129
Views
0
CrossRef citations to date
0
Altmetric
Review

Polymer-based Vehicles for Therapeutic Peptide Delivery

, &
Pages 1279-1296 | Published online: 24 Nov 2015

References

  • Uhlig T Kyprianou T Martinelli FG et al. The emergence of peptides in the pharmaceutical business: from exploration to exploitation. EuPA Open Proteom.4, 58–69 (2014).
  • Hummel G Reineke U Reimer U . Translating peptides into small molecules. Mol. Biosyst.2 (10), 499–508 (2006).
  • Loffet A . Peptides as drugs: is there a market?J. Pept. Sci.8, 1–7 (2002).
  • Mcgregor DP . Discovering and improving novel peptide therapeutics. Curr. Opin. Pharmacol.8 (5), 616–619 (2008).
  • Pichereau C Allary C . Therapeutic peptides under the spotlight. Eur. Biopharm. Rev.5, 88–91 (2005).
  • Kaspar AA Reichert JM . Future directions for peptide therapeutics development. Drug Discov. Today18 (17), 807–817 (2013).
  • Fosgerau K Hoffmann T . Peptide therapeutics: current status and future directions. Drug Discov. Today20 (1), 122–128 (2015).
  • Koffeman EC Genovese M Amox D et al. Epitope-specific immunotherapy of rheumatoid arthritis: clinical responsiveness occurs with immune deviation and relies on the expression of a cluster of molecules associated with T cell tolerance in a double-blind, placebo-controlled, pilot Phase II trial. Arthritis Rheum.60 (11), 3207–3216 (2009).
  • Aviles-Olmos I Dickson J Kefalopoulou Z et al. Exenatide and the treatment of patients with Parkinson's disease. J. Clin. Invest.123 (6), 2730 (2013).
  • Colao A Petersenn S Newell-Price J et al. A 12-month Phase 3 study of pasireotide in Cushing's disease. N. Engl. J. Med.366 (10), 914–924 (2012).
  • Lewis AL Richard J . Challenges in the delivery of peptide drugs: an industry perspective. Ther. Deliv.6 (2), 149–163 (2015).
  • Niu CH Chiu YY . FDA perspective on peptide formulation and stability issues. J. Pharm. Sci.87 (11), 1331–1334 (1998).
  • Bernard N Siegel R . Protein and peptide chemical and physical stability. In : Peptide and Protein Drug Analysis. ReidR ( Ed.). Marcel Dekker, NY, USA257–284 (2000).
  • Hamman JH Enslin GM Kotzé AF . Oral delivery of peptide drugs. Biodrugs19 (3), 165–177 (2005).
  • Langguth P Bohner V Heizmann J et al. The challenge of proteolytic enzymes in intestinal peptide delivery. J. Control. Release46 (1), 39–57 (1997).
  • Langer R Folkman J . Polymers for the sustained release of proteins and other macromolecules. Nature263 (5580), 797–800 (1976).
  • Benincasa M Zahariev S Pelillo C Milan A Gennaro R Scocchi M . PEGylation of the peptide Bac7(1–35) reduces renal clearance while retaining antibacterial activity and bacterial cell penetration capacity. Eur. J. Med. Chem.95, 210–219 (2015).
  • Prego C Torres D Fernandez-Megia E Novoa-Carballal R Quiñoá E Alonso M . Chitosan-PEG nanocapsules as new carriers for oral peptide delivery: effect of chitosan pegylation degree. J. Control. Release111 (3), 299–308 (2006).
  • Tan ML Choong PF Dass CR . Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides31 (1), 184–193 (2010).
  • Patel A Cholkar K Mitra AK . Recent developments in protein and peptide parenteral delivery approaches. Ther. Deliv.5 (3), 337–365 (2014).
  • Fonte P Araújo F Silva C et al. Polymer-based nanoparticles for oral insulin delivery: revisited approaches. Biotechnol. Adv.33 (6), 1342–1354 (2015).
  • Sonia T Sharma CP . An overview of natural polymers for oral insulin delivery. Drug Discov. Today17 (13), 784–792 (2012).
