284
Views
0
CrossRef citations to date
0
Altmetric
Review

Recent Advances in Amphiphilic Polymers for Simultaneous Delivery of Hydrophobic and Hydrophilic Drugs

, , &
Pages 15-31 | Received 01 Sep 2015, Accepted 26 Oct 2015, Published online: 10 Dec 2015

References

  • Lander ES Linton LM Birren B et al. Initial sequencing and analysis of the human genome. Nature409 (6822), 860–921 (2001).
  • Guo P Coban O Snead NM et al. Engineering RNA for targeted siRNA delivery and medical application. Adv. Drug Deliv. Rev.62 (6), 650–666 (2010).
  • Langmuir I . The constitution and fundamental properties of solids and liquids. II. Liquids. 1. J. Am. Chem. Soc.39 (9), 1848–1906 (1917).
  • Bangham A . Liposomes–the Babaham connection. Chem. Phys. Lipids64 (1–3), 275–285 (1993).
  • Su C-W Chiang C-S Li W-M Hu S-H Chen S-Y . Multifunctional nanocarriers for simultaneous encapsulation of hydrophobic and hydrophilic drugs in cancer treatment. Nanomedicine (Lond.)9 (10), 1499–1515 (2014).
  • Mazák K Noszál B . Drug delivery: a process governed by species-specific lipophilicities. Eur. J. Pharm. Sci.62, 96–104 (2014).
  • Mora-Huertas CE Fessi H Elaissari A . Polymer-based nanocapsules for drug delivery. Int. J. Pharm.385 (1–2), 113–142 (2010).
  • Qu M-H Zeng R-F Fang S Dai Q-S Li H-P Long J-T . Liposome-based co-delivery of siRNA and docetaxel for the synergistic treatment of lung cancer. Int. J. Pharm.474 (1–2), 112–122 (2014).
  • Torchilin VP . Micellar nanocarriers: pharmaceutical perspectives. Pharm. Res.24 (1), 1–16 (2007).
  • Yu H Yan C Lei X Qin Z Yao J . Novel approach to extract thermally stable cellulose nanospheres with high yield. Mater. Lett.131, 12–15 (2014).
  • Musyanovych A Landfester K . Polymer micro- and nanocapsules as biological carriers with multifunctional properties. Macromol. Biosci.14 (4), 458–477 (2014).
  • Kazi KM Mandal AS Biswas N et al. Niosome: a future of targeted drug delivery systems. J. Adv. Pharm. Technol. Res.1 (4), 374–380 (2010).
  • Wang X Liu G Hu J Zhang G Liu S . Concurrent block copolymer polymersome stabilization and bilayer permeabilization by stimuli-regulated ‘traceless’ crosslinking. Angew. Chem. Int. Ed. Engl.53 (12), 3138–3142 (2014).
  • Levine DH Ghoroghchian PP Freudenberg J et al. Polymersomes: a new multi-functional tool for cancer diagnosis and therapy. Methods46 (1), 25–32 (2008).
  • Letchford K Burt H . A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur. J. Pharm. Biopharm.65 (3), 259–269 (2007).
  • Christian DA Cai S Bowen DM Kim Y Pajerowski JD Discher DE . Polymersome carriers: from self-assembly to siRNA and protein therapeutics. Eur. J. Pharm. Biopharm.71 (3), 463–474 (2009).
  • Discher DE Eisenberg A . Polymer vesicles. Science297 (5583), 967–73 (2002).
  • Gaucher G Dufresne M-H Sant VP Kang N Maysinger D Leroux J-C . Block copolymer micelles: preparation, characterization and application in drug delivery. J. Control. Release109 (1–3), 169–188 (2005).
  • Fustin CA Abetz V Gohy JF . Triblock terpolymer micelles: a personal outlook. Eur. Phys. J. E. Soft Matter.16 (3), 291–302 (2005).
  • Zhang J Liu K Müllen K Yin M . Self-assemblies of amphiphilic homopolymers: synthesis, morphology studies and biomedical applications. Chem. Commun. (Camb).51 (58), 11541–11555 (2015).
  • Wang M-J Wang H Chen S-C Chen C Liu Y . Morphological control of anisotropic self-assemblies from alternating poly(p-dioxanone)-poly(ethylene glycol) multiblock copolymer depending on the combination effect of crystallization and micellization. Langmuir.31 (25), 6971–6980 (2015).
  • Yildiz I Impellizzeri S Deniz E McCaughan B Callan JF Raymo FM . Supramolecular strategies to construct biocompatible and photoswitchable fluorescent assemblies. J. Am. Chem. Soc.133 (4), 871–879 (2011).
