885
Views
0
CrossRef citations to date
0
Altmetric
Review

Cubosomes and Hexosomes As Versatile Platforms for Drug Delivery

, &
Pages 1347-1364 | Received 25 Aug 2015, Accepted 07 Oct 2015, Published online: 14 Dec 2015

References

  • Martins P Rosa DR Fernandes A et al. Nanoparticle drug delivery systems: recent patents and applications in nanomedicine. Recent Pat. Nanomed.3 (2), 105–118 (2013).
  • Sharma A Sharma US . Liposomes in drug delivery: progress and limitations. Int. J. Pharm154 (2), 123–140 (1997).
  • Drummond CJ Fong C . Surfactant self-assembly objects as novel drug delivery vehicles. Curr. Opin. Colloid Interface Sci.4 (6), 449–456 (1999).
  • Puri A Loomis K Smith B et al. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit. Rev. Ther. Drug Carrier Syst.26 (6), 523–580 (2009).
  • Guo C Wang J Cao F et al. Lyotropic liquid crystal systems in drug delivery. Drug Discov. Today15, 1032–1040 (2010).
  • Kaasgaard T Drummond CJ . Ordered 2-D and 3-D nanostructured amphiphile self-assembly materials stable in excess solvent. Phys. Chem. Chem. Phys.8 (43), 4957–4975 (2006).
  • Ljusberg-Wahern H Nyberg L Larsson K . Dispersion of the cubic liquid crystalline phase–structure preparation and functionality aspects. Chim. Oggi14 (6), 40–43 (1996).
  • Gustafsson J Ljusberg-Wahren H Almgren M et al. Submicron particles of reversed lipid phases in water stabilized by a nonionic amphiphilic polymer. Langmuir13 (26), 6964–6971 (1997).
  • Hyde S Andersson S Larsson K et al. Lipid self-assembly and function in biological systems. In : The Languange of Shape; The Role of Curvature in Condensed Matter: Physics, Chemistry and Giology (Volume 337). MackayAL ( Ed.). Elsevier B. V., Amsterdam, The Netherlands, 199–236 (1997).
  • Patel R Patel TN . Liquid crystals and their application in the field of drug delivery. In : Colloids in Drug Delivery (Volume 150). MonzerF ( Ed.). CRC Press, NY, USA, 311–336 (2010).
  • Koynova R Tenchov B . Recent patents on nonlamellar liquid crystalline lipid phases in drug delivery. Recent Pat. Drug Deliv. Formul.7 (3), 165–173 (2013).
  • Johnsson M Barauskas J Tiberg F . Cubic phases and cubic phase dispersions in a phospholipid-based system. J. Am. Chem. Soc.127 (4), 1076–1077 (2005).
  • Yaghmur A Glatter O . Characterization and potential applications of nanostructured aqueous dispersions. Adv. Colloid Interface Sci.147–148, 333–342 (2009).
  • Tanford C . The Hydrophobic Effect: Formation of Micelles and Biological Membranes (2nd Edition). Wiley, Brisbane, Australia (1980). Wiley, Brisbane, NY, USA, (1980).
  • Yaghmur A Laggner P Sartori B et al. Calcium triggered Lα-H2 phase transition monitored by combined rapid mixing and time-resolved synchrotron SAXS. PLoS ONE3 (4), e2072 (2008).
  • Amar-Yuli I Libster D Aserin A et al. Solubilization of food bioactives within lyotropic liquid crystalline mesophases. Curr. Opin. Colloid Interface Sci.14 (1), 21–32 (2009).
  • Yaghmur A Rappolt M Garti N et al. Recent advances in the characterization of lipid-based nanocarriers. In : Nanotechnologies for Solubilization and Delivery in Foods, Cosmetics and Pharmaceuticals. GartiNAmar-YuliI ( Eds). DEStech Publications, Inc., PA, USA, 187–208 (2011).
  • Shah J . Cubic phase gels as drug delivery systems. Adv. Drug Deliv. Rev.47, 229–250 (2001).
  • Israelachvili JN Mitchell DJ Ninham BW . Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans. 272, 1525–1568 (1976).
  • Garbovskiy YA Glushchenko AV . Liquid crystalline colloids of nanoparticles: Preparation, properties, and applications. In : Solid State Physics. RobertECRobertLS ( Eds). Academic Press, CA, USA, 1–74 (2010).