  • Herrero EP Alonso MJ Csaba N . Polymer-based oral peptide nanomedicines. Ther. Deliv.3 (5), 657–668 (2012).
  • Fu K Klibanov A Langer R . Protein stability in controlled-release systems. Nat. Biotechnol.18 (1), 24–25 (2000).
  • Pisal DS Kosloski MP Balu-Iyer SV . Delivery of therapeutic proteins. J. Pharm. Sci.99 (6), 2557–2575 (2010).
  • Mishra N Goyal AK Khatri K et al. Biodegradable polymer based particulate carrier (s) for the delivery of proteins and peptides. Antiinflamm. Antiallergy Agents Med. Chem.7 (4), 240–251 (2008).
  • Torchilin V . Intracellular delivery of protein and peptide therapeutics. Drug Discov. Today Technol.5 (2), 95–103 (2008).
  • Shi Y Li L . Current advances in sustained-release systems for parenteral drug delivery. Expert Opin. Drug Deliv.2 (6), 1039–1058 (2005).
  • Takeuchi H Yamamoto H Kawashima Y . Mucoadhesive nanoparticulate systems for peptide drug delivery. Adv. Drug Deliv. Rev.47 (1), 39–54 (2001).
  • Satheesh Kumar P Ramakrishna S Ram Saini T Diwan P . Influence of microencapsulation method and peptide loading on formulation of poly (lactide-co-glycolide) insulin nanoparticles. Pharmazie61 (7), 613–617 (2006).
  • Mundargi RC Babu VR Rangaswamy V Patel P Aminabhavi TM . Nano/micro technologies for delivering macromolecular therapeutics using poly (d, l-lactide-co-glycolide) and its derivatives. J. Control. Release125 (3), 193–209 (2008).
  • Giteau A Venier-Julienne M-C Aubert-Pouëssel A Benoit J-P . How to achieve sustained and complete protein release from PLGA-based microparticles?Int. J. Pharm.350 (1), 14–26 (2008).
  • Van De Weert M Hennink WE Jiskoot W . Protein instability in poly (lactic-co-glycolic acid) microparticles. Pharm. Res.17 (10), 1159–1167 (2000).
  • Tracy M Ward K Firouzabadian L et al. Factors affecting the degradation rate of poly (lactide-co-glycolide) microspheres in vivo and in vitro. Biomaterials20 (11), 1057–1062 (1999).
  • Makadia HK Siegel SJ . Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers3 (3), 1377–1397 (2011).
  • Silva A Rosalia R Sazak A et al. Optimization of encapsulation of a synthetic long peptide in PLGA nanoparticles: low-burst release is crucial for efficient CD8+ T cell activation. Eur. J. Pharm. Biopharm.83 (3), 338–345 (2013).
  • Schwendeman SP Shah RB Bailey BA Schwendeman AS . Injectable controlled release depots for large molecules. J. Control. Release190, 240–253 (2014).
  • Zhu G Mallery SR Schwendeman SP . Stabilization of proteins encapsulated in injectable poly (lactide-co-glycolide). Nat. Biotechnol.18 (1), 52–57 (2000).
  • Kumari A Yadav SK Yadav SC . Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces75 (1), 1–18 (2010).
  • Cruz LJ Tacken PJ Fokkink R et al. Targeted PLGA nano-but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J. Control. Release144 (2), 118–126 (2010).
  • Hu K Shi Y Jiang W Han J Huang S Jiang X . Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: preparation, characterization and efficacy in Parkinson's disease. Int. J. Pharm.415 (1), 273–283 (2011).
  • Freitas S Merkle HP Gander B . Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J. Control. Release102 (2), 313–332 (2005).
  • Dai C Wang B Zhao H . Microencapsulation peptide and protein drugs delivery system. Colloids Surf. B Biointerfaces41 (2), 117–120 (2005).
  • Sah H Chien YW . Drug Delivery And Targeting: For Pharmacists And Pharmaceutical Scientists. CRC Press, FL, USA (2002).
  • Banga AK . Therapeutic Peptides And Proteins: Formulation, Processing, And Delivery Systems. CRC press, FL, USA (2005).
