133
Views
0
CrossRef citations to date
0
Altmetric
Review

Ophthalmic Applications of lipid-based Drug nanocarriers: an Update of Research and Patenting Activity

, , , , &
Pages 1297-1318 | Published online: 26 Nov 2015

References

  • Davies NM . Biopharmaceutical considerations in topical ocular drug delivery. Clin. Exp. Pharmacol. Physiol.27, 558–562 (2000).
  • Zarbin MA Montemagno C Leary JF Ritch R . Nanomedicine in ophthalmology: the new frontier. Am. J. Ophthalmol.150, 144–162 (2010).
  • Pignatello R Puglisi G . Nanotechnology in ophthalmic drug delivery: a survey of recent developments and patenting activity. Recent Patents Nanomed.1 (1), 42–52 (2011).
  • Almeida H Amaral MH Lobão P Silva AC Sousa Lobo JM . Applications of polymeric and lipid nanoparticles in ophthalmic pharmaceutical formulations: present and future considerations. J. Pharm. Pharm. Sci.17 (3), 278–293 (2014).
  • Mishra GP Bagui M Tamboli V Mitra AK . Recent applications of liposomes in ophthalmic drug delivery. J. Drug Deliv.2011, 863734 (2011).
  • Cholkar K Patel SP Vadlapudi AD Mitra AK . Novel strategies for anterior segment ocular drug delivery. J. Ocul. Pharmacol. Ther.29, 106–123 (2013).
  • Zhou H-Y Hao J-L Wang S Zheng Y Zhang W-S . Nanoparticles in the ocular drug delivery. Int. J. Ophthalmol.6, 390–396 (2013).
  • Carbone C Musumeci T Lauro MR Puglisi G . Eco-friendly aqueous core surface-modified nanocapsules. Colloids Surf. B Biointerfaces125, 190–196 (2015).
  • Souto EB Müller RH . Lipid nanoparticles: effect on bioavailability and pharmacokinetic changes. Handb. Exp. Pharmacol.197, 115–141 (2010).
  • Fathi M Mozafari MR Mohebbi M . Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci. Technol.23, 13–27 (2012).
  • Puglia C Bonina F . Lipid nanoparticles as novel delivery systems for cosmetics and dermal pharmaceuticals. Expert Opin. Drug Deliv.9 (4), 429–441 (2012).
  • Carbone C Cupri S Leonardi A Puglisi G Pignatello R . Lipid-based nanocarriers for drug delivery and targeting: a patent survey of methods of production and characterization. Pharm. Pat. Anal.2, 665–677 (2013).
  • Souto EB Doktorovova S Gonzalez-Mira E Egea MA Garcia ML . Feasibility of lipid nanoparticles for ocular delivery of anti-inflammatory drugs. Curr. Eye Res.35, 537–552 (2010).
  • Müller RH Mäder K Gohla S . Solid lipid nanoparticles (SLN) for controlled drug delivery: a review of the state of the art. Eur. J. Pharm. Biopharm.50, 161–177 (2000).
  • del Pozo-Rodríguez A Delgado D Gascón AR Solinís MÁ . Lipid nanoparticles as drug/gene delivery systems to the retina. J. Ocul. Pharmacol. Ther.29 (2), 173–188 (2013).
  • Lallemand F Daull P Benita S Buggage R Garrigue JS . Successfully improving ocular drug delivery using the cationic nanoemulsion, Novasorb. J. Drug Deliv.2012, 604204 (2012).
  • Montenegro L Campisi A Sarpietro MG et al. In vitro valuation of idebenone-loaded solid lipid nanoparticles for drug delivery to the brain. Drug. Dev. Ind. Pharm.37 (6), 737–746 (2011).
  • Montenegro L Sinico C Castangia I Carbone C Puglisi G . Idebenone-loaded solid lipid nanoparticles for drug delivery to the skin: in vitro evaluation. Int. J. Pharm.434 (1–2), 169–174 (2012).
