136
Views
0
CrossRef citations to date
0
Altmetric
Review

Structural Modifications in Polymeric Micelles to Impart Multifunctionality for Improved Drug Delivery

&
Pages 73-87 | Received 04 Sep 2015, Accepted 16 Nov 2015, Published online: 15 Jan 2016

References

  • Nicolas J Mura S Brambilla D Mackiewicz N Couvreur P . Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem. Soc. Rev.42 (3), 1147–1235 (2013).
  • Chen YC Lo CL Hsiue GH . Multifunctional nanomicellar systems for delivering anticancer drugs. J. Biomed. Mater. Res. A.102 (6), 2024–2038 (2014).
  • Bader H Ringsdorf H Schmid B . Watersoluble polymers in medicine. Macromol. Mater. Eng.123 (1), 457–485 (1984).
  • Yuan ZQ Li JZ Liu Y et al. Systemic delivery of micelles loading with paclitaxel using N-succinyl-palmitoyl-chitosan decorated with cRGDyK peptide to inhibit non-small-cell lung cancer. Int. J. Pharm.492 (1–2), 141–151 (2015).
  • Mittal A Chitkara D Behrman SW Mahato RI . Efficacy of gemcitabine conjugated and miR-205 cmplexed micelles for treatment of advanced pancreatic cancer. Biomaterials35 (25), 7077–7087 (2014).
  • Andrade F Neves JD Gener P et al. Biological assessment of self-assembled polymeric micelles for pulmonary administration of insulin. Nanomedicine11 (7), 1621–1631 (2015).
  • Matsumura Y Maeda H . A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res.46 (12 Pt 1), 6387–6392 (1986).
  • Maeda H Wu J Sawa T Matsumura Y Hori K . Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release65 (1–2), 271–284 (2000).
  • Sun Y Li Y Nan S Zhang L Huang H Wang J . Synthesis and characterization of pH-sensitive poly(itaconic acid)-poly(ethylene glycol)-folate-poly(l-histidine) micelles for enhancing tumor therapy and tunable drug release. J. Colloid Interface Sci.458, 119–129 (2015).
  • Zhang J Zhang M Ji J et al. Glycyrrhetinic acid-mediated polymeric drug delivery targeting the acidic microenvironment of hepatocellular carcinoma. Pharm. Res.32 (10), 3376–3390 (2015).
  • Wang X Yang Y Jia H et al. Peptide decoration of nanovehicles to achieve active targeting and pathology-responsive cellular uptake for bone metastasis chemotherapy. Biomater. Sci.2 (7), 961–971 (2014).
  • Sutton D Nasongkla N Blanco E Gao J . Functionalized micellar systems for cancer targeted drug delivery. Pharm. Res.24 (6), 1029–1046 (2007).
  • Benahmed A Ranger M Leroux JC . Novel polymeric micelles based on the amphiphilic diblock copolymer poly(N-vinyl-2-pyrrolidone)-block-poly(D,L-lactide). Pharm. Res.18 (3), 323–328 (2001).
  • Torchilin VP Levchenko TS Whiteman KR et al. Amphiphilic poly-N-vinylpyrrolidones: synthesis, properties and liposome surface modification. Biomaterials22 (22), 3035–3044 (2001).
  • Wang F Du J . Disclosing the nature of thermo-responsiveness of poly(N-isopropyl acrylamide)-based polymeric micelles: aggregation or fusion?Chem. Commun. (Camb).51 (56), 11198–11201 (2015).
  • Wu Y Lai Q Lai S Wu J Wang W Yuan Z . Facile fabrication of core cross-linked micelles by RAFT polymerization and enzyme-mediated reaction. Colloids Surf. B Biointerfaces118, 298–305 (2014).
  • Gao X Wang S Wang B et al. Improving the anti-ovarian cancer activity of docetaxel with biodegradable self-assembly micelles through various evaluations. Biomaterials53, 646–658 (2015).
  • Rizis G van de Ven TG Eisenberg A . Homopolymers as structure-driving agents in semicrystalline block copolymer micelles. ACS Nano9 (4), 3627–3640 (2015).
