428
Views
0
CrossRef citations to date
0
Altmetric
Review

Recent Advances in Peptides for Enhancing Transdermal Macromolecular Drug Delivery

, , , , , & show all
Pages 89-100 | Received 28 Mar 2015, Accepted 02 Dec 2015, Published online: 15 Jan 2016

References

  • Herwadkar A Banga AK . Peptide and protein transdermal drug delivery. Drug Discov. Today Technol.9 (2), e71–e174 (2012).
  • Prausnitz MR Mitragotri S Langer R . Current status and future potential of transdermal drug delivery. Nat. Rev. Drug Discov.3 (2), 115–124 (2004).
  • Aungst BJ . Absorption enhancers: applications and advances. AAPS J.14 (1), 10–18 (2012).
  • Li H Yu Y Faraji Dana S Li B Lee CY Kang L . Novel engineered systems for oral, mucosal and transdermal drug delivery. J. Drug Target.21 (7), 611–629 (2013).
  • Singh N Kalluri H Herwadkar A Badkar A Banga AK . Transcending the skin barrier to deliver peptides and proteins using active technologies. Crit. Rev. Ther. Drug Carrier Syst.29 (4), 265–298 (2012).
  • Craik DJ Fairlie DP Liras S Price D . The future of peptide-based drugs. Chem. Biol. Drug Des.81 (1), 136–147 (2013).
  • Prausnitz MR Langer R . Transdermal drug delivery. Nat. Biotechnol.26 (11), 1261–1268 (2008).
  • Sugino M Todo H Sugibayashi K . [Skin permeation and transdermal delivery systems of drugs: history to overcome barrier function in the stratum corneum]. Yakugaku Zasshi129 (12), 1453–1458 (2009).
  • Kalluri H Banga AK . Transdermal delivery of proteins. AAPS PharmSciTech12 (1), 431–441 (2011).
  • Subedi RK Oh SY Chun MK Choi HK . Recent advances in transdermal drug delivery. Arch. Pharm. Res.33 (3), 339–351 (2010).
  • Swaminathan J Ehrhardt C . Liposomal delivery of proteins and peptides. Expert Opin. Drug Deliv.9 (12), 1489–1503 (2012).
  • Chen Y Wang M Fang L . Biomaterials as novel penetration enhancers for transdermal and dermal drug delivery systems. Drug Deliv.20 (5), 199–209 (2013).
  • Chen YP Shen YY Guo X et al. Transdermal protein delivery by a coadministered peptide identified via phage display. Nat. Biotechnol.24 (4), 455–460 (2006).
  • Masson M Loftsson T Masson G Stefansson E . Cyclodextrins as permeation enhancers: some theoretical evaluations and in vitro testing. J. Control. Release59 (1), 107–118 (1999).
  • Li YZ Quan YS Zang L et al. Transdermal delivery of insulin using trypsin as a biochemical enhancer. Biol. Pharm. Bull.31 (8), 1574–1579 (2008).
  • Kim YC Ludovice PJ Prausnitz MR . Transdermal delivery enhanced by magainin pore-forming peptide. J. Control. Release122 (3), 375–383 (2007).
  • Smith NB Lee S Shung KK . Ultrasound-mediated transdermal in vivo transport of insulin with low-profile cymbal arrays. Ultrasound Med. Biol.29 (8), 1205–1210 (2003).
  • Badkar AV Smith AM Eppstein JA Banga AK . Transdermal delivery of interferon alpha-2B using microporation and iontophoresis in hairless rats. Pharm. Res.24 (7), 1389–1395 (2007).
  • Park EJ Werner J Smith NB . Ultrasound mediated transdermal insulin delivery in pigs using a lightweight transducer. Pharm. Res.24 (7), 1396–1401 (2007).
  • Gratieri T Kalaria D Kalia YN . Non-invasive iontophoretic delivery of peptides and proteins across the skin. Expert Opin. Drug Deliv.8 (5), 645–663 (2011).
  • Chen H Zhu H Zheng J et al. Iontophoresis-driven penetration of nanovesicles through microneedle-induced skin microchannels for enhancing transdermal delivery of insulin. J. Control. Release139 (1), 63–72 (2009).
  • Pattani A Mckay PF Garland MJ et al. Microneedle mediated intradermal delivery of adjuvanted recombinant HIV-1 CN54gp140 effectively primes mucosal boost inoculations. J. Control. Release162 (3), 529–537 (2012).
  • Van Der Maaden K Jiskoot W Bouwstra J . Microneedle technologies for (trans)dermal drug and vaccine delivery. J. Control. Release161 (2), 645–655 (2012).
  • Andrews S Lee JW Prausnitz M . Recovery of skin barrier after stratum corneum removal by microdermabrasion. AAPS PharmSciTech12 (4), 1393–1400 (2011).
