1,128
Views
12
CrossRef citations to date
0
Altmetric
RESEARCH PAPERS

The glycosyltransferase LARGE2 is repressed by Snail and ZEB1 in prostate cancer

, , &
Pages 125-136 | Received 11 Aug 2014, Accepted 09 Nov 2014, Published online: 18 Feb 2015

References

  • Ervasti JM, Campbell KP. Membrane organization of the dystrophin-glycoprotein complex. Cell 1991; 66:1121-31; PMID:1913804; http://dx.doi.org/10.1016/0092-8674(91)90035-W
  • Ibraghimov-Beskrovnaya O, Ervasti JM, Leveille CJ, Slaughter CA, Sernett SW, Campbell KP. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 1992; 355:696-702; PMID:1741056; http://dx.doi.org/10.1038/355696a0
  • Ibraghimov-Beskrovnaya O, Milatovich A, Ozcelik T, Yang B, Koepnick K, Francke U, Campbell KP. Human dystroglycan: skeletal muscle cDNA, genomic structure, origin of tissue specific isoforms and chromosomal localization. Hum Mol Genet 1993; 2:1651-7; PMID:8268918; http://dx.doi.org/10.1093/hmg/2.10.1651
  • Ervasti JM, Campbell KP. A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol 1993; 122:809-23; PMID:8349731; http://dx.doi.org/10.1083/jcb.122.4.809
  • Bowe MA, Deyst KA, Leszyk JD, Fallon JR. Identification and purification of an agrin receptor from Torpedo postsynaptic membranes: a heteromeric complex related to the dystroglycans. Neuron 1994; 12:1173-80; PMID:8185951; http://dx.doi.org/10.1016/0896-6273(94)90324-7
  • Campanelli JT, Roberds SL, Campbell KP, Scheller RH. A role for dystrophin-associated glycoproteins and utrophin in agrin-induced AChR clustering. Cell 1994; 77:663-74; PMID:8205616; http://dx.doi.org/10.1016/0092-8674(94)90051-5
  • Gee SH, Montanaro F, Lindenbaum MH, Carbonetto S. Dystroglycan-alpha, a dystrophin-associated glycoprotein, is a functional agrin receptor. Cell 1994; 77:675-86; PMID:8205617; http://dx.doi.org/10.1016/0092-8674(94)90052-3
  • Peng HB, Ali AA, Daggett DF, Rauvala H, Hassell JR, Smalheiser NR. The relationship between perlecan and dystroglycan and its implication in the formation of the neuromuscular junction. Cell Adhes Commun 1998; 5:475-89; PMID:9791728; http://dx.doi.org/10.3109/15419069809005605
  • Talts JF, Andac Z, Gohring W, Brancaccio A, Timpl R. Binding of the G domains of laminin alpha1 and alpha2 chains and perlecan to heparin, sulfatides, alpha-dystroglycan and several extracellular matrix proteins. EMBO J 1999; 18:863-70; PMID:10022829; http://dx.doi.org/10.1093/emboj/18.4.863
  • Yoshida-Moriguchi T, Yu L, Stalnaker SH, Davis S, Kunz S, Madson M, Oldstone MB, Schachter H, Wells L, Campbell KP. O-mannosyl phosphorylation of alpha-dystroglycan is required for laminin binding. Science 2010; 327:88-92; PMID:20044576; http://dx.doi.org/10.1126/science.1180512
  • Inamori K, Yoshida-Moriguchi T, Hara Y, Anderson ME, Yu L, Campbell KP. Dystroglycan function requires xylosyl- and glucuronyltransferase activities of LARGE. Science 2012; 335:93-6; PMID:22223806; http://dx.doi.org/10.1126/science.1214115
  • Manya H, Chiba A, Yoshida A, Wang X, Chiba Y, Jigami Y, Margolis RU, Endo T. Demonstration of mammalian protein O-mannosyltransferase activity: coexpression of POMT1 and POMT2 required for enzymatic activity. Proc Nat Acad Sci U S A 2004; 101:500-5; PMID:14699049; http://dx.doi.org/10.1073/pnas.0307228101
  • Takahashi T, Honda R, Nishikawa Y. Cloning of the human cDNA which can complement the defect of the yeast mannosyltransferase I-deficient mutant alg 1. Glycobiology 2000; 10:321-7; PMID:10704531; http://dx.doi.org/10.1093/glycob/10.3.321