  • Bhattacharya A . Grafting: a versatile means to modify polymersTechniques, factors and applications. Prog. Polym. Sci.29 (8), 767–814 (2004).
  • Yang C Liu SQ Venkataraman S et al. Structure-directing star-shaped block copolymers: supramolecular vesicles for the delivery of anticancer drugs. J. Control. Release208, 93–105 (2015).
  • Zhang Y-Y Li Y Zhou X-J Zhang X-H Du B-Y Fan Z-Q . Synthesis of an amphiphilic brush copolymer by a highly efficient ‘grafting onto’ approach via CO2 chemistry. Macromol. Rapid Commun.36 (9), 852–857 (2015).
  • Song D-P Lin Y Gai Y et al. Controlled supramolecular self-assembly of large nanoparticles in amphiphilic brush block copolymers. J. Am. Chem. Soc.137 (11), 3771–3774 (2015).
  • Mandal J Ramakrishnan S . Periodically grafted amphiphilic copolymers: effects of steric crowding and reversal of amphiphilicity. Langmuir31 (22), 6035–6044 (2015).
  • Yoneki N Takami T Ito T et al. One-pot facile preparation of PEG-modified PLGA nanoparticles: effects of PEG and PLGA on release properties of the particles. Colloids Surfaces A Physicochem. Eng. Asp.469, 66–72 (2015).
  • Miladi K Ibraheem D Iqbal M Sfar S Fessi H Elaissari A . Particles from preformed polymers as carriers for drug delivery. EXCLI J.13, 28–57 (2014).
  • Soppimath KS Aminabhavi TM Kulkarni AR Rudzinski WE . Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release.70 (1–2), 1–20 (2001).
  • Kataoka K Harada A Nagasaki Y . Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev.47 (1), 113–131 (2001).
  • Lu Y Park K . Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int. J. Pharm.453 (1), 198–214 (2013).
  • Li J Wang Y Zhu Y Oupický D . Recent advances in delivery of drug-nucleic acid combinations for cancer treatment. J. Control. Release172 (2), 589–600 (2013).
  • Jhaveri AM Torchilin VP . Multifunctional polymeric micelles for delivery of drugs and siRNA. Front. Pharmacol.5, 77 (2014).
  • Qian X Long L Shi Z et al. Star-branched amphiphilic PLA-b-PDMAEMA copolymers for co-delivery of miR-21 inhibitor and doxorubicin to treat glioma. Biomaterials35 (7), 2322–2335 (2014).
  • Bian J Hao Y He J Zhang W Zhang M Ni P . Synthesis and characterization of a biodegradable ABC triblock terpolymer as co-delivery carrier of doxorubicin and DNA. J. Polym. Sci. Part A Polym. Chem.52 (21), 3005–3016 (2014).
  • Kumar V Mondal G Slavik P Rachagani S Batra SK Mahato RI . Codelivery of small molecule hedgehog inhibitor and miRNA for treating pancreatic cancer. Mol. Pharm.12 (4), 1289–1298 (2015).
  • Wang C Li M Yang T et al. A self-assembled system for tumor-targeted co-delivery of drug and gene. Mater. Sci. Eng. C. Mater. Biol. Appl.56, 280–285 (2015).
  • Gaspar VM Gonçalves C de Melo-Diogo D et al. Poly(2-ethyl-2-oxazoline)-PLA-g-PEI amphiphilic triblock micelles for co-delivery of minicircle DNA and chemotherapeutics. J. Control. Release189, 90–104 (2014).
  • Mittal A Chitkara D Behrman SW Mahato RI . Efficacy of gemcitabine conjugated and miRNA-205 complexed micelles for treatment of advanced pancreatic cancer. Biomaterials35 (25), 7077–7087 (2014).
  • Wang H Zhao Y Wu Y et al. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials32 (32), 8281–8290 (2011).
  • Sun L Deng X Yang X et al. Co-delivery of doxorubicin and curcumin by polymeric micelles for improving antitumor efficacy on breast carcinoma. RSC Adv.4 (87), 46737–46750 (2014).
  • Lv S Tang Z Li M et al. Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer. Biomaterials35 (23), 6118–6129 (2014).
  • Li Q Lv S Tang Z et al. A co-delivery system based on paclitaxel grafted mPEG-b-PLG loaded with doxorubicin: preparation, in vitro and in vivo evaluation. Int. J. Pharm.471 (1–2), 412–420 (2014).