  • Panyam J Labhasetwar V . Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev.55 (3), 329–347 (2003).
  • Danhier F Ansorena E Silva JM Coco R Le Breton A Préat V . PLGA-based nanoparticles: an overview of biomedical applications. J. Control. Release161 (2), 505–522 (2012).
  • Chong CS Cao M Wong WW et al. Enhancement of T helper type 1 immune responses against hepatitis B virus core antigen by PLGA nanoparticle vaccine delivery. J. Control. Release102 (1), 85–99 (2005).
  • Hamdy S Haddadi A Hung RW Lavasanifar A . Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv. Drug Deliv. Rev.63 (10), 943–955 (2011).
  • Zhang Z Tongchusak S Mizukami Y et al. Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials32 (14), 3666–3678 (2011).
  • Cui F Tao A Cun D Zhang L Shi K . Preparation of insulin loaded PLGA-Hp55 nanoparticles for oral delivery. J. Pharm. Sci.96 (2), 421–427 (2007).
  • Zhang X Sun M Zheng A Cao D Bi Y Sun J . Preparation and characterization of insulin-loaded bioadhesive PLGA nanoparticles for oral administration. Eur. J. Pharm. Sci.45 (5), 632–638 (2012).
  • Chen M-C Sonaje K Chen K-J Sung H-W . A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery. Biomaterials32 (36), 9826–9838 (2011).
  • Kawashima Y Yamamoto H Takeuchi H Fujioka S Hino T . Pulmonary delivery of insulin with nebulized DL-lactide/glycolide copolymer (PLGA) nanospheres to prolong hypoglycemic effect. J. Control. Release62 (1), 279–287 (1999).
  • Cui F Shi K Zhang L Tao A Kawashima Y . Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation. J. Control. Release114 (2), 242–250 (2006).
  • Shi K Cui F Yamamoto H Kawashima Y . Optimized preparation of insulin-lauryl sulfate complex loaded poly (lactide-co-glycolide) nanoparticles using response surface methodology. Pharmazie63 (10), 721–725 (2008).
  • Sun S Liang N Piao H Yamamoto H Kawashima Y Cui F . Insulin-SO (sodium oleate) complex-loaded PLGA nanoparticles: formulation, characterization and in vivo evaluation. J. Microencapsul.27 (6), 471–478 (2010).
  • Davaran S Omidi Y Rashidi MR et al. Preparation and in vitro evaluation of linear and star-branched PLGA nanoparticles for insulin delivery. J. Bioact. Compat. Polym.23 (2), 115–131 (2008).
  • Cui J Van Koeverden MP Müllner M Kempe K Caruso F . Emerging methods for the fabrication of polymer capsules. Adv. Colloid Interface Sci.207, 14–31 (2014).
  • Sukhorukov GB Rogach AL Zebli B et al. Nanoengineered polymer capsules: tools for detection, controlled delivery, and site-specific manipulation. Small1 (2), 194–200 (2005).
  • Chong S-F Sexton A De Rose R Kent SJ Zelikin AN Caruso F . A paradigm for peptide vaccine delivery using viral epitopes encapsulated in degradable polymer hydrogel capsules. Biomaterials30 (28), 5178–5186 (2009).
  • Allémann E Leroux J-C Gurny R . Polymeric nano-and microparticles for the oral delivery of peptides and peptidomimetics. Adv. Drug Deliv. Rev.34 (2), 171–189 (1998).
  • Damgé C Vonderscher J Marbach P Pinget M . Poly (alkyl cyanoacrylate) nanocapsules as a delivery system in the rat for octreotide, a long-acting somatostatin analogue. J. Pharm. Pharmacol.49 (10), 949–954 (1997).
  • Graf A Mcdowell A Rades T . Poly (alkycyanoacrylate) nanoparticles for enhanced delivery of therapeutics-is there real potential?Expert Opin. Drug Deliv.6 (4), 371–387 (2009).
  • Damge C Michel C Aprahamian M Couvreur P Devissaguet J . Nanocapsules as carriers for oral peptide delivery. J. Control. Release13 (2), 233–239 (1990).