  • Aravind L, Koonin EV. The fukutin protein family–predicted enzymes modifying cell-surface molecules. Curr Biol: CB 1999; 9:R836-7; PMID:10574772; http://dx.doi.org/10.1016/S0960-9822(00)80039-1
  • Brockington M, Blake DJ, Prandini P, Brown SC, Torelli S, Benson MA, Ponting CP, Estournet B, Romero NB, Mercuri E, et al. Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin alpha2 deficiency and abnormal glycosylation of alpha-dystroglycan. Am J Hum Genet 2001; 69:1198-209; PMID:11592034; http://dx.doi.org/10.1086/324412
  • Grewal PK, Holzfeind PJ, Bittner RE, Hewitt JE. Mutant glycosyltransferase and altered glycosylation of alpha-dystroglycan in the myodystrophy mouse. Nat Genet 2001; 28:151-4; PMID:11381262; http://dx.doi.org/10.1038/88865
  • Hayashi YK, Ogawa M, Tagawa K, Noguchi S, Ishihara T, Nonaka I, Arahata K. Selective deficiency of alpha-dystroglycan in Fukuyama-type congenital muscular dystrophy. Neurology 2001; 57:115-21; PMID:11445638; http://dx.doi.org/10.1212/WNL.57.1.115
  • Willer T, Lee H, Lommel M, Yoshida-Moriguchi T, de Bernabe DB, Venzke D, Cirak S, Schachter H, Vajsar J, Voit T, et al. ISPD loss-of-function mutations disrupt dystroglycan O-mannosylation and cause Walker-Warburg syndrome. Nat Genet 2012; 44:575-80; PMID:22522420; http://dx.doi.org/10.1038/ng.2252
  • Roscioli T, Kamsteeg EJ, Buysse K, Maystadt I, van Reeuwijk J, van den Elzen C, van Beusekom E, Riemersma M, Pfundt R, Vissers LE, et al. Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of alpha-dystroglycan. Nat Genet 2012; 44:581-5; PMID:22522421; http://dx.doi.org/10.1038/ng.2253
  • Henry MD, Cohen MB, Campbell KP. Reduced expression of dystroglycan in breast and prostate cancer. Hum Pathol 2001; 32:791-5; PMID:11521221; http://dx.doi.org/10.1053/hupa.2001.26468
  • Sgambato A, Migaldi M, Montanari M, Camerini A, Brancaccio A, Rossi G, Cangiano R, Losasso C, Capelli G, Trentini GP, et al. Dystroglycan expression is frequently reduced in human breast and colon cancers and is associated with tumor progression. Am J Pathol 2003; 162:849-60; PMID:12598319; http://dx.doi.org/10.1016/S0002-9440(10)63881-3
  • Shimojo H, Kobayashi M, Kamigaito T, Shimojo Y, Fukuda M, Nakayama J. Reduced glycosylation of alpha-dystroglycans on carcinoma cells contributes to formation of highly infiltrative histological patterns in prostate cancer. Prostate 2011; 71:1151-7; PMID:21656825; http://dx.doi.org/10.1002/pros.21330
  • Sgambato A, De Paola B, Migaldi M, Di Salvatore M, Rettino A, Rossi G, Faraglia B, Boninsegna A, Maiorana A, Cittadini A. Dystroglycan expression is reduced during prostate tumorigenesis and is regulated by androgens in prostate cancer cells. J Cell Physiol 2007; 213:528-39; PMID:17516554; http://dx.doi.org/10.1002/jcp.21130
  • Esser AK, Miller MR, Huang Q, Meier MM, Beltran-Valero de Bernabe D, Stipp CS, Campbell KP, Lynch CF, Smith BJ, Cohen MB, et al. Loss of LARGE2 disrupts functional glycosylation of alpha-dystroglycan in prostate cancer. J Biol Chem 2013; 288:2132-42; PMID:23223448; http://dx.doi.org/10.1074/jbc.M112.432807
  • Aggelis V, Craven RA, Peng J, Harnden P, Schaffer L, Hernandez GE, Head SR, Maher ER, Tonge R, Selby PJ, et al. VHL-dependent regulation of a beta-dystroglycan glycoform and glycogene expression in renal cancer. Int J Oncol 2013; 43:1368-76; PMID:23970118