  • Yaghmur A Sartori B Rappolt M . Self-assembled nanostructures of fully hydrated monoelaidin-elaidic acid and monoelaidin-oleic acid systems. Langmuir28 (26), 10105–10119 (2012).
  • de Campo L Yaghmur A Sagalowicz L et al. Reversible phase transitions in emulsified nanostructured lipid systems. Langmuir20 (13), 5254–5261 (2004).
  • Qiu H Caffrey M . The phase diagram of the monoolein/water system: metastability and equilibrium aspects. Biomaterials21 (3), 223–234 (2000).
  • Yaghmur A Rappolt M . Structural characterization of lipidic systems under nonequilibrium conditions. Eur. Biophys. J.41 (10), 831–840 (2012).
  • Sagalowicz L Guillot S et al. Influence of vitamin E acetate and other lipids on the phase behavior of unsaturated monoglyceride mesophase. Langmuir29 (26), 8222–8232 (2013).
  • Yaghmur A Kriechbaum M Amenitsch H et al. Effects of pressure and temperature on the self-assembled fully hydrated nanostructures of monoolein-oil systems. Langmuir26 (2), 1177–1185 (2010).
  • Yaghmur A de Campo L Salentinig S et al. Oil-loaded monolinolein-based particles with confined inverse discontinuous cubic structure. Langmuir22 (2), 517–521 (2006).
  • Yaghmur A de Campo L Sagalowicz L et al. Emulsified microemulsions and oil-containing liquid crystalline phases. Langmuir21 (2), 569–577 (2004).
  • Luzzati V Vargas R Gulik A et al. Lipid polymorphism: a correction. The structure of the cubic phase of extinction symbol Fd-- consists of two types of disjointed reverse micelles embedded in a three-dimensional hydrocarbon matrix. Biochemistry31 (1), 279–285 (1992).
  • Larsson K . Cubic lipid–water phases: structures and biomembrane aspects. J. Phys. Chem.93 (21), 7304–7314 (1989).
  • Mariani P Luzzati V Delacroix H . Cubic phases of lipid-containing systems: structure analysis and biological implications. J. Mol. Biol.204 (1), 165–189 (1988).
  • Fong C Le T Drummond CJ . Lyotropic liquid crystal engineering-ordered nanostructured small molecule amphiphile self-assembly materials by design. Chem. Soc. Rev.41 (3), 1297–1322 (2012).
  • Hartnett TE O'Connor AJ Ladewig K . Cubosomes and other potential ocular drug delivery vehicles for macromolecular therapeutics. Expert Opin. Drug Deliv.12 (9), 1–14 (2015).
  • Lancelot A Sierra T Serrano JL . Nanostructured liquid-crystalline particles for drug delivery. Expert Opin. Drug Deliv.11, 547–564 (2014).
  • Israelachvili J . The science and applications of emulsions–an overview. Colloids Surf. A91, 1–8 (1994).
  • Spicer PT . Progress in liquid crystalline dispersions: cubosomes. Curr. Opin. Colloid Interface Sci.10 (5–6), 274–279 (2005).
  • Yaghmur A Laggner P Zhang S et al. Tuning curvature and stability of monoolein bilayers by designer lipid-like peptide surfactants. PLoS ONE2 (5), e479 (2007).
  • Clogston J Craciun G Hart D et al. Controlling release from the lipidic cubic phase by selective alkylation. J. Control. Rel.102 (2), 441–461 (2005).
  • Nazaruk E Bilewicz R Lindblom G et al. Cubic phases in biosensing systems. Anal. Bioanal. Chem.391 (5), 1569–1578 (2008).
  • Martiel I Baumann N Vallooran JJ et al. Oil and drug control the release rate from lyotropic liquid crystals. J. Control. Rel.204, 78–84 (2015).
  • Souza C Watanabe E Borgheti-Cardoso LN et al. Mucoadhesive system formed by liquid crystals for buccal administration of poly(hexamethylene biguanide) hydrochloride. J. Pharm. Sci.103 (12), 3914–3923 (2014).
  • Nielsen LS Schubert L Hansen J . Bioadhesive drug delivery systems: I. Characterisation of mucoadhesive properties of systems based on glyceryl mono-oleate and glyceryl monolinoleate. Eur. J. Pharm. Sci.6 (3), 231–239 (1998).