  • Garcia-Fuentes M Prego C Torres D Alonso M . A comparative study of the potential of solid triglyceride nanostructures coated with chitosan or poly (ethylene glycol) as carriers for oral calcitonin delivery. Eur. J. Pharm. Sci.25 (1), 133–143 (2005).
  • Prego C Torres D Alonso M . Chitosan nanocapsules: a new carrier for nasal peptide delivery. J. Drug Deliv. Sci. Technol.16 (5), 331–337 (2006).
  • Garcia-Fuentes M Alonso MJ . Chitosan-based drug nanocarriers: where do we stand?J. Control. Release161 (2), 496–504 (2012).
  • Jhaveri AM Torchilin VP . Multifunctional polymeric micelles for delivery of drugs and siRNA. Front. Pharmacol.5, 77 (2014).
  • Torchilin VP . Micellar nanocarriers: pharmaceutical perspectives. Pharm. Res.24 (1), 1–16 (2007).
  • Torchilin VP . Structure and design of polymeric surfactant-based drug delivery systems. J. Control. Release73 (2), 137–172 (2001).
  • Allen C Maysinger D Eisenberg A . Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf. B. Biointerfaces16 (1), 3–27 (1999).
  • O'reilly RK Hawker CJ Wooley KL . Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chem. Soc. Rev.35 (11), 1068–1083 (2006).
  • Lim SB Rubinstein I Sadikot RT Artwohl JE Önyüksel H . A novel peptide nanomedicine against acute lung injury: GLP–1 in phospholipid micelles. Pharm. Res.28 (3), 662–672 (2011).
  • Kuzmis A Lim SB Desai E et al. Micellar nanomedicine of human neuropeptide Y. Nanomedicine7 (4), 464–471 (2011).
  • Önyüksel H Séjourné F Suzuki H Rubinstein I . Human VIP-α: a long-acting, biocompatible and biodegradable peptide nanomedicine for essential hypertension. Peptides27 (9), 2271–2275 (2006).
  • Sethi V Rubinstein I Kuzmis A Kastrissios H Artwohl J Onyuksel H . Novel biocompatible, and disease modifying VIP nanomedicine for rheumatoid arthritis. Mol. Pharm.10 (2), 728–738 (2013).
  • Banerjee A Onyuksel H . Peptide delivery using phospholipid micelles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.4 (5), 562–574 (2012).
  • Önyüksel H Ikezaki H Patel M Gao X-P Rubinstein I . A novel formulation of VIP in sterically stabilized micelles amplifies vasodilation in vivo. Pharm. Res.16 (1), 155–160 (1999).
  • Zeng Q Jiang H Wang T Zhang Z Gong T Sun X . Cationic micelle delivery of Trp2 peptide for efficient lymphatic draining and enhanced cytotoxic T-lymphocyte responses. J. Control. Release200, 1–12 (2015).
  • Aliabadi HM Mahmud A Sharifabadi AD Lavasanifar A . Micelles of methoxy poly (ethylene oxide)-b-poly (∊-caprolactone) as vehicles for the solubilization and controlled delivery of cyclosporine A. J. Control. Release104 (2), 301–311 (2005).
  • Mondon K Zeisser-Labouèbe M Gurny R Möller M . Novel cyclosporin A formulations using MPEG-hexyl-substituted polylactide micelles: a suitability study. Eur. J. Pharm. Biopharm.77 (1), 56–65 (2011).
  • Francis MF Lavoie L Winnik FM Leroux J-C . Solubilization of cyclosporin A in dextran-g-polyethyleneglycolalkyl ether polymeric micelles. Eur. J. Pharm. Biopharm.56 (3), 337–346 (2003).
  • Aliabadi HM Brocks DR Lavasanifar A . Polymeric micelles for the solubilization and delivery of cyclosporine A: pharmacokinetics and biodistribution. Biomaterials26 (35), 7251–7259 (2005).
  • Xiong XY Li YP Li ZL et al. Vesicles from pluronic/poly (lactic acid) block copolymers as new carriers for oral insulin delivery. J. Control. Release120 (1), 11–17 (2007).