  • Sgambato A, Camerini A, Genovese G, De Luca F, Viacava P, Migaldi M, Boninsegna A, Cecchi M, Sepich CA, Rossi G, et al. Loss of nuclear p27(kip1) and alpha-dystroglycan is a frequent event and is a strong predictor of poor outcome in renal cell carcinoma. Cancer Sci 2010; 101:2080-6; PMID:20626751; http://dx.doi.org/10.1111/j.1349-7006.2010.01644.x
  • Sgambato A, Camerini A, Amoroso D, Genovese G, De Luca F, Cecchi M, Migaldi M, Rettino A, Valsuani C, Tartarelli G, et al. Expression of dystroglycan correlates with tumor grade and predicts survival in renal cell carcinoma. Cancer Biol Ther 2007; 6:1840-6; PMID:18087214; http://dx.doi.org/10.4161/cbt.6.12.4983
  • Singh J, Itahana Y, Knight-Krajewski S, Kanagawa M, Campbell KP, Bissell MJ, Muschler J. Proteolytic enzymes and altered glycosylation modulate dystroglycan function in carcinoma cells. Cancer Res 2004; 64:6152-9; PMID:15342399; http://dx.doi.org/10.1158/0008-5472.CAN-04-1638
  • Bao X, Kobayashi M, Hatakeyama S, Angata K, Gullberg D, Nakayama J, Fukuda MN, Fukuda M. Tumor suppressor function of laminin-binding alpha-dystroglycan requires a distinct beta3-N-acetylglucosaminyltransferase. Proc Nat Acad Sci U S A 2009; 106:12109-14; PMID:19587235; http://dx.doi.org/10.1073/pnas.0904515106
  • Fujimura K, Sawaki H, Sakai T, Hiruma T, Nakanishi N, Sato T, Ohkura T, Narimatsu H. LARGE2 facilitates the maturation of alpha-dystroglycan more effectively than LARGE. Biochem Biophys Res Commun 2005; 329:1162-71; PMID:15752776; http://dx.doi.org/10.1016/j.bbrc.2005.02.082
  • Hara Y, Kanagawa M, Kunz S, Yoshida-Moriguchi T, Satz JS, Kobayashi YM, Zhu Z, Burden SJ, Oldstone MB, Campbell KP. Like-acetylglucosaminyltransferase (LARGE)-dependent modification of dystroglycan at Thr-317319 is required for laminin binding and arenavirus infection. Proc Nat Acad Sci U S A 2011; 108:17426-31; PMID:21987822; http://dx.doi.org/10.1073/pnas.1114836108
  • Inamori K, Hara Y, Willer T, Anderson ME, Zhu Z, Yoshida-Moriguchi T, Campbell KP. Xylosyl- and glucuronyltransferase functions of LARGE in alpha-dystroglycan modification are conserved in LARGE2. Glycobiology 2013; 23:295-302; PMID:23125099; http://dx.doi.org/10.1093/glycob/cws152
  • de Bernabe DB, Inamori K, Yoshida-Moriguchi T, Weydert CJ, Harper HA, Willer T, Henry MD, Campbell KP. Loss of alpha-dystroglycan laminin binding in epithelium-derived cancers is caused by silencing of LARGE. J Biol Chem 2009; 284:11279-84; PMID:19244252; http://dx.doi.org/10.1074/jbc.C900007200
  • Akhavan A, Griffith OL, Soroceanu L, Leonoudakis D, Luciani-Torres MG, Daemen A, Gray JW, Muschler JL. Loss of cell-surface laminin anchoring promotes tumor growth and is associated with poor clinical outcomes. Cancer Res 2012; 72:2578-88; PMID:22589276; http://dx.doi.org/10.1158/0008-5472.CAN-11-3732
  • Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139:871-90; PMID:19945376; http://dx.doi.org/10.1016/j.cell.2009.11.007
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144:646-74; PMID:21376230; http://dx.doi.org/10.1016/j.cell.2011.02.013
  • Tian M, Neil JR, Schiemann WP. Transforming growth factor-beta and the hallmarks of cancer. Cell Signalling 2011; 23:951-62; PMID:20940046; http://dx.doi.org/10.1016/j.cellsig.2010.10.015
  • Kim K, Lu Z, Hay ED. Direct evidence for a role of beta-cateninLEF-1 signaling pathway in induction of EMT. Cell Biol Int 2002; 26:463-76; PMID:12095232; http://dx.doi.org/10.1006/cbir.2002.0901
  • Wang Z, Li Y, Kong D, Sarkar FH. The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness. Curr Drug Targets 2010; 11:745-51; PMID:20041844; http://dx.doi.org/10.2174/138945010791170860
  • Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119:1420-8; PMID:19487818; http://dx.doi.org/10.1172/JCI39104
  • Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004; 117:927-39; PMID:15210113; http://dx.doi.org/10.1016/j.cell.2004.06.006
  • Kurrey NK, K A, Bapat SA. Snail and Slug are major determinants of ovarian cancer invasiveness at the transcription level. Gynecologic Oncol 2005; 97:155-65; PMID:15790452; http://dx.doi.org/10.1016/j.ygyno.2004.12.043
  • Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, Mareel M, Huylebroeck D, van Roy F. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 2001; 7:1267-78; PMID:11430829; http://dx.doi.org/10.1016/S1097-2765(01)00260-X
  • Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M, Berx G, Cano A, Beug H, Foisner R. DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 2005; 24:2375-85; PMID:15674322; http://dx.doi.org/10.1038/sj.onc.1208429
  • Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, Garcia De Herreros A. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2000; 2:84-9; PMID:10655587; http://dx.doi.org/10.1038/35000034
  • Vesuna F, van Diest P, Chen JH, Raman V. Twist is a transcriptional repressor of E-cadherin gene expression in breast cancer. Biochem Biophys Res Commun 2008; 367:235-41; PMID:18062917; http://dx.doi.org/10.1016/j.bbrc.2007.11.151
  • Aigner K, Dampier B, Descovich L, Mikula M, Sultan A, Schreiber M, Mikulits W, Brabletz T, Strand D, Obrist P, et al. The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 2007; 26:6979-88; PMID:17486063; http://dx.doi.org/10.1038/sj.onc.1210508
  • Vandewalle C, Comijn J, De Craene B, Vermassen P, Bruyneel E, Andersen H, Tulchinsky E, Van Roy F, Berx G. SIP1ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res 2005; 33:6566-78; PMID:16314317; http://dx.doi.org/10.1093/nar/gki965
  • Moreno-Bueno G, Cubillo E, Sarrio D, Peinado H, Rodriguez-Pinilla SM, Villa S, Bolos V, Jorda M, Fabra A, Portillo F, et al. Genetic profiling of epithelial cells expressing E-cadherin repressors reveals a distinct role for Snail, Slug, and E47 factors in epithelial-mesenchymal transition. Cancer Res 2006; 66:9543-56; PMID:17018611; http://dx.doi.org/10.1158/0008-5472.CAN-06-0479
  • Tran DD, Corsa CA, Biswas H, Aft RL, Longmore GD. Temporal and spatial cooperation of Snail1 and Twist1 during epithelial-mesenchymal transition predicts for human breast cancer recurrence. Mol Cancer Res: MCR 2011; 9:1644-57; PMID:22006115; http://dx.doi.org/10.1158/1541-7786.MCR-11-0371
  • Dave N, Guaita-Esteruelas S, Gutarra S, Frias A, Beltran M, Peiro S, de Herreros AG. Functional cooperation between Snail1 and twist in the regulation of ZEB1 expression during epithelial to mesenchymal transition. J Biol Chem 2011; 286:12024-32; PMID:21317430; http://dx.doi.org/10.1074/jbc.M110.168625
  • Drake JM, Strohbehn G, Bair TB, Moreland JG, Henry MD. ZEB1 enhances transendothelial migration and represses the epithelial phenotype of prostate cancer cells. Mol Biol Cell 2009; 20:2207-17; PMID:19225155; http://dx.doi.org/10.1091/mbc.E08-10-1076
  • de Herreros AG, Peiro S, Nassour M, Savagner P. Snail family regulation and epithelial mesenchymal transitions in breast cancer progression. J Mammary Gland Biol Neoplasia 2010; 15:135-47; PMID:20455012; http://dx.doi.org/10.1007/s10911-010-9179-8
  • Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133:704-15; PMID:18485877; http://dx.doi.org/10.1016/j.cell.2008.03.027
  • Drake JM, Barnes JM, Madsen JM, Domann FE, Stipp CS, Henry MD. ZEB1 coordinately regulates laminin-332 and {beta}4 integrin expression altering the invasive phenotype of prostate cancer cells. J Biol Chem 2010; 285:33940-8; PMID:20729552; http://dx.doi.org/10.1074/jbc.M110.136044
  • Groger CJ, Grubinger M, Waldhor T, Vierlinger K, Mikulits W. Meta-analysis of gene expression signatures defining the epithelial to mesenchymal transition during cancer progression. PloS One 2012; 7:e51136; PMID:23251436; http://dx.doi.org/10.1371/journal.pone.0051136
  • Trelstad RL, Hay ED, Revel JD. Cell contact during early morphogenesis in the chick embryo. Dev Biol 1967; 16:78-106; PMID:6035571; http://dx.doi.org/10.1016/0012-1606(67)90018-8
  • Nakaya Y, Sukowati EW, Alev C, Nakazawa F, Sheng G. Involvement of dystroglycan in epithelial-mesenchymal transition during chick gastrulation. Cells, Tissues, Organs 2011; 193:64-73; PMID:21051858; http://dx.doi.org/10.1159/000320165
  • Henry MD, Campbell KP. A role for dystroglycan in basement membrane assembly. Cell 1998; 95:859-70; PMID:9865703; http://dx.doi.org/10.1016/S0092-8674(00)81708-0
  • Spaderna S, Schmalhofer O, Hlubek F, Berx G, Eger A, Merkel S, Jung A, Kirchner T, Brabletz T. A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology 2006; 131:830-40; PMID:16952552; http://dx.doi.org/10.1053/j.gastro.2006.06.016
  • Ota I, Li XY, Hu Y, Weiss SJ. Induction of a MT1-MMP and MT2-MMP-dependent basement membrane transmigration program in cancer cells by Snail1. Proc Nat Acad Sci U S A 2009; 106:20318-23; PMID:19915148; http://dx.doi.org/10.1073/pnas.0910962106
  • Haraguchi M, Okubo T, Miyashita Y, Miyamoto Y, Hayashi M, Crotti TN, McHugh KP, Ozawa M. Snail regulates cell-matrix adhesion by regulation of the expression of integrins and basement membrane proteins. J Biol Chem 2008; 283:23514-23; PMID:18593711; http://dx.doi.org/10.1074/jbc.M801125200
  • Heeboll S, Borre M, Ottosen PD, Dyrskjot L, Orntoft TF, Torring N. Snail1 is over-expressed in prostate cancer. APMIS: Acta Pathologica, Microbiologica, et Immunologica Scandinavica 2009; 117:196-204; PMID:19245592; http://dx.doi.org/10.1111/j.1600-0463.2008.00007.x
  • Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, Pienta KJ, Rubin MA, Chinnaiyan AM. Delineation of prognostic biomarkers in prostate cancer. Nature 2001; 412:822-6; PMID:11518967; http://dx.doi.org/10.1038/35090585
  • Graham TR, Zhau HE, Odero-Marah VA, Osunkoya AO, Kimbro KS, Tighiouart M, Liu T, Simons JW, O’Regan RM. Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res 2008; 68:2479-88; PMID:18381457; http://dx.doi.org/10.1158/0008-5472.CAN-07-2559
  • Nauseef JT, Henry MD. Epithelial-to-mesenchymal transition in prostate cancer: paradigm or puzzle? Nat Rev Urol 2011; 8:428-39; PMID:21691304; http://dx.doi.org/10.1038/nrurol.2011.85
  • Postigo AA, Dean DC. ZEB represses transcription through interaction with the corepressor CtBP. Proc Nat Acad Sci U S A 1999; 96:6683-8; PMID:10359772; http://dx.doi.org/10.1073/pnas.96.12.6683
  • Byles V, Zhu L, Lovaas JD, Chmilewski LK, Wang J, Faller DV, Dai Y. SIRT1 induces EMT by cooperating with EMT transcription factors and enhances prostate cancer cell migration and metastasis. Oncogene 2012; 31:4619-29; PMID:22249256; http://dx.doi.org/10.1038/onc.2011.612