  • Tian W Liu J Guo Y Shen Y Zhou D Guo S . Self-assembled micelles of amphiphilic PEGylated rapamycin for loading paclitaxel and resisting multidrug resistant cancer cells†Electronic supplementary information (ESI) available: chemicals and reagents, detailed experimental procedures for materials s. J. Mater. Chem. B. Mater. Biol. Med.3 (7), 1204–1207 (2015).
  • Duong HHP Yung L-YL . Synergistic co-delivery of doxorubicin and paclitaxel using multi-functional micelles for cancer treatment. Int. J. Pharm.454 (1), 486–495 (2013).
  • Scarano W de Souza P Stenzel MH . Dual-drug delivery of curcumin and platinum drugs in polymeric micelles enhances the synergistic effects: a double act for the treatment of multidrug-resistant cancer. Biomater. Sci.3 (1), 163–174 (2015).
  • Li J Li Z Li M Zhang H Xie Z . Synergistic effect and drug-resistance relief of paclitaxel and cisplatin caused by Co-delivery using polymeric micelles. J. Appl. Polym. Sci.132 (6), 41440–41449 (2015).
  • Noh I Kim H-O Choi J et al. Co-delivery of paclitaxel and gemcitabine via CD44-targeting nanocarriers as a prodrug with synergistic antitumor activity against human biliary cancer. Biomaterials53, 763–774 (2015).
  • Li M Liu Y Feng L Liu F Zhang L Zhang N . Polymeric complex micelles with double drug-loading strategies for folate-mediated paclitaxel delivery. Colloids Surf. B. Biointerfaces131, 191–201 (2015).
  • Yin T Wang L Yin L Zhou J Huo M . Co-delivery of hydrophobic paclitaxel and hydrophilic AURKA specific siRNA by redox-sensitive micelles for effective treatment of breast cancer. Biomaterials61, 10–25 (2015).
  • Zhang J Fang D Ma Q et al. Dual-functional PEI-poly(γ-cholesterol- l -glutamate) copolymer for drug/gene co-delivery. Macromol. Chem. Phys.215 (2), 163–170 (2014).
  • Zheng C Zheng M Gong P et al. Polypeptide cationic micelles mediated co-delivery of docetaxel and siRNA for synergistic tumor therapy. Biomaterials34 (13), 3431–3438 (2013).
  • Discher BM Won YY Ege DS et al. Polymersomes: tough vesicles made from diblock copolymers. Science284 (5417), 1143–1146 (1999).
  • Discher DE Ortiz V Srinivas G et al. Emerging applications of polymersomes in delivery: from molecular dynamics to shrinkage of tumors. Prog. Polym. Sci.32 (8–9), 838–857 (2007).
  • Martin C Dolmazon E Moylan K et al. A charge neutral, size tuneable polymersome capable of high biological encapsulation efficiency and cell permeation. Int. J. Pharm.481 (1–2), 1–8 (2015).
  • Ahmed F Pakunlu RI Brannan A Bates F Minko T Discher DE . Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J. Control. Release116 (2), 150–158 (2006).
  • Das S Sharma DK Chakrabarty S Chowdhury A Sen Gupta S . Bioactive polymersomes self-assembled from amphiphilic PPO-glycopolypeptides: synthesis, characterization, and dual-dye encapsulation. Langmuir31 (11), 3402–3412 (2015).
  • Lale S V Kumar A Prasad S Bharti AC Koul V . Folic acid and trastuzumab functionalized redox responsive polymersomes for intracellular doxorubicin delivery in breast cancer. Biomacromolecules.16 (6), 1736–1752 (2015).
  • Xu J Zhao Q Jin Y Qiu L . High loading of hydrophilic/hydrophobic doxorubicin into polyphosphazene polymersome for breast cancer therapy. Nanomedicine.10 (2), 349–358 (2014).
  • Kim H-O Kim E An Y et al. A biodegradable polymersome containing Bcl-xL siRNA and doxorubicin as a dual delivery vehicle for a synergistic anticancer effect. Macromol. Biosci.13 (6), 745–754 (2013).
  • Iatrou H Dimas K Gkikas M Tsimblouli C Sofianopoulou S . Polymersomes from polypeptide containing triblock Co- and terpolymers for drug delivery against pancreatic cancer: asymmetry of the external hydrophilic blocks. Macromol. Biosci.14 (9), 1222–1238 (2014).
  • Colley HE Hearnden V Avila-Olias M et al. Polymersome-mediated delivery of combination anticancer therapy to head and neck cancer cells: 2D and 3D in vitro evaluation. Mol. Pharm.11 (4), 1176–1188 (2014).
