schuman TA Goldberg JB Lindorfer MA Taylor RP . Staphylococcus aureus bound to complement receptor 1 on human erythrocytes by bispecific monoclonal antibodies is phagocytosed by acceptor macrophages. Immunol. Lett.95 (2), 185–192 (2004).
  • Kuhn SE Nardin A Klebba PE Taylor RP . Escherichia coli bound to the primate erythrocyte complement receptor via bispecific monoclonal antibodies are transferred to and phagocytosed by human monocytes in an in vitro model. J. Immunol.160 (10), 5088–5097 (1998).
  • Taylor RP Sutherland WM Reist CJ Webb DJ Wright EL Labuguen RH . Use of heteropolymeric monoclonal antibodies to attach antigens to the C3b receptor of human erythrocytes: a potential therapeutic treatment. Proc. Natl Acad. Sci. USA88 (8), 3305–3309 (1991).
  • Spitzer D Unsinger J Bessler M Atkinson JP . ScFv-mediated in vivo targeting of DAF to erythrocytes inhibits lysis by complement. Mol. Immunol.40 (13), 911–919 (2004).
  • Suzuki K Okumura Y . GPI-linked proteins do not transfer spontaneously from erythrocytes to liposomes. New aspects of reorganization of the cell membrane. Biochemistry (Mosc.)39 (31), 9477–9485 (2000).
  • Civenni G Test ST Brodbeck U Bütikofer P . In vitro incorporation of GPI-anchored proteins into human erythrocytes and their fate in the membrane. Blood91 (5), 1784–1792 (1998).
  • Medof ME Nagarajan S Tykocinski ML . Cell-surface engineering with GPI-anchored proteins. FASEB J.10 (5), 574–586 (1996).
  • Hill A Ridley SH Esser D et al. Protection of erythrocytes from human complement-mediated lysis by membrane-targeted recombinant soluble CD59: a new approach to PNH therapy. Blood107 (5), 2131–2137 (2006).
  • Chen R Walter EI Parker G et al. Mammalian glycophosphatidylinositol anchor transfer to proteins and posttransfer deacylation. Proc. Natl Acad. Sci. USA95 (16), 9512–9517 (1998).
  • Kooyman DL Byrne GW McClellan S et al. In vivo transfer of GPI-linked complement restriction factors from erythrocytes to the endothelium. Science269 (5220), 89–92 (1995).
  • Müller M Büchi L Woodtli K Haeberli A Beer JH . Preparation and characterization of “heparinocytes”: erythrocytes with covalently bound low molecular weight heparin. FEBS Lett.468 (2–3), 115–119 (2000).
  • Holvoet P Laroche Y Stassen JM et al. Pharmacokinetic and thrombolytic properties of chimeric plasminogen activators consisting of a single-chain Fv fragment of a fibrin-specific antibody fused to single-chain urokinase. Blood81 (3), 696–703 (1993).
  • Topol EJ Morris DC Smalling RW et al. A multicenter, randomized, placebo-controlled trial of a new form of intravenous recombinant tissue-type plasminogen activator (activase) in acute myocardial infarction. J. Am. Coll. Cardiol.9 (6), 1205–1213 (1987).
  • Narita M Bu G Herz J Schwartz AL . Two receptor systems are involved in the plasma clearance of tissue-type plasminogen activator (t-PA) in vivo. J. Clin. Invest.96 (2), 1164–1168 (1995).
  • Collen D Van Hoef B Schlott B Hartmann M Gührs KH Lijnen HR . Mechanisms of activation of mammalian plasma fibrinolytic systems with streptokinase and with recombinant staphylokinase. Eur. J. Biochem. FEBS216 (1), 307–314 (1993).
  • Holvoet P Dewerchin M Stassen JM et al. Thrombolytic profiles of clot-targeted plasminogen activators. Parameters determining potency and initial and maximal rates. Circulation87 (3), 1007–1016 (1993).
  • Muzykantov VR Barnathan ES Atochina EN Kuo A Danilov SM Fisher AB . Targeting of antibody-conjugated plasminogen activators to the pulmonary vasculature. J. Pharmacol. Exp. Ther.279 (2), 1026–1034 (1996).
  • Runge MS Harker LA Bode C et al. Enhanced thrombolytic and antithrombotic potency of a fibrin-targeted plasminogen activator in baboons. Circulation94 (6), 1412–1422 (1996).
  • Wang YF Tsirka SE Strickland S Stieg PE Soriano SG Lipton SA . Tissue plasminogen activator (tPA) increases neuronal damage after focal cerebral ischemia in wild-type and tPA-deficient mice. Nat. Med.4 (2), 228–231 (1998).
