93
Views
0
CrossRef citations to date
0
Altmetric
Review

A Discussion on Adult Mesenchymal Stem Cells for Drug delivery: Pros and Cons

, , &
Pages 1335-1346 | Accepted 29 Sep 2015, Published online: 14 Dec 2015

References

  • Gharpure KM Wu SY Li C Lopez-Berestein G Sood AK . Nanotechnology: future of oncotherapy. Clin. Cancer Res.21 (14), 3121–3130 (2015).
  • Munoz JL Bliss SA Greco SJ Ramkissoon SH Ligon KL Rameshwar P . Delivery of functional anti-miR-9 by mesenchymal stem cell-derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Mol. Ther. Nucleic Acids2, e126 (2013).
  • Josiah DT Zhu D Dreher F Olson J Mcfadden G Caldas H . Adipose-derived stem cells as therapeutic delivery vehicles of an oncolytic virus for glioblastoma. Mol. Ther.18 (2), 377–385 (2010).
  • Bagci-Onder T Du W Figueiredo JL Martinez-Quintanilla J Shah K . Targeting breast to brain metastatic tumours with death receptor ligand expressing therapeutic stem cells. Brain138 (Pt 6), 1710–1721 (2015).
  • Sharma RR Pollock K Hubel A Mckenna D . Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion54 (5), 1418–1437 (2014).
  • Campagnoli C Roberts IA Kumar S Bennett PR Bellantuono I Fisk NM . Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood98 (8), 2396–2402 (2001).
  • Anker PS Noort WA Kruisselbrink AB et al. Nonexpanded primary lung and bone marrow-derived mesenchymal cells promote the engraftment of umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp. Hematol.31 (10), 881–889 (2003).
  • Ishikane S Ohnishi S Yamahara K et al. Allogeneic injection of fetal membrane-derived mesenchymal stem cells induces therapeutic angiogenesis in a rat model of hind limb ischemia. Stem Cells26 (10), 2625–2633 (2008).
  • Portmann-Lanz CB Schoeberlein A Huber A et al. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am. J. Obstet. Gynecol.194 (3), 664–673 (2006).
  • Lee OK Kuo TK Chen WM Lee KD Hsieh SL Chen TH . Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood103 (5), 1669–1675 (2004).
  • Musina RA Belyavski AV Tarusova OV Solovyova EV Sukhikh GT . Endometrial mesenchymal stem cells isolated from the menstrual blood. Bull. Exp. Biol. Med.145 (4), 539–543 (2008).
  • He Q Wan C Li G . Concise review: multipotent mesenchymal stromal cells in blood. Stem Cells25 (1), 69–77 (2007).
  • Staszkiewicz J Gimble JM Manuel JA Gawronska-Kozak B . IFATS collection: stem cell antigen-1-positive ear mesenchymal stem cells display enhanced adipogenic potential. Stem Cells26 (10), 2666–2673 (2008).
  • Jakob M Hemeda H Janeschik S et al. Human nasal mucosa contains tissue-resident immunologically responsive mesenchymal stromal cells. Stem Cells Dev.19 (5), 635–644 (2010).
  • Tirino V Paino F D'aquino R Desiderio V De Rosa A Papaccio G . Methods for the identification, characterization and banking of human DPSCs: current strategies and perspectives. Stem Cell Rev.7 (3), 608–615 (2011).
  • Tay CY Sathiyanathan P Chu SW Stanton LW Wong TT . Identification and characterization of mesenchymal stem cells derived from the trabecular meshwork of the human eye. Stem Cells Dev.21 (9), 1381–1390 (2012).
  • Friedenstein AJ Chailakhjan RK Lalykina KS . The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet.3 (4), 393–403 (1970).
  • Kuznetsov SA Mankani MH Gronthos S Satomura K Bianco P Robey PG . Circulating skeletal stem cells. J. Cell Biol.153 (5), 1133–1140 (2001).
  • Trzaska KA Kuzhikandathil EV Rameshwar P . Specification of a dopaminergic phenotype from adult human mesenchymal stem cells. Stem Cells25 (11), 2797–2808 (2007).
  • Chan JL Tang KC Patel AP et al. Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-gamma. Blood107 (12), 4817–4824 (2006).
