94
Views
0
CrossRef citations to date
0
Altmetric
Review

Nanostructured Materials for Ocular delivery: Nanodesign for Enhanced bioadhesion, Transepithelial Permeability and Sustained Delivery

, &
Pages 1365-1376 | Received 10 Jul 2015, Accepted 25 Aug 2015, Published online: 14 Dec 2015

References

  • O'Roruke M . Next generation ocular drug delivery platforms. OIS1, 7 (2014).
  • Rupenthal I . Sector overview: ocular drug delivery technologies: exciting times ahead (2015). www.ondrugdelivery.com.
  • Jarvinen K Jarvinen T Urtti A . Ocular absorption following topical delivery. Adv. Drug Deliv. Rev.16, 3–19 (1995).
  • Vellonen KS Mannermaa E Turner H . Effluxing ABC transporter in human corneal epithelium. J. Pharm. Sci.99 (2), 1087–1098 (2010).
  • Mannermaa E Vellonen KS Ryhanen T et al. Efflux protein expression in human retinal pigment epithelium. Pharm. Res.26 (7), 1785–1791 (2009).
  • Shah CP Garg SJ Vander JF et al. Outcomes and risk factors associated with endophthalmitis after intravitreal injection of anti-vascular endothelial growth factor agents. Ophthalmology118, 2028–2034 (2011).
  • Hardberger RE Hanna C Goodart R . Effects of drug vehicles on ocular uptake of tetracycline. Am. J. Ophthalmol.80, 133–138 (1975).
  • Fraunfelder FT . Extraocular fluid dynamics: how best to apply topical ocular medication. Trans. Am. Ophthalmol. Soc.74, 457–487 (1976).
  • Urtti A . Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv. Drug Deliv. Rev.58, 1131–1135 (2006).
  • Sahoo SK Dilnawaz F Krishnakumar S . Nanotechnology in ocular drug delivery. Drug Discov. Today13, 144–151 (2008).
  • Nagarwal RC Kant S Singh PN Maiti P Pandit JK . Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J. Control. Release136, 2–13 (2009).
  • Thermes F Rozier A Plazonnet B et al. Bioadhesion: the effect of polyacrylic acid on the ocular bioavailability of timolol. Int. J. Pharm.81 (1), 59–65 (1992).
  • de la Fuente M Ravina M Paolicelli P et al. Chitosan-based nanostructures: a delivery platform for ocular therapeutics. Adv. Drug Deliv. Rev.62, 100–117 (2010).
  • Barbault-Foucher S Gref R Russo P Guechot J Bochot A . Design of poly-epsilon-caprolactone nanospheres coated with bioadhesive hyaluronic acid for ocular delivery. J. Control. Release83, 365–375 (2002).
  • Ludwig A . The use of mucoadhesive polymers in ocular drug delivery. Adv. Drug Deliv. Rev.57, 1595–1639 (2005).
  • Kaur IP Smitha R . Penetration enhancers and ocular bioadhesives: two new avenues for ophthalmic drug delivery. Drug Dev. Ind. Pharm.28, 353–369 (2002).
  • Autumn K Liang Y Hsieh S et al. Adhesive force of a single gecko foot-hair. Nature405, 681–685 (2000).
  • Autumn K Sitti M Liang Y et al. Evidence for van der Waals adhesion in gecko setae. Proc. Natl Acad. Sci. USA99, 12252–12256 (2002).
  • Peppas NA . Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. J. Control. Release2, 257–275 (1985).
  • Huang Y Leobandung W Foss A Peppas NA . Molecular aspects of muco- and bioadhesion: tethered structures and site-specific surfaces. J. Control. Release65 (1–2), 63–71 (2000).
  • Fischer KE Aleman BJ Tao SL et al. Biomimetic nanowire coatings for next generation adhesive drug delivery systems. Nano Lett.9, 716–720 (2009).
  • Nichols B Dawson CR Togni B . Surface features of the conjunctiva and cornea. Invest. Ophthalmol. Vis. Sci.24, 570–576 (1983).