  • Sanchez-Tillo E, Lazaro A, Torrent R, Cuatrecasas M, Vaquero EC, Castells A, Engel P, Postigo A. ZEB1 represses E-cadherin and induces an EMT by recruiting the SWISNF chromatin-remodeling protein BRG1. Oncogene 2010; 29:3490-500; PMID:20418909; http://dx.doi.org/10.1038/onc.2010.102
  • Chao Y, Wu Q, Acquafondata M, Dhir R, Wells A. Partial mesenchymal to epithelial reverting transition in breast and prostate cancer metastases. Cancer Microenvironment: Off J Int Cancer Microenvironment Soc 2012; 5:19-28; PMID:21892699; http://dx.doi.org/10.1007/s12307-011-0085-4
  • De Marzo AM, Knudsen B, Chan-Tack K, Epstein JI. E-cadherin expression as a marker of tumor aggressiveness in routinely processed radical prostatectomy specimens. Urology 1999; 53:707-13; PMID:10197845; http://dx.doi.org/10.1016/S0090-4295(98)00577-9
  • Putzke AP, Ventura AP, Bailey AM, Akture C, Opoku-Ansah J, Celiktas M, Hwang MS, Darling DS, Coleman IM, Nelson PS, et al. Metastatic progression of prostate cancer and e-cadherin regulation by zeb1 and SRC family kinases. Am J Pathol 2011; 179:400-10; PMID:21703419; http://dx.doi.org/10.1016/j.ajpath.2011.03.028
  • Gunasinghe NP, Wells A, Thompson EW, Hugo HJ. Mesenchymal-epithelial transition (MET) as a mechanism for metastatic colonisation in breast cancer. Cancer Metast Rev 2012; 31:469-78; PMID:22729277; http://dx.doi.org/10.1007/s10555-012-9377-5
  • Wells A, Yates C, Shepard CR. E-cadherin as an indicator of mesenchymal to epithelial reverting transitions during the metastatic seeding of disseminated carcinomas. Clin Exp Metast 2008; 25:621-8; PMID:18600305; http://dx.doi.org/10.1007/s10585-008-9167-1
  • Longman C, Brockington M, Torelli S, Jimenez-Mallebrera C, Kennedy C, Khalil N, Feng L, Saran RK, Voit T, Merlini L, et al. Mutations in the human LARGE gene cause MDC1D, a novel form of congenital muscular dystrophy with severe mental retardation and abnormal glycosylation of alpha-dystroglycan. Hum Mol Genet 2003; 12:2853-61; PMID:12966029; http://dx.doi.org/10.1093/hmg/ddg307
  • van Reeuwijk J, Grewal PK, Salih MA, Beltran-Valero de Bernabe D, McLaughlan JM, Michielse CB, Herrmann R, Hewitt JE, Steinbrecher A, Seidahmed MZ, et al. Intragenic deletion in the LARGE gene causes Walker-Warburg syndrome. Hum Genet 2007; 121:685-90; PMID:17436019; http://dx.doi.org/10.1007/s00439-007-0362-y
  • Grewal PK, McLaughlan JM, Moore CJ, Browning CA, Hewitt JE. Characterization of the LARGE family of putative glycosyltransferases associated with dystroglycanopathies. Glycobiology 2005; 15:912-23; PMID:15958417; http://dx.doi.org/10.1093/glycob/cwi094
  • Perkins KJ, Davies KE. The role of utrophin in the potential therapy of Duchenne muscular dystrophy. Neuromuscular Disord: NMD 2002; 12 Suppl 1:S78-89; PMID:12206801; http://dx.doi.org/10.1016/S0960-8966(02)00087-1
  • Mazda M, Nishi K, Naito Y, Ui-Tei K. E-cadherin is transcriptionally activated via suppression of ZEB1 transcriptional repressor by small RNA-mediated gene silencing. PloS One 2011; 6:e28688; PMID:22205962; http://dx.doi.org/10.1371/journal.pone.0028688
  • Svensson RU, Barnes JM, Rokhlin OW, Cohen MB, Henry MD. Chemotherapeutic agents up-regulate the cytomegalovirus promoter: implications for bioluminescence imaging of tumor response to therapy. Cancer Res 2007; 67:10445-54; PMID:17974988; http://dx.doi.org/10.1158/0008-5472.CAN-07-1955
  • Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29:e45; PMID:11328886; http://dx.doi.org/10.1093/nar/29.9.e45

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.