  • Da Silva Meirelles L Maistro Malta T De Deus Wagatsuma VM et al. Cultured human adipose tissue pericytes and mesenchymal stromal cells display a very similar gene expression profile. Stem Cells Dev. doi:10.1089/scd.0153 (2015) ( Epub ahead of print).
  • Pierantozzi E Badin M Vezzani B et al. Human pericytes isolated from adipose tissue have better differentiation abilities than their mesenchymal stem cell counterparts. Cell Tissue Res.361 (3), 769–778 (2015).
  • Marriott S Baskir RS Gaskill C et al. ABCG2pos lung mesenchymal stem cells are a novel pericyte subpopulation that contributes to fibrotic remodeling. Am. J. Physiol. Cell Physiol.307 (8), C684–698 (2014).
  • Potian JA Aviv H Ponzio NM Harrison JS Rameshwar P . Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigens and recall antigens. J. Immunol.171 (7), 3426–3434 (2003).
  • Sherman LS Munoz J Patel SA Dave MA Paige I Rameshwar P . Moving from the laboratory bench to patients’ bedside: considerations for effective therapy with stem cells. Clin. Transl Sci.4 (5), 380–386 (2011).
  • Marigo I Dazzi F . The immunomodulatory properties of mesenchymal stem cells. Semin. Immunopathol.33 (6), 593–602 (2011).
  • Castillo M Liu K Bonilla L Rameshwar P . The immune properties of mesenchymal stem cells. Int. J. Biomed. Sci.3 (2), 76–80 (2007).
  • Wynn RF Hart CA Corradi-Perini C et al. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood104 (9), 2643–2645 (2004).
  • Mele V Muraro MG Calabrese D et al. Mesenchymal stromal cells induce epithelial-to-mesenchymal transition in human colorectal cancer cells through the expression of surface-bound TGF-beta. Int. J. Cancer134 (11), 2583–2594 (2014).
  • Pevsner-Fischer M Morad V Cohen-Sfady M et al. Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood109 (4), 1422–1432 (2007).
  • Brandau S Jakob M Bruderek K et al. Mesenchymal stem cells augment the anti-bacterial activity of neutrophil granulocytes. PLoS ONE9 (9), e106903 (2014).
  • Németh K Leelahavanichkul A Yuen P et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat. Med.15 (1), 42–49 (2009).
  • Conde-Green A Baptista LS De Amorin NF et al. Effects of centrifugation on cell composition and viability of aspirated adipose tissue processed for transplantation. Aesthet. Surg. J.30 (2), 249–255 (2010).
  • Vellasamy S Sandrasaigaran P Vidyadaran S George E Ramasamy R . Isolation and characterisation of mesenchymal stem cells derived from human placenta tissue. World J. Stem Cells4 (6), 53–61 (2012).
  • Wang HS Hung SC Peng ST et al. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells22 (7), 1330–1337 (2004).
  • Pallua N Pulsfort AK Suschek C Wolter TP . Content of the growth factors bFGF, IGF-1, VEGF, and PDGF-BB in freshly harvested lipoaspirate after centrifugation and incubation. Plast. Reconstr. Surg.123 (3), 826–833 (2009).
  • Dominici M Le Blanc K Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy8 (4), 315–317 (2006).
  • Bernardo ME Zaffaroni N Novara F et al. Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res.67 (19), 9142–9149 (2007).
  • Prockop DJ Brenner M Fibbe WE et al. Defining the risks of mesenchymal stromal cell therapy. Cytotherapy12 (5), 576–578 (2010).
  • Di Nicola M Carlo-Stella C Magni M et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood99 (10), 3838–3843 (2002).
  • Aggarwal S Pittenger MF . Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood105 (4), 1815–1822 (2005).
  • Le Blanc K Samuelsson H Gustafsson B et al. Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells. Leukemia21 (8), 1733–1738 (2007).
  • Ghannam S Bouffi C Djouad F Jorgensen C Noel D . Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications. Stem Cell Res. Ther.1 (1), 2 (2010).
  • Augello A Tasso R Negrini SM et al. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur. J. Immunol.35 (5), 1482–1490 (2005).
