920
Views
9
CrossRef citations to date
0
Altmetric
EXTRA VIEWS

A spatiotemporal characterization of the effect of p53 phosphorylation on its interaction with MDM2

, , , &
Pages 179-188 | Received 07 Oct 2014, Accepted 13 Nov 2014, Published online: 21 Jan 2015

References

  • Tarrant MK, Cole PA. The chemical biology of protein phosphorylation. Annu Rev Biochem 2009; 78:797-825; PMID:19489734; http://dx.doi.org/10.1146/annurev.biochem.78.070907.103047
  • Swarup G. Regulation of cellular and molecular functions by protein phosphorylation. Resonance 1998; 3:70-8; http://dx.doi.org/10.1007/BF02841424
  • Shen K, Hines AC, Schwarzer D, Pickin KA, Cole PA. Protein kinase structure and function analysis with chemical tools. Biochim Biophys Acta 2005; 1754:65-78; PMID:16213197; http://dx.doi.org/10.1016/j.bbapap.2005.08.020
  • Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000; 408:307-10; PMID:11099028; http://dx.doi.org/10.1038/35042675
  • Brown CJ, Lain S, Verma CS, Fersht AR, Lane DP. Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer 2009; 9:862-73; PMID:19935675; http://dx.doi.org/10.1038/nrc2763
  • Lane DP, Hupp TR. Drug discovery and p53. Drug Discov Today 2003; 8:347-55; PMID:12681938; http://dx.doi.org/10.1016/S1359-6446(03)02669-2
  • Momand J, Wu H-H, Dasgupta G. MDM2—master regulator of the p53 tumor suppressor protein. Gene 2000; 242:15-29; PMID:10721693; http://dx.doi.org/10.1016/S0378-1119(99)00487-4
  • Shmueli A, Oren M. Regulation of p53 by Mdm2: fate is in the numbers. Mol Cell 2004; 13:4-5; PMID:14731389; http://dx.doi.org/10.1016/S1097-2765(03)00529-X
  • Kruse JP, Gu W. SnapShot: p53 posttranslational modifications. Cell 2008; 133:930-30 e1; PMID:18510935; http://dx.doi.org/10.1016/j.cell.2008.05.020
  • Loughery J, 10 M. Switching on p53: an essential role for protein phosphorylation. BioDiscovery 2013; 1:8-20
  • Alarcon-Vargas D, Ronai ZE. p53-Mdm2-the affair that never ends. Carcinogenesis 2002; 23:541-7; PMID:11960904; http://dx.doi.org/10.1093/carcin/23.4.541
  • Appella E, Anderson CW. Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 2001; 268:2764-72; PMID:11358490; http://dx.doi.org/10.1046/j.1432-1327.2001.02225.x
  • Craig AL, Burch L, Vojtesek B, Mikutowska J, Thompson A, Hupp TR. Novel phosphorylation sites of human tumour suppressor protein p53 at Ser20 and Thr18 that disrupt the binding of mdm2 (mouse double minute 2) protein are modified in human cancers. Biochem J 1999; 342 (Pt 1):133-41; PMID:10432310; http://dx.doi.org/10.1042/0264-6021:3420133
  • Dumaz N, Milne DM, Jardine LJ, Meek DW. Critical roles for the serine 20, but not the serine 15, phosphorylation site and for the polyproline domain in regulating p53 turnover. Biochem J 2001; 359:459-64; PMID:11583595; http://dx.doi.org/10.1042/0264-6021:3590459
  • Sakaguchi K, Saito S, Higashimoto Y, Roy S, Anderson CW, Appella E. Damage-mediated phosphorylation of human p53 threonine 18 through a cascade mediated by a casein 1-like kinase. Effect on Mdm2 binding. J Biol Chem 2000; 275:9278-83; PMID:10734067; http://dx.doi.org/10.1074/jbc.275.13.9278
  • Cordenonsi M, Montagner M, Adorno M, Zacchigna L, Martello G, Mamidi A, Soligo S, Dupont S, Piccolo S. Integration of TGF-beta and Ras/MAPK signaling through p53 phosphorylation. Science 2007; 315:840-3; PMID:17234915; http://dx.doi.org/10.1126/science.1135961