  • Lee J Young SA Kellaway IW . Water quantitatively induces the mucoadhesion of liquid crystalline phases of glyceryl monooleate. J. Pharm. Pharmacol.53 (5), 629–636 (2001).
  • Patil SS Mahadik KR Paradkar AR . Liquid crystalline phase as a probe for crystal engineering of lactose: carrier for pulmonary drug delivery. Eur. J. Pharm. Sci.68 (0), 43–50 (2015).
  • Boyd BJ Khoo S-M Whittaker DV et al. A lipid-based liquid crystalline matrix that provides sustained release and enhanced oral bioavailability for a model poorly water soluble drug in rats. Int. J. Pharm.340 (1), 52–60 (2007).
  • Gupta A Stait-Gardner T de Campo L et al. Nanoassemblies of Gd–DTPA–monooleyl and glycerol monooleate amphiphiles as potential MRI contrast agents. J. Mater. Chem. B2 (9), 1225–1233 (2014).
  • Yaghmur A Rappolt M Østergaard J et al. Characterization of Bupivacaine-loaded formulations based on liquid crystalline phases and microemulsions: the effect of lipid composition. Langmuir28, 2881–2889 (2012).
  • Ahmed AR Dashevsky A Bodmeier R . Drug release from and sterilization of in situ cubic phase forming monoglyceride drug delivery systems. Eur. J. Pharm. Biopharm.75 (3), 375–380 (2010).
  • Ganguly S Dash AK . A novel in situ gel for sustained drug delivery and targeting. Int. J. Pharm.276 (1), 83–92 (2004).
  • Luo M Shen Q Chen J . Transdermal delivery of Paeonol using cubic gel and microemulsion gel. Int. J. Nanomed.6, 1603 (2011).
  • Lopes LB Speretta FF Bentley MVL . Enhancement of skin penetration of vitamin K using monoolein-based liquid crystalline systems. Eur. J. Pharm. Sci.32 (3), 209–215 (2007).
  • Esposito E Carotta V Scabbia A et al. Comparative analysis of tetracycline-containing dental gels: poloxamer- and monoglyceride-based formulations. Int. J. Pharm.142 (1), 9–23 (1996).
  • Yaghmur A Larsen SW et al. In situ characterization of lipidic bupivacaine-loaded formulations. Soft Matter7 (18), 8291–8295 (2011).
  • Borgheti-Cardoso LN Depieri LV Kooijmans SaA et al. An in situ gelling liquid crystalline system based on monoglycerides and polyethylenimine for local delivery of siRNAs. Eur. J. Pharm. Sci.74 (0), 103–117 (2015).
  • Ki M-H Lim J-L Ko J-Y et al. A new injectable liquid crystal system for one month delivery of leuprolide. J. Control. Rel.185, 62–70 (2014).
  • Yaghmur A Rappolt M Larsen SW . In situ forming drug delivery systems based on lyotropic liquid crystalline phases: structural characterization and release properties. J. Drug Deliv. Sci. Technol.23 (4), 325–332 (2013).
  • Larsson K . Aqueous dispersions of cubic lipid–water phases. Curr. Opin. Colloid Interface Sci.5 (1–2), 64–69 (2000).
  • Spicer PT Hayden KL Lynch ML et al. Novel process for producing cubic liquid crystalline nanoparticles (cubosomes). Langmuir17 (19), 5748–5756 (2001).
  • Worle G Tiberg F Johnsson M et al. Method for improving the properties of amphiphile particles. US20070134336 A1 (2004).
  • Salentinig S Yaghmur A Guillot S et al. Preparation of highly concentrated nanostructured dispersions of controlled size. J. Colloid Interface Sci.326 (1), 211–220 (2008).
  • Amar-Yuli I Wachtel E Ben Shoshan E et al. Hexosome and hexagonal phases mediated by hydration and polymeric stabilizer. Langmuir23 (7), 3637–3645 (2007).
  • Tilley AJ Drummond CJ Boyd BJ . Disposition and association of the steric stabilizer Pluronic® F127 in lyotropic liquid crystalline nanostructured particle dispersions. J. Colloid Interface Sci.392, 288–296 (2013).
  • Nakano M Teshigawara T Sugita A et al. Dispersions of liquid crystalline phases of the monoolein/oleic acid/pluronic F127 system. Langmuir18 (24), 9283–9288 (2002).