  • Müller RH Shegokar R Keck CM . 20 years of lipid nanoparticles (SLN and NLC): present state of development and industrial applications. Curr. Drug Discov. Technol.8 (3), 207–227 (2011).
  • Shekunov BY Chattopadhyay P Tong HH Chow AH . Particle size analysis in pharmaceutics: principles, methods and applications. Pharm. Res.24 (2), 203–227 (2007).
  • Gonzalez-Mira E Egea MA Garcia ML Souto EB . Design and ocular tolerance of flurbiprofen loaded ultrasound-engineered NLC. Colloids Surf. B Biointerfaces81 (2), 412–421 (2010).
  • Puglia C Blasi P Rizza L et al. Lipid nanoparticles for prolonged topical delivery: an in vitro and in vivo investigation. Int. J. Pharm.357 (1–2), 295–304 (2008).
  • Puglia C Damiani E Offerta A et al. Evaluation of nanostructured lipid carriers (NLC) and nanoemulsions as carriers for UV-filters: characterization, in vitro penetration and photostability studies. Eur. J. Pharm. Sci.51, 211–217 (2014).
  • Bunjes HWK Kock MHJ . Crystallization tendency and polymorphic transitions in trigliceride nanoparticles. Int. J. Pharm.129, 159–173 (1996).
  • Freitas C Muller RH . Correlation between long-term stability of solid lipid nanoparticles (SLN) and crystallinity of the lipid phase. Eur. J. Pharm. Biopharm.47, 125–132 (1999).
  • Müller RH Radtke M Wissing SA . Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm.242, 121–128 (2002).
  • Carbone C Campisi A Musumeci T Raciti G Bonfanti R Puglisi G . FA-loaded lipid drug delivery systems: preparation, characterization and biological studies. Eur. J. Pharm. Sci.52, 12–20 (2014).
  • Huynh NT Passirani C Saulnier P Benoit JP . Lipid nanocapsules: a new platform for nanomedicine. Int. J. Pharm.379, 201–209 (2009).
  • Heurtault B Saulnier P Pech B Proust JE Benoit JP . A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm. Res.19, 875–880 (2002).
  • Thomas O Lagarce F . Lipid nanocapsules: a nanocarrier suitable for scale-up process. J. Drug Deliv. Sci. Tech.23, 555–559 (2013).
  • Müller RH Olbrich C . US6770299 (2004).
  • Olbrich C Gessner A Kayser O Müller RH . Lipid–drug conjugate (LDC) nanoparticles as novel carrier system for the hydrophilic antitrypanosomal drug diminazenediaceturate. J. Drug Target.10, 387–396 (2002).
  • Paliwal R Rai S Vyas SP . Lipid drug conjugate (LDC) nanoparticles as autolymphotrophs for oral delivery of methotrexate. J. Biomed. Nanotechnol.7, 130–131 (2011).
  • Araujo J Gonzales E Egea MA Garcia ML Souto EB . Nanomedicines for ocular NSAIDs: safety on drug delivery. Nanomedicine5, 394–401 (2009).
  • Souza JG Karina D Pereira TA Bernardi DS Lopez RFV . Topical delivery of ocular therapeutics: carrier systems and physical methods. J. Pharm. Pharmacol.66, 507–530 (2013).
  • Sallam A Jayakumar S Lightman S . Intraocular delivery of anti-infective drugs-bacterial, viral, fungal and parasitic. Recent Pat. Antiinfect. Drug Discov.3, 53–63 (2008).
  • Diebold Y Calonge M . Application on nanoparticles in ophthalmology. Prog. Retin. Eye Res.29, 596–609 (2010).
  • Anand R Nightingale SD Fish RH Smith TJ Ashton P . Control of cytomegalovirus retinitis using sustained release of intraocular ganciclovir. Arch. Ophthalmol.111, 223–227 (1993).
  • Yasukawa T Ogura Y Tabata Y Kimura H Wiedemann P Honda Y . Drug delivery systems for vitreoretinal diseases. Prog. Retin. Eye Res.23, 253–281 (2004).