  • Hu Y Darcos V Monge S Li S . Thermo-responsive drug release from self-assembled micelles of brush-like PLA/PEG analogues block copolymers. Int. J. Pharm.491 (1–2), 152–161 (2015).
  • Cong Y Quan C Liu M et al. Alendronate-decorated biodegradable polymeric micelles for potential bone-targeted delivery of vancomycin. J. Biomater. Sci. Polym. Ed.26 (11), 629–643 (2015).
  • Waton G Michels B Zana R . Dynamics of micelles of polyethyleneoxide-polypropyleneoxide-polyethyleneoxide block copolymers in aqueous solutions. J. Colloid Interface Sci.212 (2), 593–596 (1999).
  • Quader S Cabral H Mochida Y et al. Selective intracellular delivery of proteasome inhibitors through pH-sensitive polymeric micelles directed to efficient antitumor therapy. J. Control. Release188, 67–77 (2014).
  • Nita LE Chiriac AP Bercea M . Effect of pH and temperature upon self-assembling process between poly(aspartic acid) and Pluronic F127. Colloids Surf. B Biointerfaces119, 47–54 (2014).
  • Zhang X Chen D Ba S et al. Poly(l-histidine) based triblock copolymers: pH induced reassembly of copolymer micelles and mechanism underlying endolysosomal escape for intracellular delivery. Biomacromolecules15 (11), 4032–4045 (2014).
  • Lin YX Gao YJ Wang Y et al. pH-Sensitive polymeric nanoparticles with Gold(I) compound payloads synergistically induce cancer cell death through modulation of autophagy. Mol. Pharm.12 (8), 2869–2878 (2015).
  • Saadat E Amini M Khoshayand MR Dinarvand R Dorkoosh FA . Synthesis and optimization of a novel polymeric micelle based on hyaluronic acid and phospholipids for delivery of paclitaxel, in vitro and in-vivo evaluation. Int. J. Pharm.475 (1–2), 163–173 (2014).
  • Gao H Liu J Yang C et al. The impact of PEGylation patterns on the in vivo biodistribution of mixed shell micelles. Int. J. Nanomedicine8, 4229–4246 (2013).
  • Jelonek K Li S Wu X Kasperczyk J Marcinkowski A . Self-assembled filomicelles prepared from polylactide/poly(ethylene glycol) block copolymers for anticancer drug delivery. Int. J. Pharm.485 (1–2), 357–364 (2015).
  • Gao Y Zhou Y Zhao L et al. Enhanced antitumor efficacy by cyclic RGDyK-conjugated and paclitaxel-loaded pH-responsive polymeric micelles. Acta Biomater.23, 127–135 (2015).
  • Yue J Liu S Mo G Wang R Jing X . Active targeting and fluorescence-labeled micelles: preparation, characterization and cellular uptake evaluation. J. Control. Release.152 (Suppl. 1), e258–e260 (2011).
  • Torchilin V . Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur. J. Pharm. Biopharm.71 (3), 431–444 (2009).
  • Maeda H . Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug. Chem.21 (5), 797–802 (2010).
  • Jain RK Stylianopoulos T . Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol.7 (11), 653–664 (2010).
  • Fang J Nakamura H Maeda H . The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev.63 (3), 136–151 (2011).
  • Mima Y Hashimoto Y Shimizu T Kiwada H Ishida T . Anti-PEG IgM is a major contributor to the accelerated blood clearance of polyethylene glycol-conjugated protein. Mol. Pharm.12 (7), 2429–2435 (2015).
  • Abu Lila AS Kiwada H Ishida T . The accelerated blood clearance (ABC) phenomenon: clinical challenge and approaches to manage. J. Control. Release172 (1), 38–47 (2013).
  • Shiraishi K Yokoyama M . Polymeric micelles possessing polyethyleneglycol as outer shell and their unique behaviors in accelerated blood clearance phenomenon. Biol. Pharm. Bull.36 (6), 878–882 (2013).
