1,613
Views
21
CrossRef citations to date
0
Altmetric
EXTRA VIEWS

Competing to coordinate cell fate decisions: the MST2-Raf-1 signaling device

, , , &
Pages 189-199 | Received 13 Sep 2014, Accepted 30 Sep 2014, Published online: 21 Jan 2015

References

  • Guo M, Hay BA. Cell proliferation and apoptosis. Curr Opin Cell Biol 1999; 11:745-52; PMID:10600713; http://dx.doi.org/10.1016/S0955-0674(99)00046-0
  • Hipfner DR, Cohen SM. Connecting proliferation and apoptosis in development and disease. Nat Rev Mol Cell Biol 2004; 5:805-15; PMID:15459661; http://dx.doi.org/10.1038/nrm1491
  • O'Neill E, Rushworth L, Baccarini M, Kolch W. Role of the kinase MST2 in suppression of apoptosis by the proto-oncogene product Raf-1. Science 2004; 306:2267-70; PMID:15618521; http://dx.doi.org/10.1126/science.1103233
  • Avruch J, Zhou D, Fitamant J, Bardeesy N, Mou F, Barrufet LR. Protein kinases of the Hippo pathway: regulation and substrates. Semin Cell Dev Biol 2012; 23:770-84; PMID:22898666; http://dx.doi.org/10.1016/j.semcdb.2012.07.002
  • Pan D. The hippo signaling pathway in development and cancer. Dev Cell 2010; 19:491-505; PMID:20951342; http://dx.doi.org/10.1016/j.devcel.2010.09.011
  • O'Neill E, Kolch W. Taming the Hippo: Raf-1 controls apoptosis by suppressing MST2Hippo. Cell Cycle 2005; 4:365-7; PMID:15701972; http://dx.doi.org/10.4161/cc.4.3.1531
  • Bossuyt W, Chen CL, Chen Q, Sudol M, McNeill H, Pan D, Kopp A, Halder G. An evolutionary shift in the regulation of the Hippo pathway between mice and flies. Oncogene 2014; 33:1218-28; PMID:23563179; http://dx.doi.org/10.1038/onc.2013.82
  • Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, et al. Role of YAPTAZ in mechanotransduction. Nat 2011; 474:179-83; PMID:21654799; http://dx.doi.org/10.1038/nature10137
  • Zhou D, Conrad C, Xia F, Park JS, Payer B, Yin Y, Lauwers GY, Thasler W, Lee JT, Avruch J, et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 2009; 16:425-38; PMID:19878874; http://dx.doi.org/10.1016/j.ccr.2009.09.026
  • Feng X, Degese MS, Iglesias-Bartolome R, Vaque JP, Molinolo AA, Rodrigues M, Zaidi MR, Ksander BR, Merlino G, Sodhi A, et al. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell 2014; 25:831-45; PMID:24882515; http://dx.doi.org/10.1016/j.ccr.2014.04.016
  • Yang X, Yu K, Hao Y, Li DM, Stewart R, Insogna KL, Xu T. LATS1 tumour suppressor affects cytokinesis by inhibiting LIMK1. Nat Cell Biol 2004; 6:609-17; PMID:15220930; http://dx.doi.org/10.1038/ncb1140
  • Lehtinen MK, Yuan Z, Boag PR, Yang Y, Villen J, Becker EB, DiBacco S, de la Iglesia N, Gygi S, Blackwell TK, et al. A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 2006; 125:987-1001; PMID:16751106; http://dx.doi.org/10.1016/j.cell.2006.03.046
  • You B, Yan G, Zhang Z, Yan L, Li J, Ge Q, Jin JP, Sun J. Phosphorylation of cardiac troponin I by mammalian sterile 20-like kinase 1. The Biochem J 2009; 418:93-101; PMID:18986304; http://dx.doi.org/10.1042/BJ20081340
  • Wen W, Zhu F, Zhang J, Keum YS, Zykova T, Yao K, Peng C, Zheng D, Cho YY, Ma WY, et al. MST1 promotes apoptosis through phosphorylation of histone H2AX. J Biol Chem 2010; 285:39108-16; PMID:20921231; http://dx.doi.org/10.1074/jbc.M110.151753
  • Hergovich A. Regulation and functions of mammalian LATSNDR kinases: looking beyond canonical Hippo signalling. Cell Biosci 2013; 3:32; PMID:23985307; http://dx.doi.org/10.1186/2045-3701-3-32