  • Stagg J Pommey S Eliopoulos N Galipeau J . Interferon-gamma-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell. Blood107 (6), 2570–2577 (2006).
  • Li G Yuan L Ren X et al. The effect of mesenchymal stem cells on dynamic changes of T cell subsets in experimental autoimmune uveoretinitis. Clin. Exp. Immunol.173 (1), 28–37 (2013).
  • Baraniak PR Mcdevitt TC . Stem cell paracrine actions and tissue regeneration. Regen. Med.5 (1), 121–143 (2010).
  • Francois M Romieu-Mourez R Stock-Martineau S Boivin MN Bramson JL Galipeau J . Mesenchymal stromal cells cross-present soluble exogenous antigens as part of their antigen-presenting cell properties. Blood114 (13), 2632–2638 (2009).
  • Desai MB Gavrilova T Liu J et al. Pollen-induced antigen presentation by mesenchymal stem cells and T cells from allergic rhinitis. Clin. Transl. Immunology2 (10), e7 (2013).
  • Ren G Zhang L Zhao X et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell2 (2), 141–150 (2008).
  • Valencic E Loganes C Cesana S et al. Inhibition of mesenchymal stromal cells by pre-activated lymphocytes and their culture media. Stem Cell Res. Ther.5 (1), 3 (2014).
  • Honczarenko M Le Y Swierkowski M Ghiran I Glodek AM Silberstein LE . Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells24 (4), 1030–1041 (2006).
  • Osaka M Honmou O Murakami T et al. Intravenous administration of mesenchymal stem cells derived from bone marrow after contusive spinal cord injury improves functional outcome. Brain Res.1343, 226–235 (2010).
  • Cornelissen AS Maijenburg MW Voermans MA . Organ-specific migration of mesenchymal stromal cells: who, when, where and why?Immunol. Lett. doi:10.1016/j.imlet.06.019 (2015) ( Epub ahead of print).
  • Lei J Hui D Huang W et al. Heterogeneity of the biological properties and gene expression profiles of murine bone marrow stromal cells. Int. J. Biochem. Cell Biol.45 (11), 2431–2443 (2013).
  • Iso Y Spees JL Serrano C et al. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem. Biophys. Res. Commun.354 (3), 700–706 (2007).
  • Arslan F Lai RC Smeets MB et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res.10 (3), 301–312 (2013).
  • Patel N Klassert TE Greco SJ et al. Developmental regulation of TAC1 in peptidergic-induced human mesenchymal stem cells: implication for spinal cord injury in zebrafish. Stem Cells Dev.21 (2), 308–320 (2012).
  • Chen J Li C Chen L . The role of microvesicles derived from mesenchymal stem cells in lung diseases. Biomed. Res. Int.2015, 985814 (2015).
  • Ji R Zhang B Zhang X et al. Exosomes derived from human mesenchymal stem cells confer drug resistance in gastric cancer. Cell Cycle14 (15), 2473–2483 (2015).
  • Ratajczak J Miekus K Kucia M et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia20 (5), 847–856 (2006).
  • Kosaka N Iguchi H Yoshioka Y Takeshita F Matsuki Y Ochiya T . Secretory mechanisms and intercellular transfer of microRNAs in living cells. J. Biol. Chem.285 (23), 17442–17452 (2010).
  • Valadi H Ekstrom K Bossios A Sjostrand M Lee JJ Lotvall JO . Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol.9 (6), 654–659 (2007).
  • Lim PK Bliss SA Patel SA et al. Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res.71 (5), 1550–1560 (2011).
  • Khubutiya MS Vagabov AV Temnov AA Sklifas AN . Paracrine mechanisms of proliferative, anti-apoptotic and anti-inflammatory effects of mesenchymal stromal cells in models of acute organ injury. Cytotherapy16 (5), 579–585 (2014).
  • Wu Y Chen L Scott PG Tredget EE . Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells25 (10), 2648–2659 (2007).
  • Qiao L Xu ZL Zhao TJ Ye LH Zhang XD . Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett.269 (1), 67–77 (2008).
  • Ramasamy R Lam EW Soeiro I Tisato V Bonnet D Dazzi F . Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia21 (2), 304–310 (2007).