  • Vandervoort J Ludwig A . Ocular drug delivery: nanomedicine applications. Nanomedicine2, 11–21 (2007).
  • Tian B-C Zhang W-J Xu H-M et al. Further investigation of nanostructured lipid carriers as an ocular delivery system: In vivo transcorneal mechanism and in vitro release study. Colloids Surf. B Biointerfaces102, 251–256 (2013).
  • Pretor S Bartels J Lorenz T et al. Cellular uptake of coumarin–6 under microfluidic conditions into HCE-T Cells from nanoscale formulations. Mol. Pharm.12 (1), 34–45 (2015).
  • del Pozo-Rodriguez A Delgado D Solinis MA Gascon AR Pedraz JL . Solid lipid nanoparticles for retinal gene therapy: transfection and intracellular trafficking in retinal pigment epithelial cells. Int. J. Pharm.360 (1–2), 177–183 (2008).
  • Apaolaza PS Delgado D del Pozo-Rodriguez A Gascon AR Solinis MA . A novel gene therapy vector based on hyaluronic acid and solid lipid nanoparticles for ocular diseases. Int. J. Pharm.465 (1–2), 413–426 (2014).
  • Cupri S Bucolo C Romano GL et al. New nanotechnology formulations for HuR siRNA delivery to the retina. Presented at : XXIII National Meeting in Medicinal Chemistry (NMMC2015). Salerno, Italy, 6–9 September 2015.
  • Amadio M Bucolo C Govoni S et al. Oligonucleotides against VEGF overexpression–between realty and potentiality Presented at : European Association for Vision and Eye Research Annual Congress (EVER 2015). Nice, France, 7–10 October 2015.
  • Youshia J Kamel AO El Shamy A Mansour S . Design of cationic nanostructured heterolipid matrices for ocular delivery of methazolamide. Int. J. Nanomedicine7, 2483–2496 (2012).
  • Wang F Chen L Jiang S et al. Optimization of methazolamide-loaded solid lipid nanoparticles for ophthalmic delivery using Box-Behnken design. J. Liposome Res.24 (3), 171–181 (2014).
  • Wang F Chen L Zhang D et al. Methazolamide-loaded solid lipid nanoparticles modified with low-molecular weight chitosan for the treatment of glaucoma: in vitro and in vivo study. J. Drug Target.22 (9), 849–858 (2014).
  • Li R Xu E Fengzhen W Qing Z Min JS Hongliang X . CN 102793672 A (2012).
  • Luetfi G Muezeyyen D . Preparation and characterization of polymeric and lipid nanoparticles of pilocarpine HCl for ocular application. Pharm. Dev. Tech.18 (3), 701–709 (2013).
  • Attama AA Reichl S Mueller-Goymann CC . Sustained release and permeation of timolol from surface-modified solid lipid nanoparticles through bioengineered human cornea. Curr. Eye Res.34 (8), 698–705 (2009).
  • Leonardi A Bucolo C Drago F Salomone S Pignatello R . Cationic solid lipid nanoparticles enhance ocular hypotensive effect of melatonin in rabbit. Int. J. Pharm.478, 180–186 (2014).
  • Araújo J Gonzalez-Mira E Egea MA Garcia ML Souto EB . Optimization and physicochemical characterization of a triamcinolone acetonide-loaded NLC for ocular antiangiogenic applications. Int. J. Pharm.393 (1–2), 167–175 (2010).
  • Araújo J Nikolic S Egea MA Souto EB Garcia ML . Nanostructured lipid carriers for triamcinolone acetonide delivery to the posterior segment of the eye. Colloids Surf. B88, 150–157 (2011).
  • Araújo J Garcia ML Mallandrich M Souto EB Calpena AC . Release profile and transscleral permeation of triamcinolone acetonide loaded nanostructured lipid carriers (TA-NLC): in vitro and ex vivo studies. Nanomedicine8, 1034–1041 (2012).
  • Gonzalez-Mira E Egea MA Souto EB Calpena AC García ML . Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery. Nanotechnology22, 045101 (2011).