  • Gersh KC Zaitsev S Muzykantov V Cines DB Weisel JW . The spatial dynamics of fibrin clot dissolution catalyzed by erythrocyte-bound vs. free fibrinolytics. J. Thromb. Haemost. JTH8 (5), 1066–1074 (2010).
  • Gersh KC Zaitsev S Cines DB Muzykantov V Weisel JW . Flow-dependent channel formation in clots by an erythrocyte-bound fibrinolytic agent. Blood117 (18), 4964–4967 (2011).
  • Ganguly K Krasik T Medinilla S et al. Blood clearance and activity of erythrocyte-coupled fibrinolytics. J. Pharmacol. Exp. Ther.312 (3), 1106–1113 (2005).
  • Murciano J-C Medinilla S Eslin D Atochina E Cines DB Muzykantov VR . Prophylactic fibrinolysis through selective dissolution of nascent clots by tPA-carrying erythrocytes. Nat. Biotechnol.21 (8), 891–896 (2003).
  • Armstead WM Cines DB Higazi AA-R . Plasminogen activators contribute to impairment of hypercapnic and hypotensive cerebrovasodilation after cerebral hypoxia/ischemia in the newborn pig. Stroke J. Cereb. Circ.36 (10), 2265–2269 (2005).
  • Armstead WM Christine AJ Higazi AA-R Cines DB . Urokinase plasminogen activator impairs SNP and PGE2 cerebrovasodilation after brain injury through activation of LRP and ERK MAPK. J. Neurotrauma25 (11), 1375–1381 (2008).
  • Armstead WM Ganguly K Kiessling JW et al. Red blood cells-coupled tPA prevents impairment of cerebral vasodilatory responses and tissue injury in pediatric cerebral hypoxia/ischemia through inhibition of ERK MAPK activation. J. Cereb. Blood Flow Metab.29 (8), 1463–1474 (2009).
  • Armstead WM Ganguly K Riley J et al. Red blood cell-coupled tissue plasminogen activator prevents impairment of cerebral vasodilatory responses through inhibition of c-Jun-N-terminal kinase and potentiation of p38 mitogen-activated protein kinase after cerebral photothrombosis in the newborn pig. Pediatr. Crit. Care Med.12 (6), e369–e375 (2011).
  • Murciano J-C Higazi AA-R Cines DB Muzykantov VR . Soluble urokinase receptor conjugated to carrier red blood cells binds latent pro-urokinase and alters its functional profile. J. Control. Release139 (3), 190–196 (2009).
  • Danielyan K Ganguly K Ding B-S et al. Cerebrovascular thromboprophylaxis in mice by erythrocyte-coupled tissue-type plasminogen activator. Circulation118 (14), 1442–1449 (2008).
  • Pisapia JM Xu X Kelly J et al. Microthrombosis after experimental subarachnoid hemorrhage: time course and effect of red blood cell-bound thrombin-activated pro-urokinase and clazosentan. Exp. Neurol.233 (1), 357–363 (2012).
  • Stein SC Ganguly K Belfield CM et al. Erythrocyte-bound tissue plasminogen activator is neuroprotective in experimental traumatic brain injury. J. Neurotrauma26 (9), 1585–1592 (2009).
  • Hess C Schifferli JA . Immune adherence revisited: novel players in an old game. News Physiol. Sci.18, 104–108 (2003).
  • Fearon DT . Identification of the membrane glycoprotein that is the C3b receptor of the human erythrocyte, polymorphonuclear leukocyte, B lymphocyte, and monocyte. J. Exp. Med.152 (1), 20–30 (1980).
  • Krych-Goldberg M Atkinson JP . Structure-function relationships of complement receptor type 1. Immunol. Rev.180, 112–122 (2001).
  • Lindorfer MA Hahn CS Foley PL Taylor RP . Heteropolymer-mediated clearance of immune complexes via erythrocyte CR1: mechanisms and applications. Immunol. Rev.183, 10–24 (2001).
  • Nickells M Hauhart R Krych M et al. Mapping epitopes for 20 monoclonal antibodies to CR1. Clin. Exp. Immunol.112 (1), 27–33 (1998).
  • Nardin A Sutherland WM Hevey M Schmaljohn A Taylor RP . Quantitative studies of heteropolymer-mediated binding of inactivated Marburg virus to the complement receptor on primate erythrocytes. J. Immunol. Methods211 (1–2), 21–31 (1998).
  • Taylor RP Reist CJ Sutherland WM Otto A Labuguen RH Wright EL . In vivo binding and clearance of circulating antigen by bispecific heteropolymer-mediated binding to primate erythrocyte complement receptor. J. Immunol.148 (8), 2462–2468 (1992).
  • Repik A Pincus SE Ghiran I et al. A transgenic mouse model for studying the clearance of blood-borne pathogens via human complement receptor 1 (CR1). Clin. Exp. Immunol.140 (2), 230–240 (2005).