  • Park K . Mechanistic study on the ABC phenomenon of PEG conjugates. J. Control. Release165 (3), 234 (2013).
  • Lin WJ Kao LT . Cytotoxic enhancement of hexapeptide-conjugated micelles in EGFR high-expressed cancer cells. Expert Opin. Drug Deliv.11 (10), 1537–1550 (2014).
  • Danhier F Feron O Preat V . To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release148 (2), 135–146 (2010).
  • Talelli M Oliveira S Rijcken CJ et al. Intrinsically active nanobody-modified polymeric micelles for tumor-targeted combination therapy. Biomaterials34 (4), 1255–1260 (2013).
  • Yang G Wang J Wang Y Li L Guo X Zhou S . An implantable active-targeting micelle-in-nanofiber device for efficient and safe cancer therapy. ACS Nano9 (2), 1161–1174 (2015).
  • Mei D Lin Z Fu J et al. The use of alpha-conotoxin ImI to actualize the targeted delivery of paclitaxel micelles to alpha7 nAChR-overexpressing breast cancer. Biomaterials42, 52–65 (2015).
  • Durymanov MO Rosenkranz AA Sobolev AS . Current approaches for improving intratumoral accumulation and distribution of nanomedicines. Theranostics5 (9), 1007–1020 (2015).
  • Wang Y Wang H Chen Y Liu X Jin Q Ji J . pH and hydrogen peroxide dual responsive supramolecular prodrug system for controlled release of bioactive molecules. Colloids Surf. B Biointerfaces.121, 189–195 (2014).
  • Yen HC Cabral H Mi P et al. Light-induced cytosolic activation of reduction-sensitive camptothecin-loaded polymeric micelles for spatiotemporally controlled in vivo chemotherapy. ACS Nano8 (11), 11591–11602 (2014).
  • Butt AM Mohd Amin MC Katas H . Synergistic effect of pH-responsive folate-functionalized poloxamer 407-TPGS-mixed micelles on targeted delivery of anticancer drugs. Int. J. Nanomedicine10, 1321–1334 (2015).
  • Porsch C Zhang Y Montanez MI et al. Disulfide-functionalized unimolecular micelles as selective redox-responsive nanocarriers. Biomacromolecules16 (9), 2872–2883 (2015).
  • Chiang YT Yen YW Lo CL . Reactive oxygen species and glutathione dual redox-responsive micelles for selective cytotoxicity of cancer. Biomaterials61, 150–161 (2015).
  • Rolland A O'Mullane J Goddard P Brookman L Petrak K . New macromolecular carriers for drugs. I. Preparation and characterization of poly(oxyethylene-b-isoprene‐‐b-oxyethylene) block copolymer aggregates. J. Appl. Polym. Sci.44 (7), 1195–1203 (1992).
  • Talelli M Barz M Rijcken CJ Kiessling F Hennink WE Lammers T . Core-crosslinked polymeric micelles: principles, preparation, biomedical applications and clinical translation. Nano Today10 (1), 93–117 (2015).
  • Fan W Wang Y Dai X Shi L Mckinley D Tan C . Reduction-responsive crosslinked micellar nanoassemblies for tumor-targeted drug delivery. Pharm. Res.32 (4), 1325–1340 (2015).
  • Zhang A Zhang Z Shi F et al. Redox-sensitive shell-crosslinked polypeptide-block-polysaccharide micelles for efficient intracellular anticancer drug delivery. Macromol. Biosci.13 (9), 1249–1258 (2013).
  • Zhao Z Yao X Zhang Z Chen L He C Chen X . Boronic acid shell-crosslinked dextran-b-PLA micelles for acid-responsive drug delivery. Macromol. Biosci.14 (11), 1609–1618 (2014).
  • Li S He Q Chen T et al. Controlled co-delivery nanocarriers based on mixed micelles formed from cyclodextrin-conjugated and cross-linked copolymers. Colloids Surf. B Biointerfaces.123, 486–492 (2014).