  • Maclaine NJ, Hupp TR. The regulation of p53 by phosphorylation: a model for how distinct signals integrate into the p53 pathway. Aging 2009; 1:490-502; PMID:20157532
  • Lee HJ, Srinivasan D, Coomber D, Lane DP, Verma CS. Modulation of the p53-MDM2 interaction by phosphorylation of Thr18: a computational study. Cell Cycle 2007; 6:2604-11; PMID:17957142; http://dx.doi.org/10.4161/cc.6.21.4923
  • Lai Z, Auger KR, Manubay CM, Copeland RA. Thermodynamics of p53 binding to hdm2(1-126): effects of phosphorylation and p53 peptide length. Arch Biochem Biophys 2000; 381:278-84; PMID:11032416; http://dx.doi.org/10.1006/abbi.2000.1998
  • Dumaz N, Meek DW. Serine 15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. EMBO J 1999; 18:7002-10; PMID:10601022; http://dx.doi.org/10.1093/emboj/18.24.7002
  • Popowicz GM, Czarna A, Holak TA. Structure of the human Mdmx protein bound to the p53 tumor suppressor transactivation domain. Cell Cycle 2008; 7:2441-3; PMID:18677113; http://dx.doi.org/10.4161/cc.6365
  • Schon O, Friedler A, Bycroft M, Freund SM, Fersht AR. Molecular mechanism of the interaction between MDM2 and p53. J Mol Biol 2002; 323:491-501; PMID:12381304; http://dx.doi.org/10.1016/S0022-2836(02)00852-5
  • Li C, Pazgier M, Li C, Yuan W, Liu M, Wei G, Lu WY, Lu W. Systematic mutational analysis of peptide inhibition of the p53-MDM2/MDMX interactions. J Mol Biol 2010; 398:200-13; PMID:20226197; http://dx.doi.org/10.1016/j.jmb.2010.03.005
  • Brown CJ, Srinivasan D, Jun LH, Coomber D, Verma CS, Lane DP. The electrostatic surface of MDM2 modulates the specificity of its interaction with phosphorylated and unphosphorylated p53 peptides. Cell Cycle 2008; 7:608-10; PMID:18256546; http://dx.doi.org/10.4161/cc.7.5.5488
  • Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD. Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc Natl Acad Sci U S A 1999; 96:13777-82; PMID:10570149; http://dx.doi.org/10.1073/pnas.96.24.13777
  • Chehab NH, Malikzay A, Appel M, Halazonetis TD. Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev 2000; 14:278-88; PMID:10673500
  • Shieh SY, Ahn J, Tamai K, Taya Y, Prives C. The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 2000; 14:289-300; PMID:10673501
  • Gilson MK, Given JA, Bush BL, McCammon JA. The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys J 1997; 72:1047-69; PMID:9138555; http://dx.doi.org/10.1016/S0006-3495(97)78756-3
  • Stefan H, Outi MHS-A, Bingding H, Friedrich FR, Gabriele C, Rebecca CW. Computational approaches to identifying and characterizing protein binding sites for ligand design. J Mol Recognit 2010; 23:209-19; PMID:19746440
  • Gilson MK, Zhou HX. Calculation of protein-ligand binding affinities. Annu Rev Biophys Biomol Struct 2007; 36:21-42; PMID:17201676; http://dx.doi.org/10.1146/annurev.biophys.36.040306.132550
  • Copeland RA, Pompliano DL, Meek TD. Drug-target residence time and its implications for lead optimization. Nat Rev Drug Discov 2006; 5:730-9; PMID:16888652; http://dx.doi.org/10.1038/nrd2082
  • Zhang R, Monsma F. The importance of drug-target residence time. Curr Opin Drug Discov Devel 2009; 12:488-96; PMID:19562645