  • Baier G Cavallaro A Vasilev K Mailänder V Musyanovych A Landfester K . Enzyme responsive hyaluronic acid nanocapsules containing polyhexanide and their exposure to bacteria to prevent infection. Biomacromolecules.14 (4), 1103–1112 (2013).
  • Haas S Hain N Raoufi M et al. Enzyme degradable polymersomes from hyaluronic acid-block-poly(ε-caprolactone) copolymers for the detection of enzymes of pathogenic bacteria. Biomacromolecules.16 (3), 832–841 (2015).
  • Geilich BM van de Ven AL Singleton GL Sepúlveda LJ Sridhar S Webster TJ . Silver nanoparticle-embedded polymersome nanocarriers for the treatment of antibiotic-resistant infections. Nanoscale7 (8), 3511–3519 (2015).
  • Huang Z Teng W Liu L Wang L Wang Q Dong Y . Efficient cytosolic delivery mediated by polymersomes facilely prepared from a degradable, amphiphilic, and amphoteric copolymer. Nanotechnology24 (26), 265104 (2013).
  • Wong CK Laos AJ Soeriyadi AH et al. Polymersomes prepared from thermoresponsive fluorescent protein-polymer bioconjugates: capture of and report on drug and protein payloads. Angew. Chem. Int. Ed. Engl. [Internet]. 54 (18), 5317–5322 (2015). Available from : http://www.ncbi.nlm.nih.gov/pubmed/25736460.
  • Wang Y Yan L Li B et al. Protein-resistant biodegradable amphiphilic graft copolymer vesicles as protein carriers. Macromol. Biosci.15 (9), 1304–1313 (2015).
  • Danafar H Rostamizadeh K Davaran S Hamidi M . PLA-PEG-PLA copolymer-based polymersomes as nanocarriers for delivery of hydrophilic and hydrophobic drugs: preparation and evaluation with atorvastatin and lisinopril. Drug Dev. Ind. Pharm.40 (10), 1411–1420 (2014).
  • Landfester K . Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angew. Chemie Int. Ed.48 (25), 4488–4507 (2009).
  • Coradini K Friedrich RB Fonseca FN et al. A novel approach to arthritis treatment based on resveratrol and curcumin co-encapsulated in lipid-core nanocapsules: In vivo studies. Eur. J. Pharm. Sci.78, 163–170 (2015).
  • Friedrich RB Kann B Coradini K Offerhaus HL Beck RCR Windbergs M . Skin penetration behavior of lipid-core nanocapsules for simultaneous delivery of resveratrol and curcumin. Eur. J. Pharm. Sci.78, 204–213 (2015).
  • Gressler LT Oliveira CB Coradini K et al. Trypanocidal activity of free and nanoencapsulated curcumin on Trypanosoma evansi. Parasitology142 (3), 439–448 (2015).
  • Arunkumar R Prashanth KVH Manabe Y et al. Biodegradable poly (lactic-co-glycolic acid)-polyethylene glycol nanocapsules: an efficient carrier for improved solubility, bioavailability, and anticancer property of lutein. J. Pharm. Sci.104 (6), 2085–2093 (2015).
  • Wadhwa J Asthana A Gupta S Shilkari Asthana G Singh R . Development and optimization of polymeric self-emulsifying nanocapsules for localized drug delivery: design of experiment approach. Scientific World J.2014, 516069 (2014).
  • Klippstein R Wang JT-W El-Gogary RI et al. Passively targeted curcumin-loaded pegylated plga nanocapsules for colon cancer therapy in vivo. Small.11 (36), 4704–4722 (2015).
  • Chen C-K Law W-C Aalinkeel R et al. Biodegradable cationic polymeric nanocapsules for overcoming multidrug resistance and enabling drug-gene co-delivery to cancer cells. Nanoscale6 (3), 1567–1572 (2014).
  • Tian K Zeng J Zhao X Liu L Jia X Liu P . Synthesis of multi-functional nanocapsules via interfacial AGET ATRP in miniemulsion for tumor micro-environment responsive drug delivery. Colloids Surf. B. Biointerfaces.134, 188–195 (2015).
  • Maglio G Nicodemi F Conte C et al. Nanocapsules based on linear and Y-shaped 3-miktoarm star-block PEO-PCL copolymers as sustained delivery system for hydrophilic molecules. Biomacromolecules12 (12), 4221–4229 (2011).
  • Hu S-H Chen S-Y Gao X . Multifunctional nanocapsules for simultaneous encapsulation of hydrophilic and hydrophobic compounds and on-demand release. ACS Nano.6 (3), 2558–2565 (2012).