  • Koizumi N Copper LJ Fullwood NJ et al. An evaluation of cultivated corneal limbal epithelial cells, using cell-suspension culture. Invest. Ophthalmol. Vis. Sci.43, 2114–2121 (2002).
  • Fischer KE Jayagopal A Nagaraj G et al. Nanoengineered surfaces enhance drug loading and adhesion. Nano Lett.11, 1076–1081 (2011).
  • Uskokovic V Lee K Lee PP Fischer KE Desai TA . Shape effect in the design of nanowire-coated microparticles as transepithelial drug delivery devices. ACS Nano6, 7832–7841 (2012).
  • Choy YB Park JH McCarey BE Edelhauser HF Prausnitz MR . Mucoadhesive microdiscs engineered for ophthalmic drug delivery: effect of particle geometry and formulation on preocular residence time. Invest. Ophthalmol. Vis. Sci.49, 4808–4815 (2008).
  • Park CG Kim M Park M et al. Nanostructured mucoadhesive microparticles for enhanced preocular retention. Acta Biomater.10, 77–86 (2014).
  • Walsh L Ryu J Bock S et al. Nanotopography facilitates in vivo transdermal delivery of high molecular weight therapeutics through an integrin-dependent mechanism. Nano Lett.15, 2434–2441 (2015).
  • Ban Y Dota A Cooper L et al. Tight junction-related protein expression and distribution in human corneal epithelium. Exp. Eye Res.76, 663–669 (2003).
  • Mannermaa E Vellonen KS Urtti A . Drug transport in corneal epithelium and blood–retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv. Drug Deliv. Rev.58, 1136–1163 (2006).
  • Monti D Chetoni P Burgalassi S Najarro M Saettone MF . Increased corneal hydration induced by potential ocular penetration enhancers: assessment by differential scanning calorimetry (DSC) and by desiccation. Int. J. Pharm.232, 139–147 (2002).
  • Chetoni P Burgalassi S Monti D Saettone MF . Ocular toxicity of some corneal penetration enhancers evaluated by electrophysiology measurements on isolated rabbit corneas. Toxicol. In Vitro17, 497–504 (2003).
  • Burgalassi S Chetoni P Monti D Saettone MF . Cytotoxicity of potential ocular permeation enhancers evaluated on rabbit and human corneal epithelial cell lines. Toxicol Lett.122, 1–8 (2001).
  • Furrer P Mayer JM Plazonnet B Gurny R . Ocular tolerance of absorption enhancers in ophthalmic preparations. AAPS PharmSci.4 (1), 1–5 (2002).
  • Kam K Walsh L Bock S et al. Nanostructure-mediated transport of biologics across epithelial tissue: enhancing permeability via nanotopography. Nano Lett.13, 164–171 (2013).
  • Liaw J Robinson J . The effect of polyethylene glycol molecular weight on corneal transport and the related influence of penetration enhancers. Int. J. Pharm.88 (1–3), 125–140 (1992).
  • Yee S . In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man–fact or myth. Pharm. Res.14, 763–766 (1997).
  • Toropainen E Ranta V Vellonen K et al. Paracellular and passive transcellular permeability in immortalized human corneal epithelial cell culture model. Eur. J. Pharm. Sci.20, 99–106 (2003).
  • Markov AG Veshnyakova A Fromm M Amasheh M Amasheh S . Segmental expression of claudin proteins correlates with tight junction barrier properties in rat intestine. J. Comp. Physiol. B180, 591–598 (2010).
  • Jiang J Gill H Ghate D et al. Coated microneedles for drug delivery to the eye. Invest. Ophthalmol. Vis. Sci.48, 4038–4043 (2007).
  • Jiang J Moore JS Edelhauser HF Prausnitz MR . Intrascleral drug delivery to the eye using hollow microneedles. Pharm. Res.26, 395–403 (2009).
