889
Views
12
CrossRef citations to date
0
Altmetric
RESEARCH PAPERS

ShRNA-mediated silencing of the ubiquitin-specific protease 22 gene restrained cell progression and affected the Akt pathway in nasopharyngeal carcinoma

, , , , , , & show all
Pages 88-96 | Received 08 Jul 2014, Accepted 09 Nov 2014, Published online: 18 Feb 2015

References

  • Yu MC, Yuan JM. Epidemiology of nasopharyngeal carcinoma. Semin Cancer Biol 2002;12:421-429; PMID:12450728; http://dx.doi.org/10.1016/S1044579X02000858
  • Titcomb CJ. High incidence of nasopharyngeal carcinoma in Asia. J Insur Med 2001;33:235-238; PMID:11558403
  • Lai SZ, Li WF, Chen L, Luo W, Chen YY, Liu LZ, Sun Y, Lin AH, Liu MZ, Ma J. How does intensity-modulated radiotherapy versus conventional two-dimensional radiotherapy influence the treatment results in nasopharyngeal carcinoma patients? Int J Radiat Oncol Biol Phys 2011;80:661-668; PMID:20643517; http://dx.doi.org/10.1016/j.ijrobp.2010.03.024
  • McDermott AL, Dutt SN, Watkinson JC. The aetiology of nasopharyngeal carcinoma. Clin Otolaryngol Allied Sci 2001;26:82-92; PMID:11309046; http://dx.doi.org/10.1046/j.1365-2273.2001.00449.x
  • Chou J, Lin YC, Kim J, You L, Xu Z, He B, Jablons DM. Nasopharyngeal carcinoma–review of the molecular mechanisms of tumorigenesis. Head Neck 2008;30:946-963; PMID:18446839; http://dx.doi.org/10.1002/hed.20833
  • Glinsky GV. Death-from-cancer signatures and stem cell contribution to metastatic cancer. Cell Cycle 2005;4:1171-1175; PMID:16082216; http://dx.doi.org/10.4161/cc.4.9.2001
  • Glinsky GV, Berezovska O, Glinskii AB. Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest 2005;115:1503-1521; PMID:15931389; http://dx.doi.org/10.1172/JCI23412
  • Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C, Weisenberger DJ, Campan M, Young J, Jacobs I, et al. Epigenetic stem cell signature in cancer. Nat Genet 2007;39:157-158; PMID:17200673; http://dx.doi.org/10.1038/ng1941
  • Lee HJ, Kim MS, Shin JM, Park TJ, Chung HM, Baek KH. The expression patterns of deubiquitinating enzymes, USP22 and Usp22. Gene Expr Patterns 2006;6:277-284; PMID:16378762; http://dx.doi.org/10.1016/j.modgep.2005.07.007
  • Zhang XY, Varthi M, Sykes SM, Phillips C, Warzecha C, Zhu W, Wyce A, Thorne AW, Berger SL, McMahon SB. The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression. Mol Cell 2008;29:102-111; PMID:18206973; http://dx.doi.org/10.1016/j.molcel.2007.12.015
  • Zhang XY, Pfeiffer HK, Thorne AW, McMahon SB. USP22, an hSAGA subunit and potential cancer stem cell marker, reverses the polycomb-catalyzed ubiquitylation of histone H2A. Cell Cycle 2008;7:1522-1524; PMID:18469533; http://dx.doi.org/10.4161/cc.7.11.5962
  • Lee KK, Florens L, Swanson SK, Washburn MP, Workman JL. The deubiquitylation activity of Ubp8 is dependent upon Sgf11 and its association with the SAGA complex. Mol Cell Biol 2005;25:1173-1182; PMID:15657442; http://dx.doi.org/10.1128/MCB.25.3.1173-1182.2005
  • Zhao Y, Lang G, Ito S, Bonnet J, Metzger E, Sawatsubashi S, Suzuki E, Le Guezennec X, Stunnenberg HG, Krasnov A, et al. A TFTC/STAGA module mediates histone H2A and H2B deubiquitination, coactivates nuclear receptors, and counteracts heterochromatin silencing. Mol Cell 2008;29:92-101; PMID:18206972; http://dx.doi.org/10.1016/j.molcel.2007.12.011
  • Bouchard C, Dittrich O, Kiermaier A, Dohmann K, Menkel A, Eilers M, Luscher B. Regulation of cyclin D2 gene expression by the Myc/Max/Mad network: Myc-dependent TRRAP recruitment and histone acetylation at the cyclin D2 promoter. Genes Dev 2001;15:2042-2047; PMID:11511535http://dx.doi.org/10.1101/gad.907901
  • Liu YL, Jiang SX, Yang YM, Xu H, Liu JL, Wang XS. USP22 acts as an oncogene by the activation of BMI-1-mediated INK4a/ARF pathway and Akt pathway. Cell Biochem Biophys 2012;62:229-235; PMID:21928107; http://dx.doi.org/10.1007/s12013-011-9287-0
  • Piao S, Ma J, Wang W, Liu Y, Zhang M, Chen H, Guo F, Zhang B, Guo F. Increased expression of USP22 is associated with disease progression and patient prognosis of salivary duct carcinoma. Oral Oncol 2013;49:796-801; PMID:23664741; http://dx.doi.org/10.1016/j.oraloncology.2013.03.454
  • Li J, Wang Z, Li Y. USP22 nuclear expression is significantly associated with progression and unfavorable clinical outcome in human esophageal squamous cell carcinoma. J Cancer Res Clin Oncol 2012;138:1291-1297; PMID:22447106; http://dx.doi.org/10.1007/s00432-012-1191-5