  • Gonzalez-Mira E Nikolić S Calpena AC Egea MA Souto EB García ML . Improved and safe transcorneal delivery of flurbiprofen by NLC and NLC-based hydrogels. J. Pharm. Sci.101, 707–725 (2012).
  • Luo Q Zhao J Zhang X Pan W . Nanostructured lipid carrier (NLC) coated with chitosan oligosaccharides and its potential use in ocular drug delivery system. Int. J. Pharm.403, 185–191 (2011).
  • Tian B Luo Q Song S et al. Novel surface-modified nanostructured lipid carriers with partially deacetylated water-soluble chitosan for efficient ocular delivery. J. Pharm. Sci.101, 1040–1049 (2012).
  • Hippalgaonkar K Adelli GR Hippalgaonkar K Repka MA Majumdar S . Indomethacin-loaded solid lipid nanoparticles for ocular delivery: development, characterization, and in vitro evaluation. J. Ocul. Pharmacol. Ther.29, 216–228 (2013).
  • Attama AA Reichl S Müller-Goymann CC . Diclofenac sodium delivery to the eye: in vitro evaluation of novel solid lipid nanoparticle formulation using human cornea construct. Int. J. Pharm.355, 307–313 (2008).
  • Li X Nie SF Kong J Li N Ju CY Pan WS . A controlled-release ocular delivery system for ibuprofen based on nanostructured lipid carriers. Int. J. Pharm.363 (1–2), 177–182 (2008).
  • Abul Kalam M Sultana Y Ali A et al. Part I: development and optimization of solid-lipid nanoparticles using Box-Behnken statistical design for ocular delivery of gatifloxacin. J. Biomed. Mater. Res. A101, 813–827 (2013).
  • Abul Kalam M Sultana Y Ali A et al. Part II: enhancement of transcorneal delivery of gatifloxacin by solid lipid nanoparticles in comparison to commercial aqueous eye drops. J. Biomed. Mater. Res. A101 (6), 1828–1836 (2013).
  • Abul Kalam M Sultana Y Ali A Aqil M Mishra AK Chuttani K . Preparation, characterization, and evaluation of gatifloxacin loaded solid lipid nanoparticles as colloidal ocular drug delivery system. J. Drug Target.18, 191–204 (2010).
  • Hao J Fang X Zhou Y et al. Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design. Int. J. Nanomedicine6, 683–692 (2011).
  • Wu JW Xia Q . Preparation and characterization of azithromycin-loaded nanostructured lipid carriers. Adv. Mater. Res.236–238 (2011).
  • Ustündağ-Okur N Gökçe EH Bozbıyık Dİ Eğrilmez S Ozer O Ertan G . Preparation and in vitro–in vivo evaluation of ofloxacin loaded ophthalmic nanostructured lipid carriers modified with chitosan oligosaccharide lactate for the treatment of bacterial keratitis. Eur. J. Pharm. Sci.63, 204–215 (2014).
  • Verma SR Doshi A . Formulation development and characterization of nanostructured heterolipid matrix of levofloxacin hemihydrate for ocular drug delivery. J. Pharmacol. Clin. Toxicol.2 (3), 1035 (2014).
  • Law SL Huang KJ Chiang CH . Acyclovir-containing liposomes for potential ocular delivery. Corneal penetration and absorption. J. Control. Release63, 135–140 (2000).
  • de Jalòn EG Blanco-Prìeto MJ Ygartua P Santoyo S . Increased efficacy of acyclovir-loaded microparticles against herpes simplex virus type I in cell cultures. Eur. J. Pharm. Biopharm.53, 183–187 (2003).
  • Vadlapudi AD Vadlapatla RK Kwatra D et al. Targeted lipid based drug conjugates: a novel strategy for drug delivery. Int. J. Pharm.434 (1–2), 315–324 (2012).
  • Seyfoddin A Al-Kassas R . Development of solid lipid nanoparticles and nanostructured lipid carriers for improving ocular delivery of acyclovir. Drug Dev. Ind. Pharm.39 (4), 508–519 (2013).