  • Sun B Roh KH Park JR et al. Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model. Cytotherapy11 (3), 289–298 (2009).
  • Miletic H Fischer Y Litwak S et al. Bystander killing of malignant glioma by bone marrow-derived tumor-infiltrating progenitor cells expressing a suicide gene. Mol. Ther.15 (7), 1373–1381 (2007).
  • Niess H Von Einem JC Thomas MN et al. Treatment of advanced gastrointestinal tumors with genetically modified autologous mesenchymal stromal cells (TREAT-ME1): study protocol of a Phase I/II clinical trial. BMC Cancer15, 237 (2015).
  • Forbes GM Sturm MJ Leong RW et al. A Phase 2 study of allogeneic mesenchymal stromal cells for luminal Crohn's disease refractory to biologic therapy. Clin. Gastroenterol. Hepatol.12 (1), 64–71 (2014).
  • Garcia-Olmo D Garcia-Arranz M Herreros D Pascual I Peiro C Rodriguez-Montes JA . A Phase I clinical trial of the treatment of Crohn's fistula by adipose mesenchymal stem cell transplantation. Dis. Colon Rectum48 (7), 1416–1423 (2005).
  • Trivedi HL Vanikar AV Thakker U et al. Human adipose tissue-derived mesenchymal stem cells combined with hematopoietic stem cell transplantation synthesize insulin. Transplant Proc.40 (4), 1135–1139 (2008).
  • Aleynik A Gernavage KM Mourad Y et al. Stem cell delivery of therapies for brain disorders. Clin. Transl. Med.3, 24 (2014).
  • Choi SA Lee YE Kwak PA et al. Clinically applicable human adipose tissue-derived mesenchymal stem cells delivering therapeutic genes to brainstem gliomas. Cancer Gene Ther.22 (6), 302–311 (2015).
  • Li Q Wijesekera O Salas SJ et al. Mesenchymal stem cells from human fat engineered to secrete BMP4 are nononcogenic, suppress brain cancer, and prolong survival. Clin. Cancer Res.20 (9), 2375–2387 (2014).
  • Rameshwar P . Mesenchymal stem cells can be a conduit for the delivery of therapeutic microRNA. J. Stem Cell Res. Ther.3 (1), e112 (2013).
  • Olson SD Kambal A Pollock K et al. Examination of mesenchymal stem cell-mediated RNAi transfer to Huntington's disease affected neuronal cells for reduction of huntingtin. Mol. Cell. Neurosci.49 (3), 271–281 (2012).
  • Kamaci N Emnacar T Karakas N Arikan G Tsutsui K Isik S . Selective silencing of DNA topoisomerase IIbeta in human mesenchymal stem cells by siRNAs (small interfering RNAs). Cell Biol. Int. Rep. (2010)18 (1), e00010 (2011).
  • Smith CL Chaichana KL Lee YM et al. Pre-exposure of human adipose mesenchymal stem cells to soluble factors enhances their homing to brain cancer. Stem Cells Transl. Med.4 (3), 239–251 (2015).
  • Zhu M Feng Y Dangelmajer S et al. Human cerebrospinal fluid regulates proliferation and migration of stem cells through insulin-like growth factor-1. Stem Cells Dev.24 (2), 160–171 (2015).
  • Eggenhofer E Benseler V Kroemer A et al. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Front. Immunol.3, 297 (2012).
  • Mcdonald CA Oehme D Pham Y et al. Evaluation of the safety and tolerability of a high-dose intravenous infusion of allogeneic mesenchymal precursor cells. Cytotherapy17 (9), 1178–1187 (2015).
  • Diez-Tejedor E Gutierrez-Fernandez M Martinez-Sanchez P et al. Reparative therapy for acute ischemic stroke with allogeneic mesenchymal stem cells from adipose tissue: a safety assessment: a Phase II randomized, double-blind, placebo-controlled, single-center, pilot clinical trial. J. Stroke Cerebrovasc. Dis.23 (10), 2694–2700 (2014).
  • Le Blanc K Frassoni F Ball L et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a Phase II study. Lancet371 (9624), 1579–1586 (2008).