  • Lee JW Gadiraju P Park JH Allen MG Prausnitz MR . Microsecond thermal ablation of skin for transdermal drug delivery. J. Control. Release154 (1), 58–68 (2011).
  • Lin CM Huang K Zeng Y Chen XC Wang S Li Y . A simple, noninvasive and efficient method for transdermal delivery of siRNA. Arch. Dermatol. Res.304 (2), 139–144 (2012).
  • Kigasawa K Kajimoto K Hama S Saito A Kanamura K Kogure K . Noninvasive delivery of siRNA into the epidermis by iontophoresis using an atopic dermatitis-like model rat. Int. J. Pharm.383 (1–2), 157–160 (2010).
  • Uchida T Kanazawa T Takashima Y Okada H . Development of an efficient transdermal delivery system of small interfering RNA using functional peptides, Tat and AT-1002. Chem. Pharm. Bull. (Tokyo)59 (2), 196–201 (2011).
  • Jain A Gulbake A Shilpi S Hurkat P Jain SK . Peptide and protein delivery using new drug delivery systems. Crit. Rev. Ther. Drug Carrier Syst.30 (4), 293–329 (2013).
  • Hsu T Mitragotri S . Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer. Proc. Natl Acad. Sci. USA108 (38), 15816–15821 (2011).
  • Kumar S Zakrewsky M Chen M Menegatti S Muraski JA Mitragotri S . Peptides as skin penetration enhancers: mechanisms of action. J. Control. Release199, 168–178 (2015).
  • Desai P Patlolla RR Singh M . Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol. Membr. Biol.27 (7), 247–259 (2010).
  • Nasrollahi SA Taghibiglou C Azizi E Farboud ES . Cell-penetrating peptides as a novel transdermal drug delivery system. Chem. Biol. Drug Des.80 (5), 639–646 (2012).
  • Kim YC Ludovice PJ Prausnitz MR . Optimization of transdermal delivery using magainin pore-forming peptide. J. Phys. Chem. Solids69 (5–6), 1560–1563 (2008).
  • Hu JW Liu BR Wu CY Lu SW Lee HJ . Protein transport in human cells mediated by covalently and noncovalently conjugated arginine-rich intracellular delivery peptides. Peptides30 (9), 1669–1678 (2009).
  • Cohen-Avrahami M Shames AI Ottaviani MF Aserin A Garti N . HIV-TAT enhances the transdermal delivery of NSAID drugs from liquid crystalline mesophases. J. Phys. Chem. B118 (23), 6277–6287 (2014).
  • Lopes LB Brophy CM Furnish E et al. Comparative study of the skin penetration of protein transduction domains and a conjugated peptide. Pharm. Res.22 (5), 750–757 (2005).
  • Patel EN Wang J Kim KJ Borok Z Crandall ED Shen WC . Conjugation with cationic cell-penetrating peptide increases pulmonary absorption of insulin. Mol. Pharm.6 (2), 492–503 (2009).
  • Chang M Li X Sun Y et al. Effect of cationic cyclopeptides on transdermal and transmembrane delivery of insulin. Mol. Pharm.10 (3), 951–957 (2013).
  • Patel LN Zaro JL Shen WC . Cell penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharm. Res.24 (11), 1977–1992 (2007).
  • Ookubo N Michiue H Kitamatsu M et al. The transdermal inhibition of melanogenesis by a cell-membrane-permeable peptide delivery system based on poly-arginine. Biomaterials35 (15), 4508–4516 (2014).
  • Kwon SS Kim SY Kong BJ et al. Cell penetrating peptide conjugated liposomes as transdermal delivery system of Polygonum aviculare L. extract. Int. J. Pharm.483 (1–2), 26–37 (2015).
  • Desai P Patlolla RR Singh M . Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol. Membr. Biol.27 (7), 247–259 (2010).
  • Jarver P Langel U . Cell-penetrating peptides‐‐a brief introduction. Biochim. Biophys. Acta1758 (3), 260–263 (2006).
  • Liu H Zhang W Ma L et al. The improved blood-brain barrier permeability of endomorphin-1 using the cell-penetrating peptide synB3 with three different linkages. Int. J. Pharm.476 (1–2), 1–8 (2014).
  • Fonseca SB Pereira MP Kelley SO . Recent advances in the use of cell-penetrating peptides for medical and biological applications. Adv Drug Deliv Rev61 (11), 953–964 (2009).
  • Candan G Michiue H Ishikawa S et al. Combining poly-arginine with the hydrophobic counter-anion 4-(1-pyrenyl)-butyric acid for protein transduction in transdermal delivery. Biomaterials33 (27), 6468–6475 (2012).