  • Cooper C Dubin P Kayitmazer A Turksen S . Polyelectrolyte-protein complexes. Curr. Opin. Colloid & Interface Sci.10 (1), 52–78 (2005).
  • Hartig SM Greene RR Dikov MM Prokop A Davidson JM . Multifunctional nanoparticulate polyelectrolyte complexes. Pharm. Res.24 (12), 2353–2369 (2007).
  • Goycoolea FM Lollo G Remunan-Lopez C Quaglia F Alonso MJ . Chitosan-alginate blended nanoparticles as carriers for the transmucosal delivery of macromolecules. Biomacromolecules10 (7), 1736–1743 (2009).
  • Huang M Vitharana SN Peek LJ Coop T Berkland C . Polyelectrolyte complexes stabilize and controllably release vascular endothelial growth factor. Biomacromolecules8 (5), 1607–1614 (2007).
  • Griffiths PC Mauro N Murphy DM et al. Self-assembled PAA-based nanoparticles as potential gene and protein delivery systems. Macromol. Biosci.13 (5), 641–649 (2013).
  • Mao S Bakowsky U Jintapattanakit A Kissel T . Self-assembled polyelectrolyte nanocomplexes between chitosan derivatives and insulin. J. Pharm. Sci.95 (5), 1035–1048 (2006).
  • Sarmento B Ribeiro A Veiga F Sampaio P Neufeld R Ferreira D . Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm. Res.24 (12), 2198–2206 (2007).
  • Makhlof A Tozuka Y Takeuchi H . Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. Eur. J. Pharm. Sci.42 (5), 445–451 (2011).
  • Zhang N Li J Jiang W et al. Effective protection and controlled release of insulin by cationic β-cyclodextrin polymers from alginate/chitosan nanoparticles. Int. J. Pharm.393 (1), 213–219 (2010).
  • Jintapattanakit A Junyaprasert VB Mao S Sitterberg J Bakowsky U Kissel T . Peroral delivery of insulin using chitosan derivatives: a comparative study of polyelectrolyte nanocomplexes and nanoparticles. Int. J. Pharm.342 (1), 240–249 (2007).
  • Harada A Kataoka K . Chain length recognition: core-shell supramolecular assembly from oppositely charged block copolymers. Science283 (5398), 65–67 (1999).
  • Kabanov AV Vinogradov SV Suzdaltseva YG Alakhov VY . Water-soluble block polycations as carriers for oligonucleotide delivery. Bioconjug. Chem.6 (6), 639–643 (1995).
  • Kakizawa Y Kataoka K . Block copolymer micelles for delivery of gene and related compounds. Adv. Drug Deliv. Rev.54 (2), 203–222 (2002).
  • Batrakova EV Li S Reynolds AD et al. A macrophage-nanozyme delivery system for Parkinson's disease. Bioconjug. Chem.18 (5), 1498–1506 (2007).
  • Kabanov AV Kabanov VA . Interpolyelectrolyte and block ionomer complexes for gene delivery: physico-chemical aspects. Adv. Drug Deliv. Rev.30 (1), 49–60 (1998).
  • Manickam DS Brynskikh AM Kopanic JL et al. Well-defined cross-linked antioxidant nanozymes for treatment of ischemic brain injury. J. Control. Release162 (3), 636–645 (2012).
  • Yi X Manickam DS Brynskikh A Kabanov AV . Agile delivery of protein therapeutics to CNS. J. Control. Release190, 637–663 (2014).
  • Zhang J Mulvenon A Makarov E et al. Antiviral peptide nanocomplexes as a potential therapeutic modality for HIV/HCV co-infection. Biomaterials34 (15), 3846–3857 (2013).
  • Gombotz WR Pettit DK . Biodegradable polymers for protein and peptide drug delivery. Bioconjug. Chem.6 (4), 332–351 (1995).
  • Bysell H Månsson R Hansson P Malmsten M . Microgels and microcapsules in peptide and protein drug delivery. Adv. Drug Deliv. Rev.63 (13), 1172–1185 (2011).