  • Gokce EH Sandri G Bonferoni MC et al. Cyclosporine A loaded SLNs: evaluation of cellular uptake and corneal cytotoxicity. Int. J. Pharm.364, 76–86 (2008).
  • Niu M Shi K Sun Y Wang J Cui F . Preparation of CsA-loaded solid lipid nanoparticles and application on ocular preparations. J. Drug Deliv. Sci. Tech.18, 293–297 (2008).
  • Gokce EH Sandri G Egrilmez S Bonferoni MC Gueneri T Caramella C . Cyclosporine A-loaded solid lipid nanoparticles: ocular tolerance and in vivo drug release in rabbit eyes. Curr. Eye Res.34, 996–1003 (2009).
  • Sandri G Bonferoni MC Gokce EH et al. Chitosan-associated SLN: in vitro and ex vivo characterization of cyclosporine A loaded ophthalmic systems. J. Microencapsul.27, 735–746 (2010).
  • Basaran E Demirel M Sirmagul B Yazan Y . Cyclosporine-A incorporated cationic solid lipid nanoparticles for ocular delivery. J. Microencapsul.27, 37–47 (2010).
  • Shen J Deng Y Jin X Ping Q Su Z Li L . Thiolated nanostructured lipid carriers as a potential ocular drug delivery system for cyclosporine A: improving in vivo ocular distribution. Int. J. Pharm.402, 248–253 (2010).
  • Battaglia L D'Addino I Peira E Trotta M Gallarate M . Solid lipid nanoparticles prepared by coacervation method as vehicles for ocular cyclosporine. J. Drug Deliv. Sci. Tech.22, 125–130 (2012).
  • Zhang W Li X Ye T et al. Design, characterization, and in vitro cellular inhibition and uptake of optimized genistein-loaded NLC for the prevention of posterior capsular opacification using response surface methodology. Int. J. Pharm.454, 354–366 (2013).
  • Zhang W Liu J Zhang Q et al. Enhanced cellular uptake and anti-proliferating effect of chitosan hydrochlorides modified genistein loaded NLC on human lens epithelial cells. Int. J. Pharm.471, 118–126 (2014).
  • Strettoi E Gargini C Novelli E et al. Inhibition of ceramide biosynthesis preserves photoreceptor structure and function in a mouse model of retinitis pigmentosa. Proc. Natl Acad. Sci. USA107, 18706–18711 (2010).
  • Liu R Liu Z Zhang C Zhang B . Nanostructured lipid carriers as novel ophthalmic delivery system for mangiferin: improving in vivo ocular bioavailability. J. Pharm. Sci.101 (10), 3833–3844 (2012).
  • Liu Z Zhang X Wu H et al. Preparation and evaluation of solid lipid nanoparticles of baicalin for ocular drug delivery system in vitro and in vivo. Drug Dev. Ind. Pharm.37 (4), 475–481 (2011).
  • Hao J Wang X Bi Y et al. Fabrication of a composite system combining solid lipid nanoparticles and thermosensitive hydrogel for challenging ophthalmic drug delivery. Colloids Surf. B Biointerfaces114, 111–120 (2014).
  • Li J Guo X Liu Z et al. Preparation and evaluation of charged solid lipid nanoparticles of tetrandrine for ocular drug delivery system: pharmacokinetics, cytotoxicity and cellular uptake studies. Drug Dev. Ind. Pharm.40 (7), 980–987 (2014).
  • Liu C-H Chiu H-C Wu W-C Sahoo SL Hsu C-Y . Novel lutein loaded lipid nanoparticles on porcine corneal distribution. J. Ophthalmol.2014, 304694 (2014).
  • Jiang M Gan L Zhu C Dong Y Liu J Gan Y . Cationic core-shell liponanoparticles for ocular gene delivery. Biomaterials33 (30), 7621–7630 (2012).