  • Hou YW Chan MH Hsu HR et al. Transdermal delivery of proteins mediated by non-covalently associated arginine-rich intracellular delivery peptides. Exp. Dermatol.16 (12), 999–1006 (2007).
  • Ullman CG Frigotto L Cooley RN . In vitro methods for peptide display and their applications. Brief. Funct. Genomics10 (3), 125–134 (2011).
  • Rentero I Heinis C . Screening of large molecule diversities by phage display. Chimia65 (11), 843–845 (2011).
  • Liu BA Engelmann BW Nash PD . High-throughput analysis of peptide-binding modules. Proteomics12 (10), 1527–1546 (2012).
  • Schirrmann T Meyer T Schutte M Frenzel A Hust M . Phage display for the generation of antibodies for proteome research, diagnostics and therapy. Molecules16 (1), 412–426 (2011).
  • Cwirla SE Peters EA Barrett RW Dower WJ . Peptides on phage: a vast library of peptides for identifying ligands. Proc. Natl Acad. Sci. USA87 (16), 6378–6382 (1990).
  • Nicastro J Sheldon K Slavcev RA . Bacteriophage lambda display systems: developments and applications. Appl. Microbiol. Biotechnol.98 (7), 2853–2866 (2014).
  • Danner S Belasco JG . T7 phage display: a novel genetic selection system for cloning RNA-binding proteins from cDNA libraries. Proc. Natl Acad. Sci. USA98 (23), 12954–12959 (2001).
  • Kumar S Sahdev P Perumal O Tummala H . Identification of a novel skin penetration enhancement peptide by phage display peptide library screening. Mol. Pharm.9 (5), 1320–1330 (2012).
  • Duerr DM White SJ Schluesener HJ . Identification of peptide sequences that induce the transport of phage across the gastrointestinal mucosal barrier. J. Virol. Methods116 (2), 177–180 (2004).
  • Rajotte D Arap W Hagedorn M Koivunen E Pasqualini R Ruoslahti E . Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J. Clin. Invest.102 (2), 430–437 (1998).
  • Kang SK Woo JH Kim MK et al. Identification of a peptide sequence that improves transport of macromolecules across the intestinal mucosal barrier targeting goblet cells. J. Biotechnol.135 (2), 210–216 (2008).
  • Morris CJ Smith MW Griffiths PC McKeown NB Gumbleton M . Enhanced pulmonary absorption of a macromolecule through coupling to a sequence-specific phage display-derived peptide. J. Control. Release151 (1), 83–94 (2011).
  • Kumar S Zakrewsky M Chen M Menegatti S Muraski JA Mitragotri S . Peptides as skin penetration enhancers: mechanisms of action. J. Control. Release199, 168–178 (2015).
  • Kaushik S Krishnan A Prausnitz MR Ludovice PJ . Magainin-mediated disruption of stratum corneum lipid vesicles. Pharm. Res.18 (6), 894–896 (2001).
  • Jin PP Li FF Ruan RQ et al. Enhanced transdermal delivery of epidermal growth factor facilitated by dual peptide chaperone motifs. Protein Pept. Lett.21 (6), 550–555 (2014).
  • Carmichael NM Dostrovsky JO Charlton MP . Peptide-mediated transdermal delivery of botulinum neurotoxin type A reduces neurogenic inflammation in the skin. Pain149 (2), 316–324 (2010).
  • Ruan RQ Wang SS Wang CL et al. Transdermal delivery of human epidermal growth factor facilitated by a peptide chaperon. Eur. J. Med. Chem.62, 405–409 (2013).
  • Zhang T Qu H Li X et al. Transmembrane delivery and biological effect of human growth hormone via a phage displayed peptide in vivo and in vitro. J. Pharm. Sci.99 (12), 4880–4891 (2010).
  • Tamaru M Akita H Fujiwara T Kajimoto K Harashima H . Leptin-derived peptide, a targeting ligand for mouse brain-derived endothelial cells via macropinocytosis. Biochem. Biophys. Res. Commun.394 (3), 587–592 (2010).
  • Walsh M Tangney M O'Neill MJ et al. Evaluation of cellular uptake and gene transfer efficiency of pegylated poly-L-lysine compacted DNA: implications for cancer gene therapy. Mol. Pharm.3 (6), 644–653 (2006).
  • Chen M Zakrewsky M Gupta V et al. Topical delivery of siRNA into skin using SPACE-peptide carriers. J. Control. Release179, 33–41 (2014).
  • Chen M Gupta V Anselmo AC Muraski JA Mitragotri S . Topical delivery of hyaluronic acid into skin using SPACE-peptide carriers. J. Control. Release173, 67–74 (2014).