  • Reinagel ML Gezen M Ferguson PJ Kuhn S Martin EN Taylor RP . The primate erythrocyte complement receptor (CR1) as a privileged site: binding of immunoglobulin G to erythrocyte CR1 does not target erythrocytes for phagocytosis. Blood89 (3), 1068–1077 (1997).
  • Nardin A Lindorfer MA Taylor RP . How are immune complexes bound to the primate erythrocyte complement receptor transferred to acceptor phagocytic cells?Mol. Immunol.36 (13–14), 827–835 (1999).
  • Craig ML Bankovich AJ Taylor RP . Visualization of the transfer reaction: tracking immune complexes from erythrocyte complement receptor 1 to macrophages. Clin. Immunol.105 (1), 36–47 (2002).
  • Craig ML Waitumbi JN Taylor RP . Processing of C3b-opsonized immune complexes bound to non-complement receptor 1 (CR1) sites on red cells: phagocytosis, transfer, and associations with CR1. J. Immunol.174 (5), 3059–3066 (2005).
  • Taylor RP Ferguson PJ Martin EN et al. Immune complexes bound to the primate erythrocyte complement receptor (CR1) via anti-CR1 mAbs are cleared simultaneously with loss of CR1 in a concerted reaction in a rhesus monkey model. Clin. Immunol. Immunopathol.82 (1), 49–59 (1997).
  • Ferguson PJ Martin EN Greene KL et al. Antigen-based heteropolymers facilitate, via primate erythrocyte complement receptor type 1, rapid erythrocyte binding of an autoantibody and its clearance from the circulation in rhesus monkeys. J. Immunol.155 (1), 339–347 (1995).
  • Lindorfer MA Nardin A Foley PL et al. Targeting of Pseudomonas aeruginosa in the bloodstream with bispecific monoclonal antibodies. J. Immunol.167 (4), 2240–2249 (2001).
  • Reist CJ Liang HY Denny D Martin EN Scheld WM Taylor RP . Cross-linked bispecific monoclonal antibody heteropolymers facilitate the clearance of human IgM from the circulation of squirrel monkeys. Eur. J. Immunol.24 (9), 2018–2025 (1994).
  • Asher DR Cerny AM Finberg RW . The erythrocyte viral trap: transgenic expression of viral receptor on erythrocytes attenuates coxsackievirus B infection. Proc. Natl Acad. Sci. USA102 (36), 12897–12902 (2005).
  • Hahn CS French OG Foley P Martin EN Taylor RP . Bispecific monoclonal antibodies mediate binding of dengue virus to erythrocytes in a monkey model of passive viremia. J. Immunol.166 (2), 1057–1065 (2001).
  • Taylor RP Sutherland WM Martin EN et al. Bispecific monoclonal antibody complexes bound to primate erythrocyte complement receptor 1 facilitate virus clearance in a monkey model. J. Immunol.158 (2), 842–850 (1997).
  • Sharma R Zhao H Al-Saleem FH et al. Mechanisms of enhanced neutralization of botulinum neurotoxin by monoclonal antibodies conjugated to antibodies specific for the erythrocyte complement receptor. Mol. Immunol.57 (2), 247–254 (2014).
  • Craig ML Reinagel ML Martin EN Schlimgen R Nardin A Taylor RP . Infusion of bispecific monoclonal antibody complexes into monkeys provides immunologic protection against later challenge with a model pathogen. Clin. Immunol.92 (2), 170–180 (1999).
  • Ferguson PJ Reist CJ Martin EN et al. Antigen-based heteropolymers. A potential therapy for binding and clearing autoantibodies via erythrocyte CR1. Arthritis Rheum.38 (2), 190–200 (1995).
  • Pincus SE Lukacher N Mohamed N et al. Evaluation of antigen-based heteropolymer for treatment of systemic lupus erythematosus in a nonhuman primate model. Clin. Immunol.105 (2), 141–154 (2002).
  • Buster BL Mattes KA Scheld WM . Monoclonal antibody-mediated, complement-independent binding of human tumor necrosis factor-alpha to primate erythrocytes via complement receptor 1. J. Infect. Dis.176 (4), 1041–1046 (1997).
  • Zaitsev S Danielyan K Murciano J-C et al. Human complement receptor type 1-directed loading of tissue plasminogen activator on circulating erythrocytes for prophylactic fibrinolysis. Blood108 (6), 1895–1902 (2006).
  • Chasis JA Mohandas N . Red blood cell glycophorins. Blood80 (8), 1869–1879 (1992).
  • Reid ME . Some concepts relating to the molecular genetic basis of certain MNS blood group antigens. Transfus. Med. Oxf. Engl.4 (2), 99–111 (1994).