  • Cheung WL, Ajiro K, Samejima K, Kloc M, Cheung P, Mizzen CA, Beeser A, Etkin LD, Chernoff J, Earnshaw WC, et al. Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell 2003; 113:507-17; PMID:12757711; http://dx.doi.org/10.1016/S0092-8674(03)00355-6
  • Barry ER, Camargo FD. The Hippo superhighway: signaling crossroads converging on the HippoYap pathway in stem cells and development. Curr Opin Cell Biol 2013; 25:247-53; PMID:23312716; http://dx.doi.org/10.1016/j.ceb.2012.12.006
  • Varelas X, Wrana JL. Coordinating developmental signaling: novel roles for the Hippo pathway. Trends Cell Biol 2012; 22:88-96; PMID:22153608; http://dx.doi.org/10.1016/j.tcb.2011.10.002
  • Romano D, Matallanas D, Frederick DT, Flaherty KT, Kolch W. One Hippo and many masters: differential regulation of the Hippo pathway in cancer. Biochem Soc Trans 2014; 42:816-21; PMID:25109963; http://dx.doi.org/10.1042/BST20140030
  • Matallanas D, Romano D, Al-Mulla F, O'Neill E, Al-Ali W, Crespo P, Doyle B, Nixon C, Sansom O, Drosten M, et al. Mutant K-Ras activation of the proapoptotic MST2 pathway is antagonized by wild-type K-Ras. Mol Cell 2011; 44:893-906; PMID:22195963; http://dx.doi.org/10.1016/j.molcel.2011.10.016
  • Matallanas D, Romano D, Hamilton G, Kolch W, O'Neill E. A Hippo in the ointment: MST signalling beyond the fly. Cell Cycle 2008; 7:879-84; PMID:18414046; http://dx.doi.org/10.4161/cc.7.7.5630
  • Matallanas D, Romano D, Yee K, Meissl K, Kucerova L, Piazzolla D, Baccarini M, Vass JK, Kolch W, O'Neill E. RASSF1A elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the p73 tumor suppressor protein. Mol Cell 2007; 27:962-75; PMID:17889669; http://dx.doi.org/10.1016/j.molcel.2007.08.008
  • Romano D, Matallanas D, Weitsman G, Preisinger C, Ng T, Kolch W. Proapoptotic kinase MST2 coordinates signaling crosstalk between RASSF1A, Raf-1, and Akt. Cancer Res 2010; 70:1195-203; PMID:20086174; http://dx.doi.org/10.1158/0008-5472.CAN-09-3147
  • Romano D, Nguyen LK, Matallanas D, Halasz M, Doherty C, Kholodenko BN, Kolch W. Protein interaction switches coordinate Raf-1 and MST2Hippo signalling. Nat Cell Biol 2014; 16:673-84; PMID:24929361; http://dx.doi.org/10.1038/ncb2986
  • Rauch J, O'Neill E, Mack B, Matthias C, Munz M, Kolch W, Gires O. Heterogeneous nuclear ribonucleoprotein H blocks MST2-mediated apoptosis in cancer cells by regulating A-Raf transcription. Cancer Res 2010; 70:1679-88; PMID:20145135; http://dx.doi.org/10.1158/0008-5472.CAN-09-2740
  • Hesson LB, Cooper WN, Latif F. The role of RASSF1A methylation in cancer. Dis Markers 2007; 23:73-87; PMID:17325427; http://dx.doi.org/10.1155/2007/291538
  • Avruch J, Xavier R, Bardeesy N, Zhang XF, Praskova M, Zhou D, Xia F. Rassf family of tumor suppressor polypeptides. J Biol Chem 2009; 284:11001-5; PMID:19091744; http://dx.doi.org/10.1074/jbc.R800073200
  • Matallanas D, Birtwistle M, Romano D, Zebisch A, Rauch J, von Kriegsheim A, Kolch W. Raf family kinases: old dogs have learned new tricks. Genes Cancer 2011; 2:232-60; PMID:21779496; http://dx.doi.org/10.1177/1947601911407323
  • Dhillon AS, Meikle S, Yazici Z, Eulitz M, Kolch W. Regulation of Raf-1 activation and signalling by dephosphorylation. EMBO J 2002; 21:64-71; PMID:11782426; http://dx.doi.org/10.1093/emboj/21.1.64
  • Dumaz N, Marais R. Protein kinase A blocks Raf-1 activity by stimulating 14-3-3 binding and blocking Raf-1 interaction with Ras. J Biol Chem 2003; 278:29819-23; PMID:12801936; http://dx.doi.org/10.1074/jbc.C300182200