  • Baier G Winzen S Messerschmidt C et al. Heparin-based nanocapsules as potential drug delivery systems. Macromol. Biosci.15 (6), 765–776 (2015).
  • Govender T Choonara Y Kumar P et al. A Novel melt-dispersion technique for simplistic preparation of chlorpromazine-loaded polycaprolactone nanocapsules. Polymers (Basel).7 (6), 1145–1176 (2015).
  • Liang G Ni H Bao S et al. Amphiphilic nanocapsules entangled with organometallic coordination polymers for controlled cargo release. Langmuir30 (21), 6294–6301 (2014).
  • Brun-Graeppi AKAS Richard C Bessodes M Scherman D Merten O-W . Cell microcarriers and microcapsules of stimuli-responsive polymers. J. Control. Release149 (3), 209–224 (2011).
  • Ashley CE Carnes EC Phillips GK et al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat. Mater.10 (5), 389–397 (2011).
  • Zayats M Kanwar M Ostermeier M Searson PC . Molecular imprinting of maltose binding protein: tuning protein recognition at the molecular level. Macromolecules44 (10), 3966–3972 (2011).
  • Chen W Meng F Cheng R Zhong Z . pH-Sensitive degradable polymersomes for triggered release of anticancer drugs: a comparative study with micelles. J. Control. Release.142 (1), 40–46 (2010).
  • Jia L Cui D Bignon J et al. Reduction-responsive cholesterol-based block copolymer vesicles for drug delivery. Biomacromolecules15 (6), 2206–2217 (2014).
  • Chang C Dan H Zhang L-P et al. Fabrication of thermoresponsive, core-crosslinked micelles based on poly[ N -isopropyl acrylamide- co -3-(trimethoxysilyl)propylmethacrylate]- b -poly{ N -[3-(dimethylamino)propyl]methacrylamide} for the codelivery of doxorubicin and nucleic acid. J. Appl. Polym. Sci.132 (15), 41752–41762 (2015).
  • McKenzie BE Friedrich H Wirix MJM et al. Controlling internal pore sizes in bicontinuous polymeric nanospheres. Angew. Chem. Int. Ed. Engl.54 (8), 2457–2461 (2015).
  • Swaminathan S Fowley C McCaughan B Cusido J Callan JF Raymo FM . Intracellular guest exchange between dynamic supramolecular hosts. J. Am. Chem. Soc.136 (22), 7907–7913 (2014).
  • Dieu L-H Wu D Palivan CG Balasubramanian V Huwyler J . Polymersomes conjugated to 83-14 monoclonal antibodies: in vitor targeting of brain capillary endothelial cells. Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft für Pharm. Verfahrenstechnik e.V.88 (2), 316–324 (2014).
  • Fonseca FN Betti AH Carvalho FC et al. Mucoadhesive amphiphilic methacrylic copolymer-functionalized poly(ε-caprolactone) nanocapsules for nose-to-brain delivery of olanzapine. J. Biomed. Nanotechnol.11 (8), 1472–1481 (2015).
  • Lee J-L Ahn J-H Park SH et al. Phase II study of a cremophor-free, polymeric micelle formulation of paclitaxel for patients with advanced urothelial cancer previously treated with gemcitabine and platinum. Invest. New Drugs.30 (5), 1984–1990 (2012).
  • Ahn HK Jung M Sym SJ et al. A phase II trial of Cremorphor EL-free paclitaxel (Genexol-PM) and gemcitabine in patients with advanced non-small cell lung cancer. Cancer Chemother. Pharmacol.74 (2), 277–282 (2014).
  • Saif MW Podoltsev NA Rubin MS et al. Phase II clinical trial of paclitaxel loaded polymeric micelle in patients with advanced pancreatic cancer. Cancer Invest.28 (2), 186–194 (2010).
  • Pacific Corporation: US6569528 (2003).
  • Regents of the University of Minnesota, MN, USA, US7217427 (2007).
  • Labopharm Inc. US7108655 (2006).
  • The trustees of the University of Pennsylvania: US20100098773 (2010).
  • Torchilin Vladimir P, Lukyanov Anatoly N, Zhonggao Gao: US20060216342 (2006).
  • Koninklijke Philips Electronics NV: WO2009072079 (2009).
  • Vindico Nanobio Technology Inc: EP-2661275-A2 (2013).
  • The Regents of The University of Michigan: US20150051534 (2015).
  • Shi Yang: CN104193925A (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.