  • Poole J . Red cell antigens on band 3 and glycophorin A. Blood Rev.14 (1), 31–43 (2000).
  • Ugorski M Blackall DP Påhlsson P Shakin-Eshleman SH Moore J Spitalnik SL . Recombinant Miltenberger I and II human blood group antigens: the role of glycosylation in cell surface expression and antigenicity of glycophorin A. Blood82 (6), 1913–1920 (1993).
  • Marchesi VT . The red cell membrane skeleton: recent progress. Blood61 (1), 1–11 (1983).
  • Hillyard CJ Rylatt DB Kemp BE Bundesen PG . Erythrocyte agglutination assay. www.google.com/patents/US5413913.
  • Rozmyslowicz T Donnell ME Spitalnik SL Blackall DP . Recombinant blood group antigens are useful for studying the fine specificity of antibodies against glycophorin A encoded antigens. Transfus. Clin. Biol. J. Société Fr. Transfus. Sang.4 (1), 77–80 (1997).
  • Song SC Xie K Czerwinski M Spitalnik SL Wedekind JE . Purification, crystallization and x-ray diffraction analysis of a recombinant Fab that recognizes a human blood-group antigen. Acta Crystallogr. D Biol. Crystallogr.60 (Pt 4), 788–791 (2004).
  • Czerwinski M Krop-Watorek A Siegel DL Spitalnik SL . A molecular approach for isolating high-affinity Fab fragments that are useful in blood group serology. Transfusion39 (4), 364–371 (1999).
  • Zaitsev S Spitzer D Murciano J-C et al. Sustained thromboprophylaxis mediated by an RBC-targeted pro-urokinase zymogen activated at the site of clot formation. Blood115 (25), 5241–5248 (2010).
  • Ding B-S Gottstein C Grunow A et al. Endothelial targeting of a recombinant construct fusing a PECAM-1 single-chain variable antibody fragment (scFv) with prourokinase facilitates prophylactic thrombolysis in the pulmonary vasculature. Blood106 (13), 4191–4198 (2005).
  • Runge MS Quertermous T Zavodny PJ et al. A recombinant chimeric plasminogen activator with high affinity for fibrin has increased thrombolytic potency in vitro and in vivo. Proc. Natl Acad. Sci. USA88 (22), 10337–10341 (1991).
  • Oudin S Libyh MT Goossens D et al. A soluble recombinant multimeric anti-Rh(D) single-chain Fv/CR1 molecule restores the immune complex binding ability of CR1-deficient erythrocytes. J. Immunol.164 (3), 1505–1513 (2000).
  • Kina T Ikuta K Takayama E et al. The monoclonal antibody TER-119 recognizes a molecule associated with glycophorin A and specifically marks the late stages of murine erythroid lineage. Br. J. Haematol.109 (2), 280–287 (2000).
  • Spitzer D Unsinger J Mao D Wu X Molina H Atkinson JP . In vivo correction of complement regulatory protein deficiency with an inhibitor targeting the red blood cell membrane. J. Immunol.175 (11), 7763–7770 (2005).
  • Spitzer D Wu X Ma X Xu L Ponder KP Atkinson JP . Cutting edge: treatment of complement regulatory protein deficiency by retroviral in vivo gene therapy. J. Immunol.177 (8), 4953–4956 (2006).
  • Zaitsev S Spitzer D Murciano J-C et al. Targeting of a Mutant Plasminogen Activator to Circulating Red Blood Cells for Prophylactic Fibrinolysis. J. Pharmacol. Exp. Ther.332 (3), 1022–1031 (2010).
  • Kumada T Dittman WA Majerus PW . A role for thrombomodulin in the pathogenesis of thrombin-induced thromboembolism in mice. Blood71 (3), 728–733 (1988).
  • Zaitsev S Kowalska MA Neyman M et al. Targeting recombinant thrombomodulin fusion protein to red blood cells provides multifaceted thromboprophylaxis. Blood119 (20), 4779–4785 (2012).
  • Kontos S Kourtis IC Dane KY Hubbell JA . Engineering antigens for in situ erythrocyte binding induces T-cell deletion. Proc. Natl Acad. Sci. USA110 (1), E60–E68 (2013).
  • Reid ME Mohandas N . Red blood cell blood group antigens: structure and function. Semin. Hematol.41 (2), 93–117 (2004).
  • Reid ME Lomas-Francis C Olsson ML . The Blood Group Antigen Factsbook. Elsevier/Academic Press, Amsterdam (2012).
  • Anstee DJ . The relationship between blood groups and disease. Blood115 (23), 4635–4643 (2010).
  • Levine P Stetson RE . AN unusual case of intra-group agglutination. J. Am. Med. Assoc.113 (2), 126–127 (1939).