  • Dhillon AS, Pollock C, Steen H, Shaw PE, Mischak H, Kolch W. Cyclic AMP-dependent kinase regulates Raf-1 kinase mainly by phosphorylation of serine 259. Mol Cell Biol 2002; 22:3237-46; PMID:11971957; http://dx.doi.org/10.1128/MCB.22.10.3237-3246.2002
  • Kobayashi T, Aoki Y, Niihori T, Cave H, Verloes A, Okamoto N, Kawame H, Fujiwara I, Takada F, Ohata T, et al. Molecular and clinical analysis of RAF1 in Noonan syndrome and related disorders: dephosphorylation of serine 259 as the essential mechanism for mutant activation. Hum Mutat 2010; 31:284-94; PMID:20052757; http://dx.doi.org/10.1002/humu.21187
  • Razzaque MA, Nishizawa T, Komoike Y, Yagi H, Furutani M, Amo R, Kamisago M, Momma K, Katayama H, Nakagawa M, et al. Germline gain-of-function mutations in RAF1 cause Noonan syndrome. Nat Genet 2007; 39:1013-7; PMID:17603482; http://dx.doi.org/10.1038/ng2078
  • Pandit B, Sarkozy A, Pennacchio LA, Carta C, Oishi K, Martinelli S, Pogna EA, Schackwitz W, Ustaszewska A, Landstrom A, et al. Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nat Genet 2007; 39:1007-12; PMID:17603483; http://dx.doi.org/10.1038/ng2073
  • Kholodenko BN. Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 2006; 7:165-76; PMID:16482094; http://dx.doi.org/10.1038/nrm1838
  • Lee SJ, Lee MH, Kim DW, Lee S, Huang S, Ryu MJ, Kim YK, Kim SJ, Hwang JH, Oh S, et al. Cross-regulation between oncogenic BRAF(V600E) kinase and the MST1 pathway in papillary thyroid carcinoma. PloS One 2011; 6:e16180; PMID:21249150; http://dx.doi.org/10.1371/journal.pone.0016180
  • Jiang BH, Liu LZ. PI3KPTEN signaling in angiogenesis and tumorigenesis. Adv Cancer Res 2009; 102:19-65; PMID:19595306; http://dx.doi.org/10.1016/S0065-230X(09)02002-8
  • Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene 2008; 27:5497-510; PMID:18794884; http://dx.doi.org/10.1038/onc.2008.245
  • Cinar B, Fang PK, Lutchman M, Di Vizio D, Adam RM, Pavlova N, Rubin MA, Yelick PC, Freeman MR. The pro-apoptotic kinase Mst1 and its caspase cleavage products are direct inhibitors of Akt1. EMBO J 2007; 26:4523-34; PMID:17932490; http://dx.doi.org/10.1038/sj.emboj.7601872
  • Geiger T, Wehner A, Schaab C, Cox J, Mann M. Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol Cell Proteomics 2012; 11: M111 014050; PMID:22278370; http://dx.doi.org/10.1074/mcp.M111.014050
  • Geiger T, Velic A, Macek B, Lundberg E, Kampf C, Nagaraj N, Uhlen M, Cox J, Mann M. Initial quantitative proteomic map of 28 mouse tissues using the SILAC mouse. Mol Cell Proteomics 2013; 12:1709-22; http://dx.doi.org/10.1074/mcp.M112.024919
  • Donninger H, Vos MD, Clark GJ. The RASSF1A tumor suppressor. J Cell Sci 2007; 120:3163-72; PMID:17878233; http://dx.doi.org/10.1242/jcs.010389
  • Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer 2013; 13:246-57; PMID:23467301; http://dx.doi.org/10.1038/nrc3458
  • Seidel C, Schagdarsurengin U, Blumke K, Wurl P, Pfeifer GP, Hauptmann S, Taubert H, Dammann R. Frequent hypermethylation of MST1 and MST2 in soft tissue sarcoma. Mol Carcinog 2007; 46:865-71; PMID:17538946; http://dx.doi.org/10.1002/mc.20317
  • Takahashi Y, Miyoshi Y, Takahata C, Irahara N, Taguchi T, Tamaki Y, Noguchi S. Down-regulation of LATS1 and LATS2 mRNA expression by promoter hypermethylation and its association with biologically aggressive phenotype in human breast cancers. Clin Cancer Res 2005; 11:1380-5; PMID:15746036; http://dx.doi.org/10.1158/1078-0432.CCR-04-1773