  • Ahmed EM . Hydrogel: preparation characterization, and applications: a review. J. Adv. Res.6 (2), 105–121 (2015).
  • Kabanov AV Vinogradov SV . Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew. Chem. Int. Ed. Engl.48 (30), 5418–5429 (2009).
  • Nukolova NV Oberoi HS Cohen SM Kabanov AV Bronich TK . Folate-decorated nanogels for targeted therapy of ovarian cancer. Biomaterials32 (23), 5417–5426 (2011).
  • Nukolova NV Oberoi HS Zhao Y Chekhonin VP Kabanov AV Bronich TK . LHRH-targeted nanogels as a delivery system for cisplatin to ovarian cancer. Mol. Pharm.10 (10), 3913–3921 (2013).
  • Haynes CA Norde W . Globular proteins at solid/liquid interfaces. Colloids Surf. B. Biointerfaces2 (6), 517–566 (1994).
  • Arnfast L Madsen CG Jorgensen L Baldursdottir S . Design and processing of nanogels as delivery systems for peptides and proteins. Ther. Deliv.5 (6), 691–708 (2014).
  • Oh JK Drumright R Siegwart DJ Matyjaszewski K . The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci.33 (4), 448–477 (2008).
  • Fiorica C Pitarresi G Palumbo FS Di Stefano M Calascibetta F Giammona G . A new hyaluronic acid pH sensitive derivative obtained by ATRP for potential oral administration of proteins. Int. J. Pharm.457 (1), 150–157 (2013).
  • Dionísio M Cordeiro C Remuñán-López C Seijo B Da Costa AMR Grenha A . Pullulan-based nanoparticles as carriers for transmucosal protein delivery. Eur. J. Pharm. Sci.50 (1), 102–113 (2013).
  • Akiyoshi K Deguchi S Moriguchi N Yamaguchi S Sunamoto J . Self-aggregates of hydrophobized polysaccharides in water. Formation and characteristics of nanoparticles. Macromolecules26 (12), 3062–3068 (1993).
  • Akiyoshi K Kobayashi S Shichibe S et al. Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: complexation and stabilization of insulin. J. Control. Release54 (3), 313–320 (1998).
  • Bronich TK Keifer PA Shlyakhtenko LS Kabanov AV . Polymer micelle with cross-linked ionic core. J. Am. Chem. Soc.127 (23), 8236–8237 (2005).
  • Lee WC Li YC Chu I . Amphiphilic poly(d, l-lactic acid)/poly (ethylene glycol)/poly(dl-lactic acid) nanogels for controlled release of hydrophobic drugs. Macromol. Biosci.6 (10), 846–854 (2006).
  • Bütün V Lowe A Billingham N Armes S . Synthesis of zwitterionic shell cross-linked micelles. J. Am. Chem. Soc.121 (17), 4288–4289 (1999).
  • Chen W Zheng M Meng F et al. In situ forming reduction-sensitive degradable nanogels for facile loading and triggered intracellular release of proteins. Biomacromolecules14 (4), 1214–1222 (2013).
  • Zhang J Zhou Y Zhu Z Ge Z Liu S . Polyion complex micelles possessing thermoresponsive coronas and their covalent core stabilization via “click” chemistry. Macromolecules41 (4), 1444–1454 (2008).
  • Muraoka D Harada N Hayashi T et al. ACS Nano 8 (9), 9209–9218 (2014).
  • Lee J Lee C Kim TH et al. Self-assembled glycol chitosan nanogels containing palmityl-acylated exendin-4 peptide as a long-acting anti-diabetic inhalation system. J. Control. Release161 (3), 728–734 (2012).
  • Ozawa Y Sawada SI Morimoto N Akiyoshi K . Self-assembled nanogel of hydrophobized dendritic dextrin for protein delivery. Macromol. Biosci.9 (7), 694–701 (2009).
  • Du AW Stenzel MH . Drug carriers for the delivery of therapeutic peptides. Biomacromolecules15 (4), 1097–1114 (2014).
  • Gupta P Vermani K Garg S . Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today7 (10), 569–579 (2002).