  • Delgado D del Pozo-Rodriguez A Solinis MA Rodriguez-Gascon A . Understanding the mechanism of protamine in solid lipid nanoparticle-based lipofection: the importance of the entry pathway. Eur. J. Pharm. Biopharm.79 (3), 495–502 (2011).
  • Almeida DR Johnson D Hollands H et al. Effect of prophylactic nonsteroidal antiinflammatory drugs on cystoid macular edema assessed using optical coherence tomography quantification of total macular volume after cataract surgery. J. Cataract Refr. Surg.34, 64–69 (2008).
  • Sengupta S Subramoney K Srinivasan R et al. Use of a mydriatic cocktail with a wick for preoperative mydriasis in cataract surgery: a prospective randomised controlled trial. Eye (Lond.)24, 118–122 (2010).
  • Bucolo C Maltese A Puglisi G Pignatello R . Enhanced ocular anti-inflammatory activity of ibuprofen carried by an Eudragit RS100 nanoparticle suspension. Ophthalmic Res.34, 319–323 (2002).
  • Chetoni P Panichi L Burgalassi S Benelli U Saettone MF . Pharmacokinetics and anti-inflammatory activity in rabbits of a novel indomethacin ophthalmic solution. J. Ocul. Pharmacol. Ther.16 (4), 363–372 (2000).
  • Pignatello R Bucolo C Spedalieri G Maltese A Puglisi G . Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application. Biomaterials23, 3247–3255 (2002).
  • Shaikh MY Mars JS Heaven CJ . Prednisolone and flurbiprofen drops to maintain mydriasis during phacoemulsification cataract surgery. J. Cataract Refract. Surg.29, 2372–2377 (2003).
  • Scott IU Flynn HW Jr Rosenfeld PJ . Intravitreal triamcinolone acetonide for idiopathic cystoid macular edema. Am. J. Ophthalmol.136, 737–739 (2003).
  • Suresh PK Sah AK . Patent perspectives for corticosteroids based ophthalmic therapeutics. Recent Pat. Drug Deliv. Formul.8 (3), 206–223 (2014).
  • Felt-Baeyens O Eperon S Mora P et al. Biodegradable scleral implants as new triamcinolone acetonide delivery systems. Int. J. Pharm.322, 6–12 (2006).
  • Shen J Sun M Ping Q Ying Z Liu W . Incorporation of liquid lipid in lipid nanoparticles for ocular drug delivery enhancement. Nanotechnology21, 025101/1–025101/10 (2010).
  • Carbone C Tomasello B Ruozi B Renis M Puglisi G . Preparation and optimization of PIT solid lipid nanoparticles via statistical factorial design. Eur. J. Med. Chem.49, 110–117 (2012).
  • Carbone C Campisi A Manno D et al. The critical role of didodecyldimethylammonium bromide on physico-chemical, technological and biological properties of NLC. Colloids Surf. B Biointerfaces121, 1–10 (2014).
  • Leonardi A Crascì L Panico A Pignatello R . Antioxidant activity of idebenone-loaded neutral and cationic solid-lipid nanoparticles. Pharm. Dev. Technol.20 (6), 716–723 (2014).
  • Fangueiro JF Andreani T Egea MA et al. Design of cationic lipid nanoparticles for ocular delivery: development, characterization and cytotoxicity. Int. J. Pharm.461 (1–2), 64–73 (2014).
  • Shen J Wang Y Ping Q Xiao Y Huang X . Mucoadhesive effect of thiolated PEG stearate and its modified NLC for ocular drug delivery. J. Control. Release137, 217–223 (2009).
  • Mohanty B Majumdar DK Mishra SK Panda AK Patnaik S . Development and characterization of itraconazole-loaded solid lipid nanoparticles for ocular delivery. Pharm. Dev. Technol.20 (4), 458–464 (2015).
  • Pignatello R Leonardi A Cupri S . Optimization and validation of a new method for the production of lipid nanoparticles for ophthalmic application. Int. J. Med. Nano Res.1, 006 (2014).
  • Amadio M Bucolo C Leggio GM Drago F Govoni S Pascale A . The PKCbeta/HuR/VEGF pathway in diabetic retinopathy. Biochem. Pharmacol.80 (8), 1230–1237 (2010).