  • Zeng N Hu Q Liu Z et al. Preparation and characterization of paclitaxel-loaded DSPE-PEG-liquid crystalline nanoparticles (LCNPs) for improved bioavailability. Int. J. Pharm.424 (1–2), 58–66 (2012).
  • Nilsson C Østergaard J Larsen SW et al. PEGylation of phytantriol-based lyotropic liquid crystalline particles–the effect of lipid composition, PEG chain length, and temperature on the internal nanostructure. Langmuir30 (22), 6398–6407 (2014).
  • Zhai J Waddington L Wooster TJ et al. Revisiting β-casein as a stabilizer for lipid liquid crystalline nanostructured particles. Langmuir27 (24), 14757–14766 (2011).
  • Uyama M Nakano M Yamashita J et al. Useful modified cellulose polymers as new emulsifiers of cubosomes. Langmuir25 (8), 4336–4338 (2009).
  • Chong JY Mulet X Waddington LJ et al. High-throughput discovery of novel steric stabilizers for cubic lyotropic liquid crystal nanoparticle dispersions. Langmuir28 (25), 9223–9232 (2012).
  • Nilsson C Edwards K Eriksson J et al. Characterization of oil-free and oil-loaded liquid-crystalline particles stabilized by negatively charged stabilizer citrem. Langmuir28 (32), 11755–11766 (2012).
  • Hedegaard SF Nilsson C Laurinmaki P et al. Nanostructured aqueous dispersions of citrem interacting with lipids and pegylated lipids. RSC Advances3 (46), 24576–24585 (2013).
  • Gustafsson J Ljusbergwahren H Almgren M et al. Cubic lipid–water phase dispersed into submicron particles. Langmuir12 (20), 4611–4613 (1996).
  • Dong Y-D Larson I Hanley T et al. Bulk and dispersed aqueous phase behavior of phytantriol: effect of vitamin E acetate and F127 polymer on liquid crystal nanostructure. Langmuir22, 9512–9518 (2006).
  • Yaghmur A Laggner P Almgren M et al. Self-assembly in monoelaidin aqueous dispersions: direct vesicles to cubosomes transition. PLoS ONE3 (11), e3747 (2008).
  • Abraham T Hato M Hirai M . Polymer-dispersed bicontinuous cubic glycolipid nanoparticles. Biotechnol. Prog.21 (1), 255–262 (2005).
  • Chong JY Mulet X Waddington LJ et al. Steric stabilisation of self-assembled cubic lyotropic liquid crystalline nanoparticles: high throughput evaluation of triblock polyethylene oxide–polypropylene oxide–polyethylene oxide copolymers. Soft Matter7 (10), 4768–4777 (2011).
  • Spicer PT Small Ii WB Small WB et al. Dry powder precursors of cubic liquid crystalline nanoparticles (cubosomes). J. Nanopart. Res.4 (4), 297–311 (2002).
  • Angelov B Angelova A Papahadjopoulos-Sternberg B et al. Protein-containing pegylated cubosomic particles: freeze-fracture electron microscopy and synchrotron radiation circular dichroism study. J. Phys. Chem. B116 (26), 7676–7686 (2012).
  • Barauskas J Johnsson M Tiberg F . Self-assembled lipid superstructures: beyond vesicles and liposomes. Nano Lett.5 (8), 1615–1619 (2005).
  • Muller F Salonen A Glatter O . Monoglyceride-based cubosomes stabilized by laponite: separating the effects of stabilizer, pH and temperature. Colloids Surf. A358 (1–3), 50–56 (2010).
  • Rosa M Rosa Infante M Miguel MDG et al. Spontaneous formation of vesicles and dispersed cubic and hexagonal particles in amino acid-based catanionic surfactant systems. Langmuir22 (13), 5588–5596 (2006).
  • Angelova A Angelov B Drechsler M et al. Protein entrapment in PEGylated lipid nanoparticles. Int. J. Pharm.454 (2), 625–632 (2013).
  • Angelova A Angelov B Garamus VM et al. Small-angle X-ray scattering investigations of biomolecular confinement, loading, and release from liquid-crystalline nanochannel assemblies. J. Phys. Chem. Lett.3 (3), 445–457 (2012).
  • Narayanan T . High brilliance small-angle x-ray scattering applied to soft matter. Curr. Opin. Colloid Interface Sci.14 (6), 409–415 (2009).