  • Chen M Kumar S Anselmo AC et al. Topical delivery of Cyclosporine A into the skin using SPACE-peptide. J. Control. Release199, 190–197 (2015).
  • Candan G Michiue H Ishikawa S et al. Combining poly-arginine with the hydrophobic counter-anion 4-(1-pyrenyl)-butyric acid for protein transduction in transdermal delivery. Biomaterials33 (27), 6468–6475 (2012).
  • Wang YH Chen CP Chan MH et al. Arginine-rich intracellular delivery peptides noncovalently transport protein into living cells. Biochem. Biophys. Res. Commun.346 (3), 758–767 (2006).
  • Wang C Ruan R Zhang L et al. Role of the Na/K-ATPase beta-subunit in peptide-mediated transdermal drug delivery. Mol. Pharm.12 (4), 1259–1267 (2015).
  • Maghraby GM Barry BW Williams AC . Liposomes and skin: from drug delivery to model membranes. Eur. J. Pharm. Sci.34 (4–5), 203–222 (2008).
  • Lauerma AI Surber C Maibach HI . Absorption of topical tacrolimus (FK506) in vitro through human skin: comparison with cyclosporin A. Skin Pharmacol.10 (5–6), 230–234 (1997).
  • Fahr A Van Hoogevest P May S Bergstrand N Leigh MLS . Transfer of lipophilic drugs between liposomal membranes and biological interfaces: consequences for drug delivery. Eur. J. Pharm. Sci.26 (3–4), 251–265 (2005).
  • Eckert JJ Fleming TP . Tight junction biogenesis during early development. Biochim. Biophys. Acta1778 (3), 717–728 (2008).
  • Geering K . Functional roles of Na, K-ATPase subunits. Curr. Opin. Nephrol. Hypertens.17 (5), 526–532 (2008).
  • Madan P Rose K Watson AJ . Na/K-ATPase beta1 subunit expression is required for blastocyst formation and normal assembly of trophectoderm tight junction-associated proteins. J. Biol. Chem.282 (16), 12127–12134 (2007).
  • Moriwaki K Tsukita S Furuse M . Tight junctions containing claudin 4 and 6 are essential for blastocyst formation in preimplantation mouse embryos. Dev. Biol.312 (2), 509–522 (2007).
  • Violette MI Madan P Watson AJ . Na+/K+ -ATPase regulates tight junction formation and function during mouse preimplantation development. Dev. Biol.289 (2), 406–419 (2006).
  • Zamofing D Rossier BC Geering K . Role of the Na, K-ATPase beta-subunit in the cellular accumulation and maturation of the enzyme as assessed by glycosylation inhibitors. J. Membr. Biol.104 (1), 69–79 (1988).
  • Rajasekaran SA Rajasekaran AK . Na, K-ATPase and epithelial tight junctions. Front. Biosci. (Landmark Ed.)14, 2130–2148 (2009).
  • Otto M . Staphylococcus epidermidis‐‐the ‘accidental’ pathogen. Nat. Rev. Microbiol.7 (8), 555–567 (2009).
  • Potts RO Guy RH . Predicting skin permeability. Pharm. Res.9 (5), 663–669 (1992).
  • Shcharbin D Drapeza A Loban V Lisichenok A Bryszewska M . The breakdown of bilayer lipid membranes by dendrimers. Cell. Mol. Biol. Lett.11 (2), 242–248 (2006).
  • Lademann J Knorr F Richter H et al. Hair follicles‐‐an efficient storage and penetration pathway for topically applied substances. Summary of recent results obtained at the Center of Experimental and Applied Cutaneous Physiology, Charite -Universitatsmedizin Berlin, Germany. Skin Pharmacol. Physiol.21 (3), 150–155 (2008).
  • Kneeland JE . Fine structure of the sweat glands of the antebrachial organ of Lemur catta. Z. Zellforsch. Mikrosk. Anat.73 (4), 521–533 (1966).
  • Kim YC Late S Banga AK Ludovice PJ Prausnitz MR . Biochemical enhancement of transdermal delivery with magainin peptide: modification of electrostatic interactions by changing pH. Int. J. Pharm.362 (1–2), 20–28 (2008).
  • Beerens AM Al Hadithy AF Rots MG Haisma HJ . Protein transduction domains and their utility in gene therapy. Curr. Gene Ther.3 (5), 486–494 (2003).
  • Ohtake K Natsume H Ueda H Morimoto Y . Analysis of transient and reversible effects of poly-L-arginine on the in vivo nasal absorption of FITC-dextran in rats. J. Control. Release82 (2–3), 263–275 (2002).
  • Ruan R Jin P Zhang L et al. Peptide-chaperone-directed transdermal protein delivery requires energy. Mol. Pharm.11 (11), 4015–4022 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.