  • Foss AC Goto T Morishita M Peppas NA . Development of acrylic-based copolymers for oral insulin delivery. Eur. J. Pharm. Biopharm.57 (2), 163–169 (2004).
  • Sonaje K Lin KJ Wang JJ et al. Self-assembled pH-sensitive nanoparticles: a platform for oral delivery of protein drugs. Adv. Funct. Mater.20 (21), 3695–3700 (2010).
  • Pan Y Li Y-J Zhao H-Y et al. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int. J. Pharm.249 (1), 139–147 (2002).
  • Akiyoshi K Sunamoto J . Supramolecular assembly of hydrophobized polysaccharides. Supramol. Sci.3 (1), 157–163 (1996).
  • Akiyoshi K Sasaki Y Sunamoto J . Molecular chaperone-like activity of hydrogel nanoparticles of hydrophobized pullulan: thermal stabilization with refolding of carbonic anhydrase B. Bioconjug. Chem.10 (3), 321–324 (1999).
  • Nishikawa T Akiyoshi K Sunamoto J . Macromolecular complexation between bovine serum albumin and the self-assembled hydrogel nanoparticle of hydrophobized polysaccharides. J. Am. Chem. Soc.118 (26), 6110–6115 (1996).
  • Shimizu T Kishida T Hasegawa U et al. Nanogel DDS enables sustained release of IL-12 for tumor immunotherapy. Biochem. Biophys. Res. Commun.367 (2), 330–335 (2008).
  • Morimoto N Endo T Iwasaki Y Akiyoshi K . Design of hybrid hydrogels with self-assembled nanogels as cross-linkers: interaction with proteins and chaperone-like activity. Biomacromolecules6 (4), 1829–1834 (2005).
  • Hirakura T Yasugi K Nemoto T et al. Hybrid hyaluronan hydrogel encapsulating nanogel as a protein nanocarrier: new system for sustained delivery of protein with a chaperone-like function. J. Control. Release142 (3), 483–489 (2010).
  • Licciardi M Pitarresi G Cavallaro G Giammona G . Nanoaggregates based on new poly-hydroxyethyl-aspartamide copolymers for oral insulin absorption. Mol. Pharm.10 (5), 1644–1654 (2013).
  • Sonaje K Lin Y-H Juang J-H Wey S-P Chen C-T Sung H-W . In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery. Biomaterials30 (12), 2329–2339 (2009).
  • Packhaeuser C Schnieders J Oster C Kissel T . In situ forming parenteral drug delivery systems: an overview. Eur. J. Pharm. Biopharm.58 (2), 445–455 (2004).
  • Agarwal P Rupenthal ID . Injectable implants for the sustained release of protein and peptide drugs. Drug Discov. Today18 (7), 337–349 (2013).
  • Kempe S Mäder K . In situ forming implants–an attractive formulation principle for parenteral depot formulations. J. Control. Release161 (2), 668–679 (2012).
  • Dunn RL English JP Cowsar DR Vanderbilt DP : US 5990194 A (1990).
  • Bhardwaj V Kumar MR . Drug delivery systems to fight cancer. In : Fundamentals and Applications of Controlled Release Drug Delivery. SiepmannJSRRathboneMJ ( Eds). Springer, London, UK493–516 (2012).
  • Rathi RC Zentner GM : US 6117949 A (1999).
  • Kim YJ Choi S Koh JJ Lee M Ko KS Kim SW . Controlled release of insulin from injectable biodegradable triblock copolymer. Pharm. Res.18 (4), 548–550 (2001).
  • Choi S Baudys M Kim SW . Control of blood glucose by novel GLP-1 delivery using biodegradable triblock copolymer of PLGA-PEG-PLGA in Type 2 diabetic rats. Pharm. Res.21 (5), 827–831 (2004).
  • Zentner GM Rathi R Shih C et al. Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. J. Control. Release72 (1), 203–215 (2001).
  • Pasut G Veronese FM . PEGylation for improving the effectiveness of therapeutic biomolecules. Drugs Today (Barc.)45 (9), 687–695 (2009).
