1,468
Views
7
CrossRef citations to date
0
Altmetric
REPORTS

GSK3 inhibitors stabilize Wee1 and reduce cerebellar granule cell progenitor proliferation

, , , , &
Pages 417-424 | Received 17 Sep 2014, Accepted 06 Oct 2014, Published online: 06 Feb 2015

References

  • Do K, Doroshow JH, Kummar S. Wee1 kinase as a target for cancer therapy. Cell Cycle 2013; 12:3159-64; PMID: 24013427; http://dx.doi.org/10.4161/cc.26062
  • Vriend LE, De Witt Hamer PC, Van Noorden CJ, Wurdinger T. WEE1 inhibition and genomic instability in cancer. Biochimica Biophys Acta 2013; 1836:227-35; PMID:23727417
  • Stathis A, Oza A. Targeting Wee1-like protein kinase to treat cancer. Drug News Perspect 2010; 23:425-9; PMID:20862394
  • Leijen S, Beijnen JH, Schellens JH. Abrogation of the G2 checkpoint by inhibition of Wee-1 kinase results in sensitization of p53-deficient tumor cells to DNA-damaging agents. Current Clin Pharmacol 2010; 5:186-91; PMID:20406171; http://dx.doi.org/10.2174/157488410791498824
  • Murrow LM, Garimella SV, Jones TL, Caplen NJ, Lipkowitz S. Identification of WEE1 as a potential molecular target in cancer cells by RNAi screening of the human tyrosine kinome. Breast Cancer Res Treat 2010; 122:347-57; PMID:19821025; http://dx.doi.org/10.1007/s10549-009-0571-2
  • Mir SE, De Witt Hamer PC, Krawczyk PM, Balaj L, Claes A, Niers JM, Van Tilborg AA, Zwinderman AH, Geerts D, Kaspers GJ, et al. In silico analysis of kinase expression identifies WEE1 as a gatekeeper against mitotic catastrophe in glioblastoma. Cancer Cell 2010; 18:244-57; PMID:20832752; http://dx.doi.org/10.1016/j.ccr.2010.08.011
  • Mahajan K, Mahajan NP. WEE1 tyrosine kinase, a novel epigenetic modifier. Trends Genet 2013; 29:394-402; PMID:23537585; http://dx.doi.org/10.1016/j.tig.2013.02.003
  • Mahajan K, Fang B, Koomen JM, Mahajan NP. H2B Tyr37 phosphorylation suppresses expression of replication-dependent core histone genes. Nat Struct Mol Biol 2012; 19:930-7; PMID:22885324; http://dx.doi.org/10.1038/nsmb.2356
  • Madoux F, Simanski S, Chase P, Mishra JK, Roush WR, Ayad NG, Hodder P. An ultra-high throughput cell-based screen for wee1 degradation inhibitors. J Biomol Screen 2010; 15:907-17; PMID:20660794; http://dx.doi.org/10.1177/1087057110375848
  • Wechsler-Reya RJ, Scott MP. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 1999; 22:103-14; PMID:10027293; http://dx.doi.org/10.1016/S0896-6273(00)80682-0
  • Roussel MF, Hatten ME. Cerebellum development and medulloblastoma. Curr Top Dev Biol 2011; 94:235-82; PMID:21295689; http://dx.doi.org/10.1016/B978-0-12-380916-2.00008-5
  • Simanski S, Madoux F, Rahaim RJ, Chase P, Schurer S, Cameron M, Mercer BA, Hodder P, Roush WR, Ayad NG. Identification of small molecule inhibitors of Wee1 degradation and mitotic entry. Probe Reports from the NIH Molecular Libraries Program. Bethesda (MD) 2010; PMID:23762957
  • Penas C, Ramachandran V, Simanski S, Lee C, Madoux F, Rahaim RJ, Chauhan R, Barnaby O, Schurer S, Hodder P, et al. Casein kinase 1delta-dependent Wee1 protein degradation. J Biolog Chem 2014; 289:18893-903; PMID:24817118; http://dx.doi.org/10.1074/jbc.M114.547661
  • Bibian M, Rahaim RJ, Choi JY, Noguchi Y, Schurer S, Chen W, Nakanishi S, Licht K, Rosenberg LH, Li L, et al. Development of highly selective casein kinase 1delta/1epsilon (CK1delta/epsilon) inhibitors with potent antiproliferative properties. Bioorg Med Chem Lett 2013; 23:4374-80; PMID:23787102; http://dx.doi.org/10.1016/j.bmcl.2013.05.075
  • Reed SI. Ratchets and clocks: the cell cycle, ubiquitylation and protein turnover. Nat Rev Mol Cell Biol 2003; 4:855-64; PMID:14625536; http://dx.doi.org/10.1038/nrm1246