  • Landsteiner K Wiener AS . An agglutinable factor in human blood recognized by immune sera for rhesus blood. Exp. Biol. Med.43 (1), 223–223 (1940).
  • Avent ND Reid ME . The Rh blood group system: a review. Blood95 (2), 375–387 (2000).
  • Chou ST Westhoff CM . The Rh and RhAG blood group systems. Immunohematol. Am. Red Cross26 (4), 178–186 (2010).
  • Huang CH Chen Y Reid ME Seidl C . Rhnull disease: the amorph type results from a novel double mutation in RhCe gene on D-negative background. Blood92 (2), 664–671 (1998).
  • Mouro-Chanteloup I D'Ambrosio AM Gane P et al. Cell-surface expression of RhD blood group polypeptide is posttranscriptionally regulated by the RhAG glycoprotein. Blood100 (3), 1038–1047 (2002).
  • Chérif-Zahar B Bloy C Le Van Kim C et al. Molecular cloning and protein structure of a human blood group Rh polypeptide. Proc. Natl Acad. Sci. USA87 (16), 6243–6247 (1990).
  • Huang C-H Liu PZ . New insights into the Rh superfamily of genes and proteins in erythroid cells and nonerythroid tissues. Blood Cells. Mol. Dis.27 (1), 90–101 (2001).
  • Chou ST Jackson T Vege S Smith-Whitley K Friedman DF Westhoff CM . High prevalence of red blood cell alloimmunization in sickle cell disease despite transfusion from Rh-matched minority donors. Blood122 (6), 1062–1071 (2013).
  • Rouger P Edelman L . Murine monoclonal antibodies associated with Rh17, Rh29, and Rh46 antigens. Transfusion28 (1), 52–55 (1988).
  • Nash R Shojania AM . Hematological aspect of Rh deficiency syndrome: a case report and a review of the literature. Am. J. Hematol.24 (3), 267–275 (1987).
  • Tilley L Green C Poole J et al. A new blood group system, RHAG: three antigens resulting from amino acid substitutions in the Rh-associated glycoprotein. Vox Sang.98 (2), 151–159 (2010).
  • Gruswitz F Chaudhary S Ho JD et al. Function of human Rh based on structure of RhCG at 2.1 A. Proc. Natl Acad. Sci. USA107 (21), 9638–9643 (2010).
  • Hemker MB Cheroutre G van Zwieten R et al. The Rh complex exports ammonium from human red blood cells. Br. J. Haematol.122 (2), 333–340 (2003).
  • Westhoff CM . Deciphering the function of the Rh family of proteins. Transfusion45 (2 Suppl.), S117–S121 (2005).
  • Parsons SF Gardner B Anstee DJ . Monoclonal antibodies against Kell glycoprotein: serology, immunochemistry and quantification of antigen sites. Transfus. Med. Oxf. Engl.3 (2), 137–142 (1993).
  • Jung HH Danek A Frey BM . McLeod syndrome: a neurohaematological disorder: McLeod syndrome. Vox Sang.93 (2), 112–121 (2007).
  • Tanner MJ . The structure and function of band 3 (AE1): recent developments (review). Mol. Membr. Biol.14 (4), 155–165 (1997).
  • Peters LL Shivdasani RA Liu SC et al. Anion exchanger 1 (band 3) is required to prevent erythrocyte membrane surface loss but not to form the membrane skeleton. Cell86 (6), 917–927 (1996).
  • Bruce LJ Tanner MJ . Erythroid band 3 variants and disease. Baillières Best Pract. Res. Clin. Haematol.12 (4), 637–654 (1999).
  • Figueroa D . The Diego blood group system: a review. Immunohematol. Am. Red Cross29 (2), 73–81 (2013).
  • Reid ME . MNS blood group system: a review. Immunohematol. Am. Red Cross25 (3), 95–101 (2009).
  • Chasis JA Mohandas N Shohet SB . Erythrocyte membrane rigidity induced by glycophorin A-ligand interaction. Evidence for a ligand-induced association between glycophorin A and skeletal proteins. J. Clin. Invest.75 (6), 1919–1926 (1985).
  • Knowles DW Chasis JA Evans EA Mohandas N . Cooperative action between band 3 and glycophorin A in human erythrocytes: immobilization of band 3 induced by antibodies to glycophorin A. Biophys. J.66 (5), 1726–1732 (1994).
  • Greineder CF Howard MD Carnemolla R Cines DB Muzykantov VR . Advanced drug delivery systems for antithrombotic agents. Blood122 (9), 1565–1575 (2013).
  • Rungaldier S Oberwagner W Salzer U Csaszar E Prohaska R . Stomatin interacts with GLUT1/SLC2A1, band 3/SLC4A1, and aquaporin-1 in human erythrocyte membrane domains. Biochim. Biophys. Acta1828 (3), 956–966 (2013).