  • Gaertner HF Offord RE . Site-specific attachment of functionalized poly (ethylene glycol) to the amino terminus of proteins. Bioconjug. Chem.7 (1), 38–44 (1996).
  • Veronese FM . Peptide and protein PEGylation: a review of problems and solutions. Biomaterials22 (5), 405–417 (2001).
  • Roberts M Bentley M Harris J . Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Rev.64, 116–127 (2012).
  • Canalle LA Löwik DW Van Hest JC . Polypeptide-polymer bioconjugates. Chem. Soc. Rev.39 (1), 329–353 (2010).
  • Gauthier MA Klok H-A . Peptide/protein-polymer conjugates: synthetic strategies and design concepts. Chem. Commun. (Camb.) (23), 2591–2611 (2008).
  • Gaberc-Porekar V Zore I Podobnik B Menart V . Obstacles and pitfalls in the PEGylation of therapeutic proteins. Curr. Opin. Drug Discov. Dev.11 (2), 242–250 (2008).
  • Zalipsky S . Chemistry of polyethylene glycol conjugates with biologically active molecules. Adv. Drug Deliv. Rev.16 (2), 157–182 (1995).
  • Harris JM . Laboratory synthesis of polyethylene glycol derivatives. J. Macromol. Sci. Rev. Macromol. Chem. Phys.25 (3), 325–373 (1985).
  • Schumacher FF Nobles M Ryan CP et al. In situ maleimide bridging of disulfides and a new approach to protein PEGylation. Bioconjug. Chem.22 (2), 132–136 (2011).
  • Cox GN Rosendahl MS Chlipala EA Smith DJ Carlson SJ Doherty DH . A long-acting, mono-PEGylated human growth hormone analog is a potent stimulator of weight gain and bone growth in hypophysectomized rats. Endocrinology148 (4), 1590–1597 (2007).
  • Rosendahl MS Doherty DH Smith DJ Carlson SJ Chlipala EA Cox GN . A long-acting, highly potent interferon α-2 conjugate created using site-specific PEGylation. Bioconjug. Chem.16 (1), 200–207 (2005).
  • Guiotto A Pozzobon M Sanavio C Schiavon O Orsolini P Veronese FM . An improved procedure for the synthesis of branched polyethylene glycols (PEGs) with the reporter dipeptide met-βala for protein conjugation. Bioorg. Med. Chem. Lett.12 (2), 177–180 (2002).
  • Veronese FM Pasut G . PEGylation, successful approach to drug delivery. Drug Discov. Today10 (21), 1451–1458 (2005).
  • Harris JM Chess RB . Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov.2 (3), 214–221 (2003).
  • US FDA . News release: FDA approves Omontys to treat anemia in adult patients on dialysis (2012). www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm297464.htm.
  • R⊘der ME . PEGylated insulin Lispro (LY2605541): clinical overview of a new long-acting basal insulin analog in the treatment of Type 2 diabetes mellitus. Expert Rev. Endocrinol. Metab.10 (4), 365–374 (2015).
  • Ferruti P Mauro N Manfredi A Ranucci E . Hetero-difunctional dimers as building blocks for the synthesis of poly (amidoamine) s with hetero-difunctional chain terminals and their derivatives. J. Polym. Sci. A Polym. Chem.50 (23), 4947–4957 (2012).
  • Gaowa A Horibe T Kohno M et al. Enhancement of anti-tumor activity of hybrid peptide in conjugation with carboxymethyl dextran via disulfide linkers. Eur. J. Pharm. Biopharm.92 (0), 228–236 (2015).
  • Yamamoto Y Tsutsumi Y Mayumi T . Molecular design of bioconjugated cell adhesion peptide with a water-soluble polymeric modifier for enhancement of antimetastatic effect. Curr. Drug Targets3 (2), 123–130 (2002).
  • Mu Y Kamada H Kaneda Y et al. Bioconjugation of laminin peptide YIGSR with poly (styrene co-maleic acid) increases its antimetastatic effect on lung metastasis of B16–BL6 melanoma cells. Biochem. Biophys. Res. Commun.255 (1), 75–79 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.