  • Watanabe N, Broome M, Hunter T. Regulation of the human WEE1Hu CDK tyrosine 15-kinase during the cell cycle. EMBO J 1995; 14:1878-91; PMID:7743995
  • Watanabe N, Arai H, Iwasaki J, Shiina M, Ogata K, Hunter T, Osada H. Cyclin-dependent kinase (CDK) phosphorylation destabilizes somatic Wee1 via multiple pathways. Proc Natl Acad Sci U S A 2005; 102:11663-8; PMID:16085715; http://dx.doi.org/10.1073/pnas.0500410102
  • Owens L, Simanski S, Squire C, Smith A, Cartzendafner J, Cavett V, Caldwell Busby J, Sato T, Ayad NG. Activation domain-dependent degradation of somatic Wee1 kinase. J Biol Chem 2010; 285:6761-9; PMID:20038582; http://dx.doi.org/10.1074/jbc.M109.093237
  • Enders GH. Gauchos and ochos: a Wee1-Cdk tango regulating mitotic entry. Cell Div 2010; 5:12; PMID:20465818; http://dx.doi.org/10.1186/1747-1028-5-12
  • Tighe A, Ray-Sinha A, Staples OD, Taylor SS. GSK-3 inhibitors induce chromosome instability. BMC Cell Biol 2007; 8:34; PMID:17697341; http://dx.doi.org/10.1186/1471-2121-8-34
  • Korur S, Huber RM, Sivasankaran B, Petrich M, Morin P, Jr., Hemmings BA, Merlo A, Lino MM. GSK3beta regulates differentiation and growth arrest in glioblastoma. PloS One 2009; 4:e7443; PMID:19823589; http://dx.doi.org/10.1371/journal.pone.0007443
  • Pizarro JG, Folch J, Esparza JL, Jordan J, Pallas M, Camins A. A molecular study of pathways involved in the inhibition of cell proliferation in neuroblastoma B65 cells by the GSK-3 inhibitors lithium and SB-415286. J Cell Mol Med 2009; 13:3906-17; PMID:18624766; http://dx.doi.org/10.1111/j.1582-4934.2008.00389.x
  • Lee YC, Liao PC, Liou YC, Hsiao M, Huang CY, Lu PJ. Glycogen synthase kinase 3 beta activity is required for hBora/Aurora A-mediated mitotic entry. Cell Cycle 2013; 12:953-60; PMID:23442801; http://dx.doi.org/10.4161/cc.23945
  • Smith A, Simanski S, Fallahi M, Ayad NG. Redundant ubiquitin ligase activities regulate wee1 degradation and mitotic entry. Cell Cycle 2007; 6:2795-9; PMID:18032919; http://dx.doi.org/10.4161/cc.6.22.4919
  • Watanabe N, Arai H, Nishihara Y, Taniguchi M, Watanabe N, Hunter T, Osada H. M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP. Proc Nat Acad Sci U S A 2004; 101:4419-24; PMID:15070733; http://dx.doi.org/10.1073/pnas.0307700101
  • Linding R, Jensen LJ, Ostheimer GJ, van Vugt MA, Jorgensen C, Miron IM, Diella F, Colwill K, Taylor L, Elder K, et al. Systematic discovery of in vivo phosphorylation networks. Cell 2007; 129:1415-26; PMID:17570479; http://dx.doi.org/10.1016/j.cell.2007.05.052
  • Frame S, Cohen P. GSK3 takes centre stage more than 20 years after its discovery. Biochem J 2001; 359:1-16; PMID:11563964; http://dx.doi.org/10.1042/0264-6021:3590001
  • Takahashi-Yanaga F. Activator or inhibitor? GSK-3 as a new drug target. Biochem Pharmacol 2013; 86:191-9; PMID:23643839; http://dx.doi.org/10.1016/j.bcp.2013.04.022
  • Clevers H. Wnt/beta-catenin signaling in development and disease. Cell 2006; 127:469-80; PMID:17081971; http://dx.doi.org/10.1016/j.cell.2006.10.018
  • MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009; 17:9-26; PMID:19619488; http://dx.doi.org/10.1016/j.devcel.2009.06.016
  • Wu R, Hendrix-Lucas N, Kuick R, Zhai Y, Schwartz DR, Akyol A, Hanash S, Misek DE, Katabuchi H, Williams BO, et al. Mouse model of human ovarian endometrioid adenocarcinoma based on somatic defects in the Wnt/beta-catenin and PI3K/Pten signaling pathways. Cancer Cell 2007; 11:321-33; PMID:17418409; http://dx.doi.org/10.1016/j.ccr.2007.02.016
  • Adachi K, Mirzadeh Z, Sakaguchi M, Yamashita T, Nikolcheva T, Gotoh Y, Peltz G, Gong L, Kawase T, Alvarez-Buylla A, et al. Beta-catenin signaling promotes proliferation of progenitor cells in the adult mouse subventricular zone. Stem Cells 2007; 25:2827-36; PMID:17673525; http://dx.doi.org/10.1634/stemcells.2007-0177