  • Gratton SE Ropp PA Pohlhaus PD et al. The effect of particle design on cellular internalization pathways. Proc. Natl Acad. Sci. USA105 (33), 11613–11618 (2008).
  • Jiang C Wang H Zhang X et al. Deoxycholic acid-modified chitooligosaccharide/mPEG-PDLLA mixed micelles loaded with paclitaxel for enhanced antitumor efficacy. Int. J. Pharm.475 (1–2), 60–68 (2014).
  • Jeong JH Kim SH Kim SW Park TG . Intracellular delivery of poly(ethylene glycol) conjugated antisense oligonucleotide using cationic lipids by formation of self-assembled polyelectrolyte complex micelles. J. Nanosci. Nanotechnol.6 (9–10), 2790–2795 (2006).
  • Lee Y Miyata K Oba M et al. Charge-conversion ternary polyplex with endosome disruption moiety: a technique for efficient and safe gene delivery. Angew. Chem. Int. Ed Engl.47 (28), 5163–5166 (2008).
  • Han SS Li ZY Zhu JY et al. Dual-pH sensitive charge-reversal polypeptide micelles for tumor-triggered targeting uptake and nuclear drug delivery. Small11 (21), 2543–2554 (2015).
  • Arote R Kim TH Kim YK et al. A biodegradable poly(ester amine) based on polycaprolactone and polyethylenimine as a gene carrier. Biomaterials28 (4), 735–744 (2007).
  • Deng H Liu J Zhao X et al. PEG-b-PCL copolymer micelles with the ability of pH-controlled negative-to-positive charge reversal for intracellular delivery of doxorubicin. Biomacromolecules15 (11), 4281–4292 (2014).
  • Kim HJ Ishii A Miyata K et al. Introduction of stearoyl moieties into a biocompatible cationic polyaspartamide derivative, PAsp(DET), with endosomal escaping function for enhanced siRNA-mediated gene knockdown. J. Control. Release145 (2), 141–148 (2010).
  • Oba M Miyata K Osada K et al. Polyplex micelles prepared from omega-cholesteryl PEG-polycation block copolymers for systemic gene delivery. Biomaterials32 (2), 652–663 (2011).
  • Burnett JC Rossi JJ . RNA-based therapeutics: current progress and future prospects. Chem. Biol.19 (1), 60–71 (2012).
  • Kim HJ Ishii T Zheng M et al. Multifunctional polyion complex micelle featuring enhanced stability, targetability, and endosome escapability for systemic siRNA delivery to subcutaneous model of lung cancer. Drug Deliv. Transl. Res.4 (1), 50–60 (2014).
  • Liu J Deng H Liu Q et al. Integrin-targeted pH-responsive micelles for enhanced efficiency of anticancer treatment in vitro and in vivo. Nanoscale7 (10), 4451–4460 (2015).
  • Wang CH Hsiue GH . New amphiphilic poly(2-ethyl-2-oxazoline)/poly(L-lactide) triblock copolymers. Biomacromolecules4 (6), 1487–1490 (2003).
  • Zhao Y Zhou Y Wang D et al. pH-responsive polymeric micelles based on poly(2-ethyl-2-oxazoline)-poly(D,L-lactide) for tumor-targeting and controlled delivery of doxorubicin and P-glycoprotein inhibitor. Acta Biomater.17, 182–192 (2015).
  • Vihinen P Ala-aho R Kahari VM . Matrix metalloproteinases as therapeutic targets in cancer. Curr. Cancer Drug Targets5 (3), 203–220 (2005).
  • Chen WH Luo GF Lei Q et al. MMP-2 responsive polymeric micelles for cancer-targeted intracellular drug delivery. Chem. Commun. (Camb.)51 (3), 465–468 (2015).
  • Kang Y Ha W Liu YQ et al. pH-responsive polymer-drug conjugates as multifunctional micelles for cancer-drug delivery. Nanotechnology25 (33), 335101 (2014).