  • Yaghmur A Paasonen L Yliperttula M et al. Structural elucidation of light activated vesicles. J. Phys. Chem. Lett.1 (6), 962–966 (2010).
  • Bode JC Kuntsche J Funari SS et al. Interaction of dispersed cubic phases with blood components. Int. J. Pharm.448 (1), 87–95 (2013).
  • Yaghmur A Sartori B Rappolt M . The role of calcium in membrane condensation and spontaneous curvature variations in model lipidic systems. Phys. Chem. Chem. Phys.13 (8), 3115–3125 (2011).
  • Neto C Aloisi G Baglioni P et al. Imaging soft matter with the atomic force microscope: cubosomes and hexosomes. J. Phys. Chem. B103 (19), 3896–3899 (1999).
  • Ferreira DA Bentley MVLB Karlsson G et al. Cryo-TEM investigation of phase behaviour and aggregate structure in dilute dispersions of monoolein and oleic acid. Int. J. Pharm.310 (1–2), 203–212 (2006).
  • Kuntsche J Horst JC Bunjes H . Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems. Int. J. Pharm.417 (1–2), 120–137 (2011).
  • Rizwan SB Dong YD Boyd BJ et al. Characterisation of bicontinuous cubic liquid crystalline systems of phytantriol and water using cryo field emission scanning electron microscopy (cryo FESEM). Micron38 (5), 478–485 (2007).
  • Helvig S Azmi ID Moghimi SM et al. Recent advances in cryo-TEM imaging of soft lipid nanoparticles. AIMS Biophysics2 (2), 116–130 (2015).
  • Mat Azmi ID Wu L Wibroe PP et al. Modulatory effect of human plasma on the internal nanostructure and size characteristics of liquid crystalline nanocarriers. Langmuir31, 5042–5049 (2015).
  • Angelov B Angelova A Filippov SK et al. Multicompartment lipid cubic nanoparticles with high protein upload: millisecond dynamics of formation. ACS Nano8 (5), 5216–5226 (2014).
  • Yaghmur A Rappolt M . Chapter five–the micellar cubic Fd3m phase: recent advances in the structural characterization and potential applications. In : Advances in Planar Lipid Bilayers and Liposomes. AlešIChandrashekharVK ( Eds). Academic Press, 111–145 (2013).
  • Muir BW Acharya DP Kennedy DF et al. Metal-free and MRI visible theranostic lyotropic liquid crystal nitroxide-based nanoparticles. Biomaterials33, 2723–2733 (2012).
  • Nilsson C Barrios-Lopez B Kallinen A et al. SPECT/CT imaging of radiolabeled cubosomes and hexosomes for potential theranostic applications. Biomaterials34, 8491–8503 (2013).
  • Lakshmi NM Yalavarthi PR Vadlamudi HC et al. Cubosomes as targeted drug delivery systems–a biopharmaceutical approach. Curr. Drug Discov. Technol.11, 181–188 (2014).
  • Han S Shen J-Q Gan Y et al. Novel vehicle based on cubosomes for ophthalmic delivery of flurbiprofen with low irritancy and high bioavailability. Acta Pharmacol. Sin.31 (8), 990–998 (2010).
  • Yang Z Tan Y Chen M et al. Development of amphotericin B-loaded cubosomes through the solemuls technology for enhancing the oral bioavailability. AAPS Pharm. Sci. Tech.13 (4), 1483–1491 (2012).
  • Bye N Hutt OE Hinton TM et al. Nitroxide-loaded hexosomes provide MRI contrast in vivo. Langmuir30, 8898–8906 (2014).
  • Nguyen T-H Hanley T Porter CJ et al. Nanostructured liquid crystalline particles provide long duration sustained-release effect for a poorly water soluble drug after oral administration. J. Control. Release153 (2), 180–186 (2011).
  • Wu H Li J Zhang Q et al. A novel small odorranalectin-bearing cubosomes: preparation, brain delivery and pharmacodynamic study on amyloid-β 25–35-treated rats following intranasal administration. Eur. J. Pharm. Biopharm.80 (2), 368–378 (2012).
  • Murgia S Bonacchi S Falchi AM et al. Drug-loaded fluorescent cubosomes: versatile nanoparticles for potential theranostic applications. Langmuir29, 6673–6679 (2013).