  • Mao Y, Ge X, Frank CL, Madison JM, Koehler AN, Doud MK, Tassa C, Berry EM, Soda T, Singh KK, et al. Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell 2009; 136:1017-31; PMID:19303846; http://dx.doi.org/10.1016/j.cell.2008.12.044
  • Wrobel CN, Mutch CA, Swaminathan S, Taketo MM, Chenn A. Persistent expression of stabilized -catenin delays maturation of radial glial cells into intermediate progenitors. Dev Biol 2007; 309:285-97; PMID:17706960; http://dx.doi.org/10.1016/j.ydbio.2007.07.013
  • Lorenz A, Deutschmann M, Ahlfeld J, Prix C, Koch A, Smits R, Fodde R, Kretzschmar HA, Schuller U. Severe alterations of cerebellar cortical development after constitutive activation of Wnt signaling in granule neuron precursors. Mol Cell Biol 2011; 31:3326-38; PMID:21690300; http://dx.doi.org/10.1128/MCB.05718-11
  • Poschl J, Grammel D, Dorostkar MM, Kretzschmar HA, Schuller U. Constitutive activation of beta-catenin in neural progenitors results in disrupted proliferation and migration of neurons within the central nervous system. Dev Biol 2013; 374:319-32; PMID:23237957; http://dx.doi.org/10.1016/j.ydbio.2012.12.001
  • Wen J, Yang HB, Zhou B, Lou HF, Duan S. beta-Catenin is critical for cerebellar foliation and lamination. PloS One 2013; 8:e64451; PMID:23691221; http://dx.doi.org/10.1371/journal.pone.0064451
  • Hydbring P, Larsson LG. Cdk2: a key regulator of the senescence control function of Myc. Aging 2010; 2:244-50; PMID:20445224
  • Knoepfler PS, Kenney AM. Neural precursor cycling at sonic speed: N-Myc pedals, GSK-3 brakes. Cell Cycle 2006; 5:47-52; PMID:16322694; http://dx.doi.org/10.4161/cc.5.1.2292
  • Ling H, Samarasinghe S, Kulasiri D. Computational experiments reveal the efficacy of targeting CDK2 and CKIs for significantly lowering cellular senescence bar for potential cancer treatment. Biosystems 2013; 111:71-82; PMID:23254306; http://dx.doi.org/10.1016/j.biosystems.2012.12.001
  • Atkins RJ, Stylli SS, Luwor RB, Kaye AH, Hovens CM. Glycogen synthase kinase-3beta (GSK-3beta) and its dysregulation in glioblastoma multiforme. J Clin Neurosci 2013; 20:1185-92; PMID:23768967; http://dx.doi.org/10.1016/j.jocn.2013.02.003
  • Qu Z, Sun D, Young W. Lithium promotes neural precursor cell proliferation: evidence for the involvement of the non-canonical GSK-3beta-NF-AT signaling. Cell Biosc 2011; 1:18; PMID:21711903; http://dx.doi.org/10.1186/2045-3701-1-18
  • Vidal F, de Araujo WM, Cruz AL, Tanaka MN, Viola JP, Morgado-Diaz JA. Lithium reduces tumorigenic potential in response to EGF signaling in human colorectal cancer cells. Int J Oncol 2011; 38:1365-73; PMID:21369697
  • Sun A, Shanmugam I, Song J, Terranova PF, Thrasher JB, Li B. Lithium suppresses cell proliferation by interrupting E2F-DNA interaction and subsequently reducing S-phase gene expression in prostate cancer. Prostate 2007; 67:976-88; PMID:17440966; http://dx.doi.org/10.1002/pros.20586
  • Nowicki MO, Dmitrieva N, Stein AM, Cutter JL, Godlewski J, Saeki Y, Nita M, Berens ME, Sander LM, Newton HB, et al. Lithium inhibits invasion of glioma cells; possible involvement of glycogen synthase kinase-3. Neuro-Oncol 2008; 10:690-9; PMID:18715951; http://dx.doi.org/10.1215/15228517-2008-041
  • Madoux F, Mishra J, Mercer BA, Ayad N, Roush W, Hodder P, Rosen HR. Small molecule inhibitors of Wee1 degradation and mitotic entry. Probe Reports from the NIH Molecular Libraries Program. Bethesda (MD), 2010; PMID:21735595

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.