  • Rijcken CJ Snel CJ Schiffelers RM van Nostrum CF Hennink WE . Hydrolysable core-crosslinked thermosensitive polymeric micelles: synthesis, characterisation and in vivo studies. Biomaterials28 (36), 5581–5593 (2007).
  • Talelli M Iman M Varkouhi AK et al. Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin. Biomaterials31 (30), 7797–7804 (2010).
  • Werner ME Cummings ND Sethi M et al. Preclinical evaluation of Genexol-PM, a nanoparticle formulation of paclitaxel, as a novel radiosensitizer for the treatment of non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys.86 (3), 463–468 (2013).
  • Gindy ME Panagiotopoulos AZ Prud'homme RK . Composite block copolymer stabilized nanoparticles: simultaneous encapsulation of organic actives and inorganic nanostructures. Langmuir24 (1), 83–90 (2008).
  • Duong AD Ruan G Mahajan K Winter JO Wyslouzil BE . Scalable, semicontinuous production of micelles encapsulating nanoparticles via electrospray. Langmuir30 (14), 3939–3948 (2014).
  • Nakanishi T Fukushima S Okamoto K et al. Development of the polymer micelle carrier system for doxorubicin. J. Control. Release74 (1–3), 295–302 (2001).
  • Matsumura Y Hamaguchi T Ura T et al. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br. J. Cancer91 (10), 1775–1781 (2004).
  • Kato K Chin K Yoshikawa T et al. Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Invest. New Drugs30 (4), 1621–1627 (2012).
  • Hamaguchi T Kato K Yasui H et al. A Phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br. J. Cancer97 (2), 170–176 (2007).
  • Negishi T Koizumi F Uchino H et al. NK105, a paclitaxel-incorporating micellar nanoparticle, is a more potent radiosensitising agent compared with free paclitaxel. Br. J. Cancer95 (5), 601–606 (2006).
  • Knight SW Bass BL . A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science293 (5538), 2269–2271 (2001).
  • Yanagihara K Takigahira M Kubo T Ochiya T Hamaguchi T Matsumura Y . Marked antitumor effect of NK012, a SN-38-incorporating micelle formulation, in a newly developed mouse model of liver metastasis resulting from gastric cancer. Ther. Deliv.5 (2), 129–138 (2014).
  • Hamaguchi T Doi T Eguchi-Nakajima T et al. Phase I study of NK012, a novel SN-38-incorporating micellar nanoparticle, in adult patients with solid tumors. Clin. Cancer Res.16 (20), 5058–5066 (2010).
  • Baba M Matsumoto Y Kashio A et al. Micellization of cisplatin (NC-6004) reduces its ototoxicity in guinea pigs. J. Control. Release157 (1), 112–117 (2012).
  • Plummer R Wilson RH Calvert H et al. A Phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumors. Br. J. Cancer104 (4), 593–598 (2011).
  • Ueno T Endo K Hori K et al. Assessment of antitumor activity and acute peripheral neuropathy of 1,2-diaminocyclohexane platinum (II)-incorporating micelles (NC-4016). Int. J. Nanomedicine9, 3005–3012 (2014).
  • Lee KS Chung HC Im SA et al. Multicenter Phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res. Treat.108 (2), 241–250 (2008).
  • Lim WT Tan EH Toh CK et al. Phase I pharmacokinetic study of a weekly liposomal paclitaxel formulation (Genexol-PM) in patients with solid tumors. Ann. Oncol.21 (2), 382–388 (2010).
  • Kim DW Kim SY Kim HK et al. Multicenter Phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Ann. Oncol.18 (12), 2009–2014 (2007).
  • Kim TY Kim DW Chung JY et al. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin. Cancer Res.10 (11), 3708–3716 (2004).
  • Danson S Ferry D Alakhov V et al. Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br. J. Cancer90 (11), 2085–2091 (2004).
  • Valle JW Armstrong A Newman C et al. A phase 2 study of SP1049C, doxorubicin in P-glycoprotein-targeting pluronics, in patients with advanced adenocarcinoma of the esophagus and gastroesophageal junction. Invest. New Drugs29 (5), 1029–1037 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.