  • Lomas-Francis C Reid ME . The Dombrock blood group system: a review. Immunohematol. Am. Red Cross26 (2), 71–78 (2010).
  • Ballif BA Helias V Peyrard T et al. Disruption of SMIM1 causes the Vel−blood type. EMBO Mol. Med.5 (5), 751–761 (2013).
  • Storry JR Jöud M Christophersen MK et al. Homozygosity for a null allele of SMIM1 defines the Vel-negative blood group phenotype. Nat. Genet.45 (5), 537–541 (2013).
  • Helias V Saison C Ballif BA et al. ABCB6 is dispensable for erythropoiesis and specifies the new blood group system Langereis. Nat. Genet.44 (2), 170–173 (2012).
  • Sirchia G Zanella A Parravicini A Morelati F Rebulla P Masera G . Red cell alloantibodies in thalassemia major. Results of an Italian cooperative study. Transfusion25 (2), 110–112 (1985).
  • Vichinsky EP Earles A Johnson RA Hoag MS Williams A Lubin B . Alloimmunization in sickle cell anemia and transfusion of racially unmatched blood. N. Engl. J. Med.322 (23), 1617–1621 (1990).
  • Aminoff D Bruegge WF Bell WC Sarpolis K Williams R . Role of sialic acid in survival of erythrocytes in the circulation: interaction of neuraminidase-treated and untreated erythrocytes with spleen and liver at the cellular level. Proc. Natl Acad. Sci. USA74 (4), 1521–1524 (1977).
  • Lenny LL Hurst R Goldstein J Benjamin LJ Jones RL . Single-unit transfusions of RBC enzymatically converted from group B to group O to A and O normal volunteers. Blood77 (6), 1383–1388 (1991).
  • Lenny LL Hurst R Goldstein J Galbraith RA . Transfusions to group O subjects of 2 units of red cells enzymatically converted from group B to group O. Transfusion34 (3), 209–214 (1994).
  • Lenny LL Hurst R Zhu A Goldstein J Galbraith RA . Multiple-unit and second transfusions of red cells enzymatically converted from group B to group O: report on the end of phase 1 trials. Transfusion35 (11), 899–902 (1995).
  • Kruskall MS AuBuchon JP Anthony KY et al. Transfusion to blood group A and O patients of group B RBCs that have been enzymatically converted to group O. Transfusion40 (11), 1290–1298 (2000).
  • Falk P Hoskins LC Lindstedt R Svanborg C Larson G . Deantigenation of human erythrocytes by bacterial glycosidases–evidence for the noninvolvement of medium-sized glycosphingolipids in the Dolichos biflorus lectin hemagglutination. Arch. Biochem. Biophys.290 (2), 312–319 (1991).
  • Goldstein J . Preparation of transfusable red cells by enzymatic conversion. Prog. Clin. Biol. Res.165, 139–157 (1984).
  • Goldstein J . Conversion of ABO blood groups. Transfus. Med. Rev.3 (3), 206–212 (1989).
  • Hata J Dhar M Mitra M et al. Purification and characterization of N-acetyl-alpha-D-galactosaminidase from Gallus domesticus. Biochem. Int.28 (1), 77–86 (1992).
  • Hoskins LC Boulding ET . Changes in immunologic properties of group A RBCs during treatment with an A-degrading exo-α-N-acetylgalactosaminidase. Transfusion41 (7), 908–916 (2001).
  • Hoskins LC Boulding ET Larson G . Purification and characterization of blood group A-degrading isoforms of alpha-N-acetylgalactosaminidase from Ruminococcus torques strain IX-70. J. Biol. Chem.272 (12), 7932–7939 (1997).
  • Hsieh H-Y Smith D . Clostridium perfringens alpha-N-acetylgalactosaminidase blood group A2-degrading activity. Biotechnol. Appl. Biochem.37 (2), 157–163 (2003).
  • Izumi K Yamamoto K Tochikura T Hirabayashi Y . Blood substitutes, present and future perspectives [Internet] α-N-acetylgalactosaminidase from Acremonium sp. Biochim. Biophys. Acta1116 (1), 72–74 (1992).
  • Zhu A Monahan C Wang ZK Goldstein J . Expression, purification, and characterization of recombinant alpha-N-acetylgalactosaminidase produced in the yeast Pichia pastoris. Protein Expr. Purif.8 (4), 456–462 (1996).
  • Liu QP Sulzenbacher G Yuan H et al. Bacterial glycosidases for the production of universal red blood cells. Nat. Biotechnol.25 (4), 454–464 (2007).
  • Olsson ML Clausen H . Modifying the red cell surface: towards an ABO-universal blood supply. Br. J. Haematol.140 (1), 3–12 (2008).