  • Tummino PJ, Copeland RA. Residence time of receptor-ligand complexes and its effect on biological function. Biochemistry 2008; 47:5481-92; PMID:18412369; http://dx.doi.org/10.1021/bi8002023
  • Copeland RA. The dynamics of drug-target interactions: drug-target residence time and its impact on efficacy and safety. Expert Opin Drug Discov 2010; 5:305-10; PMID:22823083; http://dx.doi.org/10.1517/17460441003677725
  • Lu H, Tonge PJ. Drug-target residence time: critical information for lead optimization. Curr Opin Chem Biol 2010; 14:467-74; PMID:20663707; http://dx.doi.org/10.1016/j.cbpa.2010.06.176
  • ElSawy KM, Twarock R, Lane DP, Verma CS, Caves LSD. Characterization of the ligand receptor encounter complex and its potential for in silico kinetics-based drug development. J Chem Theory Comput 2012; 8:314-21; http://dx.doi.org/10.1021/ct200560w
  • ElSawy KM, Verma CS, Joseph TL, Lane DP, Twarock R, Caves LS. On the interaction mechanisms of a p53 peptide and nutlin with the MDM2 and MDMX proteins: a Brownian dynamics study. Cell Cycle 2013; 12:394-404; PMID:23324352; http://dx.doi.org/10.4161/cc.23511
  • ElSawy KM, Verma CS, Lane DP, Caves LS. On the origin of the stereoselective affinity of Nutlin-3 geometrical isomers for the MDM2 protein. Cell Cycle 2013; 12:3727-35; PMID:24270847; http://dx.doi.org/10.4161/cc.27273
  • Dastidar SG, Lane DP, Verma CS. Modulation of p53 binding to MDM2: computational studies reveal important roles of Tyr100. BMC Bioinformatics 2009; 10(Suppl 15):S6; PMID:19958516; http://dx.doi.org/10.1186/1471-2105-10-S15-S6
  • Joseph TL, Lane D, Verma CS. Stapled peptides in the p53 pathway: computer simulations reveal novel interactions of the staples with the target protein. Cell Cycle 2010; 9:4560-8; PMID:21088491; http://dx.doi.org/10.4161/cc.9.22.13816
  • Gabdoulline RR, Wade RC. On the protein-protein diffusional encounter complex. J Mol Recognit 1999; 12:226-34; PMID:10440993; http://dx.doi.org/10.1002/(SICI)1099-1352(199907/08)12:4%3c226::AID-JMR462%3e3.0.CO;2-P
  • Gabdoulline RR, Wade RC. Brownian dynamics simulation of protein-protein diffusional encounter. Methods 1998; 14:329-41; PMID:9571088; http://dx.doi.org/10.1006/meth.1998.0588
  • Joël J. The kinetics of protein-protein recognition. Proteins 1997; 28:153-61; http://dx.doi.org/10.1002/(SICI)1097-0134(199706)28:2%3c153::AID-PROT4%3e3.0.CO;2-G
  • Tang C, Iwahara J, Clore GM. Visualization of transient encounter complexes in protein-protein association. Nature 2006; 444:383-6; PMID:17051159; http://dx.doi.org/10.1038/nature05201
  • Suh JY, Tang C, Clore GM. Role of electrostatic interactions in transient encounter complexes in protein-protein association investigated by paramagnetic relaxation enhancement. J Am Chem Soc 2007; 129:12954-5; PMID:17918946; http://dx.doi.org/10.1021/ja0760978
  • Harel M, Spaar A, Schreiber G. Fruitful and futile encounters along the association reaction between proteins. Biophys J 2009; 96:4237-48; PMID:19450494; http://dx.doi.org/10.1016/j.bpj.2009.02.054
  • Nakamizo A, Amano T, Zhang W, Zhang XQ, Ramdas L, Liu TJ, Bekele BN, Shono T, Sasaki T, Benedict WF, et al. Phosphorylation of Thr18 and Ser20 of p53 in Ad-p53-induced apoptosis. Neuro Oncol 2008; 10:275-91; PMID:18443131; http://dx.doi.org/10.1215/15228517-2008-015