  • Hata Y, Timalsina S, Maimaiti S. Okadaic Acid: a tool to study the hippo pathway. Marine Drugs 2013; 11:896-902; PMID:23493077; http://dx.doi.org/10.3390/md11030896
  • Ribeiro PS, Josue F, Wepf A, Wehr MC, Rinner O, Kelly G, Tapon N, Gstaiger M. Combined functional genomic and proteomic approaches identify a PP2A complex as a negative regulator of Hippo signaling. Mol Cell 2010; 39:521-34; PMID:20797625; http://dx.doi.org/10.1016/j.molcel.2010.08.002
  • Couzens AL, Knight JD, Kean MJ, Teo G, Weiss A, Dunham WH, Lin ZY, Bagshaw RD, Sicheri F, Pawson T, et al. Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions. Sci Signal 2013; 6:rs15; PMID:24255178; http://dx.doi.org/10.1126/scisignal.2004712
  • Abraham D, Podar K, Pacher M, Kubicek M, Welzel N, Hemmings BA, Dilworth SM, Mischak H, Kolch W, Baccarini M. Raf-1-associated protein phosphatase 2A as a positive regulator of kinase activation. J Biol Chem 2000; 275:22300-4; PMID:10801873; http://dx.doi.org/10.1074/jbc.M003259200
  • Jaumot M, Hancock JF. Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions. Oncogene 2001; 20:3949-58; PMID:11494123; http://dx.doi.org/10.1038/sj.onc.1204526
  • Kilili GK, Kyriakis JM. Mammalian Ste20-like kinase (Mst2) indirectly supports Raf-1ERK pathway activity via maintenance of protein phosphatase-2A catalytic subunit levels and consequent suppression of inhibitory Raf-1 phosphorylation. J Biol Bhem 2010; 285:15076-87; PMID:20212043; http://dx.doi.org/10.1074/jbc.M109.078915
  • Guo C, Zhang X, Pfeifer GP. The tumor suppressor RASSF1A prevents dephosphorylation of the mammalian STE20-like kinases MST1 and MST2. J Biol Chem 2011; 286:6253-61; PMID:21199877; http://dx.doi.org/10.1074/jbc.M110.178210
  • Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JR, Zhou D, Kreger BT, Vasioukhin V, Avruch J, Brummelkamp TR, et al. Yap1 acts downstream of alpha-catenin to control epidermal proliferation. Cell 2011; 144:782-95; PMID:21376238; http://dx.doi.org/10.1016/j.cell.2011.02.031
  • Liu CY, Lv X, Li T, Xu Y, Zhou X, Zhao S, Xiong Y, Lei QY, Guan KL. PP1 cooperates with ASPP2 to dephosphorylate and activate TAZ. J Biol Chem 2011; 286:5558-66; PMID:21189257; http://dx.doi.org/10.1074/jbc.M110.194019
  • Moreno CS, Lane WS, Pallas DC. A mammalian homolog of yeast MOB1 is both a member and a putative substrate of striatin family-protein phosphatase 2A complexes. J Biol Chem 2001; 276:24253-60; PMID:11319234; http://dx.doi.org/10.1074/jbc.M102398200
  • Millward TA, Zolnierowicz S, Hemmings BA. Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem Sci 1999; 24:186-91; PMID:10322434; http://dx.doi.org/10.1016/S0968-0004(99)01375-4
  • Nguyen LK, Matallanas D, Croucher DR, von Kriegsheim A, Kholodenko BN. Signalling by protein phosphatases and drug development: a systems-centred view. FEBS J 2013; 280:751-65; PMID:22340367; http://dx.doi.org/10.1111/j.1742-4658.2012.08522.x
  • Andrabi S, Gjoerup OV, Kean JA, Roberts TM, Schaffhausen B. Protein phosphatase 2A regulates life and death decisions via Akt in a context-dependent manner. Proc Natl Acad Sci U S A 2007; 104:19011-6; PMID:18006659; http://dx.doi.org/10.1073/pnas.0706696104