  • Tsuchida E . Blood Substitutes, Present and Future Perspectives [Internet]. Elsevier Science. http://books.google.com/books?id=IvnREjqUiKIC.
  • Armstrong JK Meiselman HJ Fisher TC . Covalent binding of poly(ethylene glycol) (PEG) to the surface of red blood cells inhibits aggregation and reduces low shear blood viscosity. Am. J. Hematol.56 (1), 26–28 (1997).
  • Murad KL Mahany KL Brugnara C Kuypers FA Eaton JW Scott MD . Structural and functional consequences of antigenic modulation of red blood cells with methoxypoly(ethylene glycol). Blood93 (6), 2121–2127 (1999).
  • Scott MD Murad KL Koumpouras F Talbot M Eaton JW . Chemical camouflage of antigenic determinants: stealth erythrocytes. Proc. Natl Acad. Sci. USA94 (14), 7566–7571 (1997).
  • Wang D Kyluik DL Murad KL Toyofuku WM Scott MD . Polymer-mediated immunocamouflage of red blood cells: effects of polymer size on antigenic and immunogenic recognition of allogeneic donor blood cells. Sci. China Life Sci.54 (7), 589–598 (2011).
  • Bradley AJ Murad KL Regan KL Scott MD . Biophysical consequences of linker chemistry and polymer size on stealth erythrocytes: size does matter. Biochim. Biophys. Acta1561 (2), 147–158 (2002).
  • Neu B Armstrong JK Fisher TC Bäumler H Meiselman HJ . Electrophoretic mobility of human red blood cells coated with poly(ethylene glycol). Biorheology38 (5–6), 389–403 (2001).
  • Rossi NAA Constantinescu I Kainthan RK Brooks DE Scott MD Kizhakkedathu JN . Red blood cell membrane grafting of multi-functional hyperbranched polyglycerols. Biomaterials31 (14), 4167–4178 (2010).
  • Liu Z Janzen J Brooks DE . Adsorption of amphiphilic hyperbranched polyglycerol derivatives onto human red blood cells. Biomaterials31 (12), 3364–3373 (2010).
  • Janvier F Zhu JXX Armstrong J Meiselman HJ Cloutier G . Effects of amphiphilic star-shaped poly(ethylene glycol) polymers with a cholic acid core on human red blood cell aggregation. J. Mech. Behav. Biomed. Mater.18, 100–107 (2013).
  • Moghimi SM Hunter AC Dadswell CM Savay S Alving CR Szebeni J . Causative factors behind poloxamer 188 (Pluronic F68, Flocor)-induced complement activation in human sera. A protective role against poloxamer-mediated complement activation by elevated serum lipoprotein levels. Biochim. Biophys. Acta1689 (2), 103–113 (2004).
  • Szebeni J . Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology216 (2–3), 106–121 (2005).
  • Kyluik-Price DL Li L Scott MD . Comparative efficacy of blood cell immunocamouflage by membrane grafting of methoxypoly(ethylene glycol) and polyethyloxazoline. Biomaterials35 (1), 412–422 (2014).
  • Armstrong JK Hempel G Koling S et al. Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer110 (1), 103–111 (2007).
  • Chambers E Mitragotri S . Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes. J. Control. Release100 (1), 111–119 (2004).
  • Anselmo AC Gupta V Zern BJ et al. Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells. ACS Nano7 (12), 11129–11137 (2013).
  • Chen K Merkel TJ Pandya A et al. Low modulus biomimetic microgel particles with high loading of hemoglobin. Biomacromolecules13 (9), 2748–2759 (2012).
  • Doshi N Zahr AS Bhaskar S Lahann J Mitragotri S . Red blood cell-mimicking synthetic biomaterial particles. Proc. Natl Acad. Sci. USA106 (51), 21495–21499 (2009).
  • Merkel TJ Jones SW Herlihy KP et al. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc. Natl. Acad. Sci.108 (2), 586–591 (2011).
  • Rodriguez PL Harada T Christian DA Pantano DA Tsai RK Discher DE . Minimal “self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science339 (6122), 971–975 (2013).
  • Koshida S Asanuma K Kuribayashi K et al. Prevalence of human anti-mouse antibodies (HAMAs) in routine examinations. Clin. Chim. Acta411 (5–6), 391–394 (2010).
  • Kricka LJ . Human anti-animal antibody interferences in immunological assays. Clin. Chem.45 (7), 942–956 (1999).
  • Winter G Milstein C . Man-made antibodies. Nature349 (6307), 293–299 (1991).
  • Bratkovic T . Progress in phage display: evolution of the technique and its application. Cell. Mol. Life Sci. CMLS67 (5), 749–767 (2010).