  • Amano T, Nakamizo A, Mishra SK, Gumin J, Shinojima N, Sawaya R, Lang FF. Simultaneous phosphorylation of p53 at serine 15 and 20 induces apoptosis in human glioma cells by increasing expression of pro-apoptotic genes. J Neurooncol 2009; 92:357-71; PMID:19357962; http://dx.doi.org/10.1007/s11060-009-9844-1
  • Brooks BR, Brooks ICL, Mackerell JAD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, et al. CHARMM: the biomolecular simulation program. J Comput Chem 2009; 30:1545-614; PMID:19444816; http://dx.doi.org/10.1002/jcc.21287
  • Caves LSD, Evanseck JD, Karplus M. Locally accessible conformations of proteins: multiple molecular dynamics simulations of crambin. Protein Sci 1998; 7:649-66; PMID:9541397; http://dx.doi.org/10.1002/pro.5560070314
  • ElSawy KM, Hodgson MK, Caves LSD. The physical determinants of the DNA conformational landscape: an analysis of the potential energy surface of single-strand dinucleotides in the conformational space of duplex DNA. Nucl Acids Res 2005; 33:5749-62; PMID:16214808; http://dx.doi.org/10.1093/nar/gki888
  • Gabdoulline RR, Wade RC. Simulation of the diffusional association of barnase and barstar. Biophys J 1997; 72:1917-29; PMID:9129797; http://dx.doi.org/10.1016/S0006-3495(97)78838-6
  • Donald LE, McCammon JA. Brownian dynamics with hydrodynamic interactions. J Chem Phys 1978; 69:1352-60; http://dx.doi.org/10.1063/1.436761
  • García de la Torre J, Huertas ML, Carrasco B. calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys J 2000; 78:719-30; http://dx.doi.org/10.1016/S0006-3495(00)76630-6
  • Im W, Beglov D, Roux B. Continuum solvation model: computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation. Comput Phys Commun 1998; 111:59-75; http://dx.doi.org/10.1016/S0010-4655(98)00016-2
  • Coalson R, Beck TL. Numerical methods for solving poisson and poisson-boltzmann type equations. In: von Rague Schleyer P, ed. Encyclopedia of Computational Chemistry. New York: John-Wiley, 1998:2086-100.
  • Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 2001; 98:10037-41; PMID:11517324; http://dx.doi.org/10.1073/pnas.181342398
  • Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, Klebe G, Baker NA. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res 2007; 35:W522-W5; PMID:17488841; http://dx.doi.org/10.1093/nar/gkm276
  • Czodrowski P, Dramburg I, Sotriffer CA, Klebe G. Development, validation, and application of adapted PEOE charges to estimate pKa values of functional groups in protein–ligand complexes. Proteins 2006; 65:424-37; http://dx.doi.org/10.1002/prot.21110
  • Gabdoulline RR, Wade RC. Protein-protein association: investigation of factors influencing association rates by Brownian dynamics simulations. J Mol Biol 2001; 306:1139-55; PMID:11237623; http://dx.doi.org/10.1006/jmbi.2000.4404
  • Elcock AH, Gabdoulline RR, Wade RC, McCammon JA. Computer simulation of protein-protein association kinetics: acetylcholinesterase-fasciculin. J Mol Biol 1999; 291:149-62; PMID:10438612; http://dx.doi.org/10.1006/jmbi.1999.2919
  • Gabdoulline RR, Wade RC. Effective charges for macromolecules in solvent. J Phys Chem 1996; 100:3868-78; http://dx.doi.org/10.1021/jp953109f

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.