  • O'Neill AK, Niederst MJ, Newton AC. Suppression of survival signalling pathways by the phosphatase PHLPP. FEBS J 2013; 280:572-83; PMID:22340730; http://dx.doi.org/10.1111/j.1742-4658.2012.08537.x
  • Qiao M, Wang Y, Xu X, Lu J, Dong Y, Tao W, Stein J, Stein GS, Iglehart JD, Shi Q, et al. Mst1 is an interacting protein that mediates PHLPPs' induced apoptosis. Mol Cell 2010; 38:512-23; PMID:20513427; http://dx.doi.org/10.1016/j.molcel.2010.03.017
  • Warfel NA, Newton AC. Pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP): a new player in cell signaling. J Biol Chem 2012; 287:3610-6; PMID:22144674; http://dx.doi.org/10.1074/jbc.R111.318675
  • Shimizu K, Okada M, Nagai K, Fukada Y. Suprachiasmatic nucleus circadian oscillatory protein, a novel binding partner of K-Ras in the membrane rafts, negatively regulates MAPK pathway. J Biol Chem 2003; 278:14920-5; PMID:12594205; http://dx.doi.org/10.1074/jbc.M213214200
  • Ho KC, Zhou Z, She YM, Chun A, Cyr TD, Yang X. Itch E3 ubiquitin ligase regulates large tumor suppressor 1 stability [corrected]. Proc Natl Acad Sci U S A 2011; 108:4870-5; http://dx.doi.org/10.1073/pnas.1101273108
  • Levy D, Adamovich Y, Reuven N, Shaul Y. The Yes-associated protein 1 stabilizes p73 by preventing Itch-mediated ubiquitination of p73. Cell Death Differ 2007; 14:743-51; PMID:17110958; http://dx.doi.org/10.1038/sj.cdd.4402063
  • Salah Z, Melino G, Aqeilan RI. Negative regulation of the Hippo pathway by E3 ubiquitin ligase ITCH is sufficient to promote tumorigenicity. Cancer Res 2011; 71:2010-20; PMID:21212414; http://dx.doi.org/10.1158/0008-5472.CAN-10-3516
  • Yeung B, Ho KC, Yang X. WWP1 E3 ligase targets LATS1 for ubiquitin-mediated degradation in breast cancer cells. PloS One 2013; 8:e61027; PMID:23573293; http://dx.doi.org/10.1371/journal.pone.0061027
  • Lignitto L, Arcella A, Sepe M, Rinaldi L, Delle Donne R, Gallo A, Stefan E, Bachmann VA, Oliva MA, Tiziana Storlazzi C, et al. Proteolysis of MOB1 by the ubiquitin ligase praja2 attenuates Hippo signalling and supports glioblastoma growth. Nat Commun 2013; 4:1822; PMID:23652010; http://dx.doi.org/10.1038/ncomms2791
  • Ecker K, Hengst L. Skp2: caught in the Akt. Nat Cell Biol 2009; 11:377-9; PMID:19337320; http://dx.doi.org/10.1038/ncb0409-377
  • Chan CH, Li CF, Yang WL, Gao Y, Lee SW, Feng Z, Huang HY, Tsai KK, Flores LG, Shao Y, et al. The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell 2012; 149:1098-111; PMID:22632973; http://dx.doi.org/10.1016/j.cell.2012.02.065
  • Nguyen LK, Kolch W, Kholodenko BN. When ubiquitination meets phosphorylation: a systems biology perspective of EGFRMAPK signalling. Cell Commun Signal 2013; 11:52; PMID:23902637; http://dx.doi.org/10.1186/1478-811X-11-52
  • Nguyen LK, Munoz-Garcia J, Maccario H, Ciechanover A, Kolch W, Kholodenko BN. Switches, excitable responses and oscillations in the Ring1BBmi1 ubiquitination system. PLoS Comput Biol 2011; 7:e1002317; PMID:22194680; http://dx.doi.org/10.1371/journal.pcbi.1002317
  • Nguyen LK, Dobrzynski M, Fey D, Kholodenko BN. Polyubiquitin chain assembly and organization determine the dynamics of protein activation and degradation. Frontiers Physiol 2014; 5:4; PMID:24478717; http://dx.doi.org/10.3389/fphys.2014.00004
  • Nguyen LK, Zhao Q, Varusai T, Kholodenko BN. Ubiquitin chain specific auto-ubiquitination triggers sustained oscillation, bistable switches and excitable firing. IET Systems Biol 2014; http://dx.doi.org/10.1049/iet-syb.2014.0024