  • Geyer CR McCafferty J Dübel S Bradbury ARM Sidhu SS . Recombinant antibodies and in vitro selection technologies. Methods Mol. Biol.901, 11–32 (2012).
  • Siegel DL . Phage display-based molecular methods in immunohematology. Transfusion47 (1 Suppl.), S89–S94 (2007).
  • Aitken R . Antibody Phage Display: Methods and Protocols. Humana, NY, USA (2009).
  • Barbas CF . Phage Display: A Laboratory Manual. Cold Spring Harbor Laboratory Press. http://books.google.com/books?id=V7bwAAAAMAAJ.
  • Clackson T Lowman HB . Phage Display: A Practical Approach. Oxford University Press. http://books.google.com/books?id=CQ1rnQEACAAJ.
  • Sidhu SS Geyer CR . Phage Display In Biotechnology and Drug Discovery. Taylor & Francis. http://books.google.com/books?id=_xvXhluNfrkC.
  • Smith GP . Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science228 (4705), 1315–1317 (1985).
  • Burton DR Barbas CF Persson MA Koenig S Chanock RM Lerner RA . A large array of human monoclonal antibodies to type 1 human immunodeficiency virus from combinatorial libraries of asymptomatic seropositive individuals. Proc. Natl Acad. Sci. USA88 (22), 10134–10137 (1991).
  • Persson MA Caothien RH Burton DR . Generation of diverse high-affinity human monoclonal antibodies by repertoire cloning. Proc. Natl Acad. Sci. USA88 (6), 2432–2436 (1991).
  • Chang TY Siegel DL . Genetic and immunological properties of phage-displayed human anti-Rh(D) antibodies: implications for Rh(D) epitope topology. Blood91 (8), 3066–3078 (1998).
  • Chang TY Siegel DL . Isolation of an IgG anti-B from a human Fab-phage display library. Transfusion41 (1), 6–12 (2001).
  • Siegel DL Chang TY Russell SL Bunya VY . Isolation of cell surface-specific human monoclonal antibodies using phage display and magnetically-activated cell sorting: applications in immunohematology. J. Immunol. Methods206 (1–2), 73–85 (1997).
  • Siegel DL Silberstein LE . Expression and characterization of recombinant anti-Rh(D) antibodies on filamentous phage: a model system for isolating human red blood cell antibodies by repertoire cloning. Blood83 (8), 2334–2344 (1994).
  • Klein HG Anstee DJ . Mollison's Blood Transfusion in Clinical Medicine. Wiley, NY, USA (2013).
  • Lloyd C Lowe D Edwards B et al. Modelling the human immune response: performance of a 1011 human antibody repertoire against a broad panel of therapeutically relevant antigens. Protein Eng. Des. Sel. PEDS22 (3), 159–168 (2009).
  • Schofield DJ Pope AR Clementel V et al. Application of phage display to high throughput antibody generation and characterization. Genome Biol.8 (11), R254 (2007).
  • Martineau P . Error-prone polymerase chain reaction for modification of scFvs. In : Methods Mol. Biol.Clifton NJ. 178, 287–294 (2002).
  • Thie H Voedisch B Dübel S Hust M Schirrmann T . Affinity maturation by phage display. In : Therapeutic Antibodies. DimitrovAS ( Ed.). Humana Press, NY, USA, 309–322 (2009).
  • Nishibori N Horiuchi H Furusawa S Matsuda H . Humanization of chicken monoclonal antibody using phage-display system. Mol. Immunol.43 (6), 634–642 (2006).
  • Popkov M Mage RG Alexander CB Thundivalappil S Barbas CF Rader C . Rabbit immune repertoires as sources for therapeutic monoclonal antibodies: the impact of kappa allotype-correlated variation in cysteine content on antibody libraries selected by phage display. J. Mol. Biol.325 (2), 325–335 (2003).
  • Knappik A Ge L Honegger A et al. Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J. Mol. Biol.296 (1), 57–86 (2000).
  • Krebs B Rauchenberger R Reiffert S et al. High-throughput generation and engineering of recombinant human antibodies. J. Immunol. Methods254 (1–2), 67–84 (2001).
  • Jespers LS Roberts A Mahler SM Winter G Hoogenboom HR . Guiding the selection of human antibodies from phage display repertoires to a single epitope of an antigen. Biotechnol. Nat. Publ. Co.12 (9), 899–903 (1994).
  • Osbourn J Groves M Vaughan T . From rodent reagents to human therapeutics using antibody guided selection. Methods San Diego Calif.36 (1), 61–68 (2005).
  • Shi J Kundrat L Pishesha N et al. Engineered red blood cells as carriers for systemic delivery of a wide array of functional probes. Proc. Natl Acad. Sci. USA111 (28), 10131–10136 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.