  • Zhang Y, Yao L, Zhang X, Ji H, Wang L, Sun S, Pang D. Elevated expression of USP22 in correlation with poor prognosis in patients with invasive breast cancer. J Cancer Res Clin Oncol 2011;137:1245-1253; PMID:21691749; http://dx.doi.org/10.1007/s00432-011-0998-9
  • Yang DD, Cui BB, Sun LY, Zheng HQ, Huang Q, Tong JX, Zhang QF. The co-expression of USP22 and BMI-1 may promote cancer progression and predict therapy failure in gastric carcinoma. Cell Biochem Biophys 2011;61:703-710; PMID:21735131; http://dx.doi.org/10.1007/s12013-011-9229-x
  • Liu YL, Yang YM, Xu H, Dong XS. Increased expression of ubiquitin-specific protease 22 can promote cancer progression and predict therapy failure in human colorectal cancer. J Gastroenterol Hepatol 2010;25:1800-1805; PMID:21039844; http://dx.doi.org/10.1111/j.1440-1746.2010.06352.x
  • Yang M, Liu YD, Wang YY, Liu TB, Ge TT, Lou G. Ubiquitin-specific protease 22: a novel molecular biomarker in cervical cancer prognosis and therapeutics. Tumour Biol 2014;35:929-934; PMID:23979981; http://dx.doi.org/10.1007/s13277-013-1121-4
  • Li ZH, Yu Y, DU C, Fu H, Wang J, Tian Y. RNA interference-mediated USP22 gene silencing promotes human brain glioma apoptosis and induces cell cycle arrest. Oncol Lett 2013;5:1290-1294; PMID:23599781
  • Lv L, Xiao XY, Gu ZH, Zeng FQ, Huang LQ, Jiang GS. Silencing USP22 by asymmetric structure of interfering RNA inhibits proliferation and induces cell cycle arrest in bladder cancer cells. Mol Cell Biochem 2011;346:11-21; PMID:20824490; http://dx.doi.org/10.1007/s11010-010-0585-4
  • Xu H, Liu YL, Yang YM, Dong XS. Knock-down of ubiquitin-specific protease 22 by micro-RNA interference inhibits colorectal cancer growth. Int J Colorectal Dis 2012;27:21-30; PMID:21773699; http://dx.doi.org/10.1007/s00384-011-1275-8
  • Simpson PJ, Moon C, Kleman AM, Connolly E, Ronnett GV. Progressive and inhibitory cell cycle proteins act simultaneously to regulate neurotrophin-mediated proliferation and maturation of neuronal precursors. Cell Cycle 2007;6:1077-1089; PMID:17404514; http://dx.doi.org/10.4161/cc.6.9.4132
  • Liang QC, Xiong H, Zhao ZW, Jia D, Li WX, Qin HZ, Deng JP, Gao L, Zhang H, Gao GD. Inhibition of transcription factor STAT5b suppresses proliferation, induces G1 cell cycle arrest and reduces tumor cell invasion in human glioblastoma multiforme cells. Cancer Lett 2009;273:164-171; PMID:18793823; http://dx.doi.org/10.1016/j.canlet.2008.08.011
  • Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2002;2:489-501; PMID:12094235; http://dx.doi.org/10.1038/nrc839
  • Kida A, Kakihana K, Kotani S, Kurosu T, Miura O. Glycogen synthase kinase-3beta and p38 phosphorylate cyclin D2 on Thr280 to trigger its ubiquitin/proteasome-dependent degradation in hematopoietic cells. Oncogene 2007;26:6630-6640; PMID:17486076; http://dx.doi.org/10.1038/sj.onc.1210490
  • Takahashi-Yanaga F, Sasaguri T. GSK-3beta regulates cyclin D1 expression: a new target for chemotherapy. Cell Signal 2008;20:581-589; PMID:18023328; http://dx.doi.org/10.1016/j.cellsig.2007.10.018
  • Diehl JA, Cheng M, Roussel MF, Sherr CJ. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 1998;12:3499-3511; PMID:9832503; http://dx.doi.org/10.1101/gad.12.22.3499
  • Song LB, Li J, Liao WT, Feng Y, Yu CP, Hu LJ, Kong QL, Xu LH, Zhang X, Liu WL, et al. The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. J Clin Invest 2009;119:3626-3636; PMID:19884659; http://dx.doi.org/10.1172/JCI39374
  • Hoeller D, Dikic I. Targeting the ubiquitin system in cancer therapy. Nature 2009;458:438-444; PMID:19325623; http://dx.doi.org/10.1038/nature07960
  • Liu YL, Jiang SX, Yang YM, Xu H, Liu JL, Wang XS. USP22 acts as an oncogene by the activation of BMI-1-mediated INK4a/ARF pathway and Akt pathway. Cell Biochem Biophys 2012;62:229-235; PMID:21928107; http://dx.doi.org/10.1007/s12013-011-9287-0
  • Liu YL, Jiang SX, Yang YM, Xu H, Liu JL, Wang XS. USP22 acts as an oncogene by the activation of BMI-1-mediated INK4a/ARF pathway and Akt pathway. Cell Biochem Biophys 2012;62:229-235; PMID:21928107; http://dx.doi.org/10.1007/s12013-011-9287-0
  • Song LB, Li J, Liao WT, Feng Y, Yu CP, Hu LJ, Kong QL, Xu LH, Zhang X, Liu WL, et al. The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. J Clin Invest 2009;119:3626-3636; PMID:19884659; http://dx.doi.org/10.1172/JCI39374

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.