  • Palakurthi NK Correa ZM Augsburger JJ Banerjee RK . Toxicity of a biodegradable microneedle implant loaded with methotrexate as a sustained release device in normal rabbit eye: a pilot study. J. Ocul. Pharmacol. Ther.27, 151–156 (2011).
  • Wade JS Desai TA . Planar microdevices enhance transport of large molecular weight molecules across retinal pigment epithelial cells. Biomed. Microdevices16, 629–638 (2014).
  • Yasukawa T Ogura Y Kimura H Sakurai E Tabata Y . Drug delivery from ocular implants. Expert Opin. Drug Deliv.3, 261–273 (2006).
  • Bernards DA Lance KD Ciaccio NA Desai TA . Nanostructured thin film polymer devices for constant-rate protein delivery. Nano Lett.12, 5355–5361 (2012).
  • Gultepe E Nagesha D Sridhar S Amiji M . Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices. Adv. Drug Deliv. Rev.62, 305–315 (2010).
  • Ozin GA . Nanochemistry: synthesis in diminishing dimensions. Adv. Mater.4 (10), 612–649 (1992).
  • Ayon AA Cantu M Chava K et al. Drug loading of nanoporous TiO2 films. Biomed. Mater.1, L11–15 (2006).
  • Foraker AB Walczak RJ Cohen MH Boiarski TA Grove CF Swaan PW . Microfabricated porous silicon particles enhance paracellular delivery of insulin across intestinal Caco-2 cell monolayers. Pharm. Res.20, 110–116 (2003).
  • Yan W Hsiao VKS Zheng YB Shariff YM Gao T Huang TJ . Towards nanoporous polymer thin film-based drug delivery systems. Thin Solid Films517 (5), 1794–1798 (2009).
  • Gong D Yadavill V Paulose M Pishko M Grimes CA . Controlled molecular release using nanoporous alumina capsules. Biomed. Microdevices5 (1), 75–80 (2003).
  • La Flamme KE Mor G Gong D et al. Nanoporous alumina capsules for cellular macroencapsulation: transport and biocompatibility. Diabetes Technol. Ther.7, 684–694 (2005).
  • Popat KC Eltgroth M LaTempa TJ Grimes CA Desai TA . Titania nanotubes: a novel platform for drug-eluting coatings for medical implants?Small3, 1878–1881 (2007).
  • Yuan X Marcano DC Shin CS et al. Ocular drug delivery nanowafer with enhanced therapeutic efficacy. ACS Nano9, 1749–1758 (2015).
  • Orosz KE Gupta S Hassink M et al. Delivery of antiangiogenic and antioxidant drugs of ophthalmic interest through a nanoporous inorganic filter. Mol. Vis.10, 555–565 (2004).
  • Desai TA Hansford DJ Kulinsky L et al. Nanopore technology for biomedical applications. Biomed Microdevices2 (1), 11–40 (1999).
  • Hahn K Karger J Kukla VV . Single-file diffusion observation. Phys. Rev. Lett.76, 2762–2765 (1996).
  • Clark LA Ye GT Snurr RQ . Molecular traffic control in a nanoscale system. Phys. Rev. Lett.84, 2893–2896 (2000).
  • Levitt DG . Dynamics of a single-file pore: non-fickian behavior. Phys. Rev. A8, 3050 (1973).
  • Martin F Walczak R Boiarski A et al. Tailoring width of microfabricated nanochannels to solute size can be used to control diffusion kinetics. J. Control. Release102, 123–133 (2005).
  • Yang SY Yang JA Kim ES et al. Single-file diffusion of protein drugs through cylindrical nanochannels. ACS Nano4, 3817–3822 (2010).
  • Bernards DA Bhisitkul RB Wynn P et al. Ocular biocompatibility and structural integrity of micro- and nanostructured poly(caprolactone) films. J. Ocul. Pharmacol. Ther.29, 249–257 (2013).
  • Nadarassan DK . Sustained release of bevacizumab (Avastin) from BioSilicon. Presented at : ARVO Annual Meeting. Orlando, FL, USA, 4–8 May 2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.