  • Machula H Ensley B Kellar R . Electrospun tropoelastin for delivery of therapeutic adipose-derived stem cells to full-thickness dermal wounds. Adv. Wound Care3 (5), 367–375 (2014).
  • Jayasinghe SN . Bio-electrosprays: from bio-analytics to a generic tool for the health sciences. Analyst136 (5), 878–890 (2011).
  • Jayasinghe SN . Cell electrospinning: a novel tool for functionalising fibres, scaffolds and membranes with living cells and other advanced materials for regenerative biology and medicine. Analyst138 (8), 2215–2223 (2013).
  • Guiro K Patel SA Greco SJ Rameshwar P Arinzeh TL . Investigating breast cancer cell behavior using tissue engineering scaffolds. PLoS ONE10 (3), e0118724 (2015).
  • Jayasinghe SN Qureshi AN Eagles PA . Electrohydrodynamic jet processing: an advanced electric-field-driven jetting phenomenon for processing living cells. Small2 (2), 216–219 (2006).
  • Townsend-Nicholson A Jayasinghe SN . Cell electrospinning: a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds. Biomacromolecules7 (12), 3364–3369 (2006).
  • Hwang CW Johnston PV Gerstenblith G et al. Stem cell impregnated nanofiber stent sleeve for on-stent production and intravascular delivery of paracrine factors. Biomaterials52, 318–326 (2015).
  • Jahani H Kaviani S Hassanpour-Ezatti M Soleimani M Kaviani Z Zonoubi Z . The effect of aligned and random electrospun fibrous scaffolds on rat mesenchymal stem cell proliferation. Cell J.14 (1), 31–38 (2012).
  • Le Blanc K Tammik C Rosendahl K Zetterberg E Ringden O . HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp. Hematol.31 (10), 890–896 (2003).
  • Ankrum JA Ong JF Karp JM . Mesenchymal stem cells: immune evasive, not immune privileged. Nat. Biotechnol.32 (3), 252–260 (2014).
  • Talmadge JE . Clonal selection of metastasis within the life history of a tumor. Cancer Res.67 (24), 11471–11475 (2007).
  • Patel SA Meyer JR Greco SJ Corcoran KE Bryan M Rameshwar P . Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-beta. J. Immunol.184 (10), 5885–5894 (2010).
  • Ono M Kosaka N Tominaga N et al. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci. Signal7 (332), ra63 (2014).
  • Mishra PJ Mishra PJ Humeniuk R et al. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res.68 (11), 4331–4339 (2008).
  • Spaeth EL Dembinski JL Sasser AK et al. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS ONE4 (4), e4992 (2009).
  • Corcoran KE Trzaska KA Fernandes H et al. Mesenchymal stem cells in early entry of breast cancer into bone marrow. PLoS ONE3 (6), e2563 (2008).
  • Rameshwar P . Breast cancer cell dormancy in bone marrow: potential therapeutic targets within the marrow microenvironment. Expert Rev. Anticancer Ther.10 (2), 129–132 (2010).
  • Romieu-Mourez R Francois M Boivin MN Stagg J Galipeau J . Regulation of MHC class II expression and antigen processing in murine and human mesenchymal stromal cells by IFN-gamma, TGF-beta, and cell density. J. Immunol.179 (3), 1549–1558 (2007).
  • Lublin FD Bowen JD Huddlestone J et al. Human placenta-derived cells (PDA-001) for the treatment of adults with multiple sclerosis: a randomized, placebo-controlled, multiple-dose study. Mult. Scler. Relat. Disord.3 (6), 696–704 (2014).
  • Chambers DC Enever D Ilic N et al. A Phase 1b study of placenta-derived mesenchymal stromal cells in patients with idiopathic pulmonary fibrosis. Respirology19 (7), 1013–1018 (2014).
  • Vargas A Zhou S Ethier-Chiasson M et al. Syncytin proteins incorporated in placenta exosomes are important for cell uptake and show variation in abundance in serum exosomes from patients with preeclampsia. FASEB J28 (8), 3703–3719 (2014).
  • Cheynet V Ruggieri A Oriol G et al. Synthesis, assembly, and processing of the Env ERVWE1/syncytin human endogenous retroviral envelope. J. Virol.79 (9), 5585–5593 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.