  • Spalton DJ . Posterior capsular opacification after cataract surgery. Eye (Lond.)13, 489–492 (1999).
  • Walker JL Wolff IM Zhang L Menko AS . Activation of SRC kinases signals induction of posterior capsule opacification. Invest Ophthalmol. Vis. Sci.48 (5), 2214–2223 (2007).
  • Zhang W Li X Ye T et al. Nanostructured lipid carrier surface modified with Eudragit RS 100 and its potential ophthalmic functions. Int. J. Nanomed.9, 4305–4315 (2014).
  • Gupta D Bleakley B Gupta RK . Dragon's blood: botany, chemistry and therapeutic uses. J. Ethnopharmacol.115, 361–380 (2008).
  • Hartong DT Berson EL Dryja TP . Retinitis pigmentosa. Lancet368, 1795–1809 (2006).
  • Rotstein NP Miranda GE Abrahan CE German OL . Regulating survival and development in the retina: key roles for simple sphingolipids. J. Lipid Res.51, 1247–1262 (2010).
  • Kitano A Yamanaka O Ikeda K et al. Tetrandrine suppresses activation of human subconjunctival fibroblasts in vitro. Curr. Eye Res.33 (7), 559–565 (2008).
  • Carbone C Leonardi A Cupri S Puglisi G Pignatello R . Pharmaceutical and biomedical applications of lipid-based nanocarriers. Pharm. Pat. Anal.3 (2), 199–215 (2014).
  • Chen T Vargeese C Vagle K Wang W Zhang Y . WO086883 (2007).
  • Hartman GD Vargeese C Wang W . WO080724 (2010).
  • Bowman KA Guare JP Hartman GD et al. WO021865 (2010).
  • De Almeida Moreira Sereno JN et al. WO 2011119058 (2012).
  • Nazzal SM Sylvester PW . WO028757 (2011).
  • Del Pozo Rodriguez A et al. WO085318 (2012).
  • Fu-de C Meng Meng N . CN101181227 (2012).
  • Guild BC Derosa F . WO170930 (2012).
  • de Fougerolles A Wood KM Elbashir SM Schrum JP . WO090648 (2013).
  • Lee RJ Lee YB Kim DJ . WO177419 (2013).
  • Kaur IP Verma MK . WO105026 (2013).
  • Qi M Yang B Geng H Yu Y . CN 103989660A (2014).
  • Schmidt MM Kovalchin JT Furfine ES Celniker AC Erbe DV . WO107737 (2014).
  • Olbrich C Muller RH . Enzymatic degradation of SLN–effect of surfactant and surfactant mixtures. Int. J. Pharm.180, 31–39 (1999).
  • Uner M Wissing SA Yener G Müller RH . Influence of surfactants on the physical stability of solid lipid nanoparticle (SLN) formulations. Pharmazie59, 331–332 (2004).
  • Leonardi A Bucolo C Romano GL et al. Influence of different surfactants on the technological properties and in vivo ocular tolerability of lipid nanoparticles. Int. J. Pharm.470, 133–140 (2014).
  • Hwang TL Aljuffali IA Lin CF Chang YT Fang JY . Cationic additives in nanosystems activate cytotoxicity and inflammatory response of human neutrophils: lipid nanoparticles versus polymeric nanoparticles. Int. J. Nanomedicine10, 371–385 (2015).
  • Prow TW . Toxicity of nanomaterials to the eye. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2, 317–333 (2010).
  • Grover A Hirani A Lee YW Sutariya VB Pathak Y . Ocular toxicity of nanoparticles. In : Biointeractions of Nanomaterials. SutariyaVBPathakY ( Eds). CRS Press, Boca Raton, FL, USA, 347–352 (2015).
  • US FDA . www.fda.gov/scienceresearch/specialtopics/nanotechnology/ucm2006658.htm.
  • Ophthalmology Drugs & Devices Market . www.marketsandmarkets.com.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.