  • De Carvalho Vicentini FTM Depieri LV Polizello ACM et al. Liquid crystalline phase nanodispersions enable skin delivery of siRNA. Eur. J. Pharm. Biopharm.83 (1), 16–24 (2013).
  • Du JD Liu Q Salentinig S et al. A novel approach to enhance the mucoadhesion of lipid drug nanocarriers for improved drug delivery to the buccal mucosa. Int. J. Pharm.471 (1), 358–365 (2014).
  • Esposito E Ravani L Mariani P et al. Curcumin containing monoolein aqueous dispersions: a preformulative study. Mater. Sci. Eng. C33 (8), 4923–4934 (2013).
  • Puglia C Cardile V Panico AM et al. Evaluation of monooleine aqueous dispersions as tools for topical administration of curcumin: characterization, in vitro and ex-vivo studies. J. Pharm. Sci.102 (7), 2349–2361 (2013).
  • Murgia S Falchi AM Meli V et al. Cubosome formulations stabilized by a dansyl-conjugated block copolymer for possible nanomedicine applications. Colloids Surf. B129, 87–94 (2015).
  • Linkevičiūtė A Misiūnas A Naujalis E et al. Preparation and characterization of quercetin-loaded lipid liquid crystalline systems. Colloids Surf. B128, 296–303 (2015).
  • Bonifácio BV Da Silva PB Dos Santos Ramos MA et al. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int. J. Nanomed.9, 1 (2014).
  • Esposito E Sticozzi C Ravani L et al. Effect of new curcumin-containing nanostructured lipid dispersions on human keratinocytes proliferative responses. Exp. Dermatol.24 (6), 449–454 (2015).
  • Jain S Bhankur N Swarnakar NK et al. Phytantriol based ‘stealth’ lyotropic liquid crystalline nanoparticles for improved antitumor efficacy and reduced toxicity of docetaxel. Pharm. Res.1–11 (2015).
  • Jain V Swarnakar NK Mishra PR et al. Paclitaxel loaded pegylated gleceryl monooleate based nanoparticulate carriers in chemotherapy. Biomaterials33 (29), 7206–7220 (2012).
  • Deshpande S Venugopal E Ramagiri S et al. Enhancing cubosome functionality by coating with a single layer of poly-ε-lysine. ACS Appl. Mater. Interfaces6, 17126–17133 (2014).
  • Otsuka H Nagasaki Y Kataoka K . PEGylated nanoparticles for biological and pharmaceutical applications. Adv. Drug Deliv. Rev.64, 246–255 (2012).
  • Li S-D Huang L . Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting. J. Control. Rel.145 (3), 178 (2010).
  • Zhai J Scoble JA Li N et al. Epidermal growth factor receptor-targeted lipid nanoparticles retain self-assembled nanostructures and provide high specificity. Nanoscale7 (7), 2905–2913 (2015).
  • Meli V Caltagirone C Falchi AM et al. Docetaxel loaded fluorescent liquid crystalline nanoparticles for cancer theranostics. Langmuir31 (35), 9566–9575 (2015).
  • Caltagirone C Falchi AM Lampis S et al. Cancer-cell-targeted theranostic cubosomes. Langmuir30 (21), 6228–6236 (2014).
  • Caltagirone C Arca M Falchi AM et al. Solvatochromic fluorescent bodipy derivative as imaging agent in camptothecin loaded hexosomes for possible theranostic applications. RSC Adv.5 (30), 23443–23449 (2015).
  • Murgia S Falchi AM Mano M et al. Nanoparticles from lipid-based liquid crystals: emulsifier influence on morphology and cytotoxicity. J. Phys. Chem. B114 (10), 3518–3525 (2010).
  • Falchi AM Rosa A Atzeri A et al. Effects of monoolein-based cubosome formulations on lipid droplets and mitochondria of Hela cells. Toxicol. Res.4, 1025–1036 (2015).
  • Tudose A Celia C Belu I et al. Effect of three monoglyceride based cubosomes systems on the viability of human keratinocytes. Farmacia62 (4), 777–790 (2014).
  • Leesajakul W Nakano M Taniguchi A et al. Interaction of cubosomes with plasma components resulting in the destabilization of cubosomes in plasma. Colloids Surf. B34 (4), 253–258 (2004).
  • Swarnakar NK Thanki K Jain S . Bicontinuous cubic liquid crystalline nanoparticles for oral delivery of doxorubicin: implications on bioavailability, therapeutic efficacy, and cardiotoxicity. Pharm. Res.31 (5), 1219–1238 (2014).
  • Rosa A Murgia S Putzu D et al. Monoolein-based cubosomes affect lipid profile in HeLa cells. Biochem. Biophys. Lipids191, 96–105 (2015).
  • Rizwan SB Boyd BJ Rades T et al. Bicontinuous cubic liquid crystals as sustained delivery systems for peptides and proteins. Expert Opin. Drug Deliv.7 (10), 1133–1144 (2010).
  • Hinton TM Grusche F Acharya D et al. Bicontinuous cubic phase nanoparticle lipid chemistry affects toxicity in cultured cells. Toxicol. Res3 (1), 11–22 (2014).
  • Martiel I Handschin S Fong W-K et al. Oil transfer converts phosphatidylcholine vesicles into non-lamellar lyotropic liquid crystalline particles. Langmuir31 (1), 96–104 (2015).
  • Kamo T Nakano M Leesajakul W et al. Nonlamellar liquid crystalline phases and their particle formation in the egg yolk phosphatidylcholine/diolein system. Langmuir19 (22), 9191–9195 (2003).
  • Martiel I Sagalowicz L Mezzenga R . Phospholipid-based nonlamellar mesophases for delivery systems: bridging the gap between empirical and rational design. Adv. Colloid Interface Sci.209 (0), 127–143 (2014).
  • Koynova R Tenchov BG Macdonald RC . Nonlamellar phases in cationic phospholipids, relevance to drug and gene delivery. ACS Biomater. Sci. Eng.1 (3), 130–138 (2015).
  • Barauskas J Cervin C Jankunec M et al. Interactions of lipid-based liquid crystalline nanoparticles with model and cell membranes. Int. J. Pharm.391 (1–2), 284–291 (2010).
  • Tran N Mulet X Hawley AM et al. Nanostructure and cytotoxicity of self-assembled monoolein–capric acid lyotropic liquid crystalline nanoparticles. RSC Adv.5 (34), 26785–26795 (2015).
  • Nasr M Ghorab MK Abdelazem A . In vitro and in vivo evaluation of cubosomes containing 5-fluorouracil for liver targeting. Acta Pharm. Sin. B5 (1), 79–88 (2015).
  • Angelov B Angelova A Garamus VM et al. Earliest stage of the tetrahedral nanochannel formation in cubosome particles from unilamellar nanovesicles. Langmuir28 (48), 16647–16655 (2012).
  • Angelov B Angelova A Drechsler M et al. Identification of large channels in cationic PEGylated cubosome nanoparticles by synchrotron radiation SAXS and Cryo-TEM imaging. Soft Matter11 (18), 3686–3692 (2015).
  • Angelov B Angelova A Papahadjopoulos-Sternberg B et al. Detailed structure of diamond-type lipid cubic nanoparticles. J. Am. Chem. Soc.128 (17), 5813–5817 (2006).
  • Angelova A Angelov B Lesieur S et al. Dynamic control of nanofluidic channels in protein drug delivery vehicles. J. Drug Deliv. Sci. Tech.18 (1), 41–45 (2008).
  • Angelova A Angelov B Drechsler M et al. Neurotrophin delivery using nanotechnology. Drug Discov. Today18 (23), 1263–1271 (2013).
  • Moghimi SM Farhangrazi ZS . Just so stories: the random acts of anti-cancer nanomedicine performance. Nanomedicine10 (8), 1661–1666 (2014).
  • Moghimi SM . Cancer nanomedicine and the complement system activation paradigm: anaphylaxis and tumour growth. J. Control. Rel.190, 556–562 (2014).
  • Moghimi SM Wibroe PP Helvig SY et al. Genomic perspectives in inter-individual adverse responses following nanomedicine administration: the way forward. Adv. Drug Deliv. Rev.64 (13), 1385–1393 (2012).
  • Moghimi SM Andersen AJ Ahmadvand D et al. Material properties in complement activation. Adv. Drug Deliv. Rev63 (12), 1000–1007 (2011).
  • Wibroe PP Mat Azmi ID Nilsson C et al. Citrem modulates internal nanostructure of glyceryl monooleate dispersions and bypasses complement activation: towards development of safe tunable intravenous lipid nanocarriers. Nanomedicine11 (8), 1909–1914 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.