2,072
Views
19
CrossRef citations to date
0
Altmetric
EXTRA VIEWS

Cell cycle control (and more) by programmed −1 ribosomal frameshifting: implications for disease and therapeutics

&
Pages 172-178 | Received 07 Oct 2014, Accepted 14 Nov 2014, Published online: 21 Jan 2015

References

  • Dinman JD. Mechanisms and implications of programmed translational frameshifting. Wiley InterdiscipRevRNA 2012; 3:661-73; PMID:22715123; http://dx.doi.org/10.1002/wrna.1126
  • Antonov I, Coakley A, Atkins JF, Baranov P V, Borodovsky M. Identification of the nature of reading frame transitions observed in prokaryotic genomes. Nucleic Acids Res 2013; 41:6514-30; PMID:23649834; http://dx.doi.org/10.1093/nar/gkt274
  • Namy O, Rousset JP, Napthine S, Brierley I. Reprogrammed genetic decoding in cellular gene expression. MolCell 2004; 13:157-68; PMID:14759362
  • Urbonavicius J, Stahl G, Durand JM, Ben Salem SN, Qian Q, Farabaugh PJ, Bjork GR. Transfer RNA modifications that alter +1 frameshifting in general fail to affect −1 frameshifting. RNA 2003; 9:760-8; PMID:12756333; http://dx.doi.org/10.1261/rna.5210803
  • Steitz TA. On the structural basis of peptide-bond formation and antibiotic resistance from atomic structures of the large ribosomal subunit. FEBS Lett 2005; 579:955-8; PMID:15680981; http://dx.doi.org/10.1016/j.febslet.2004.11.053
  • Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 2000; 407:340-8; PMID:11014183; http://dx.doi.org/10.1038/35030019
  • Pestova T V, Kolupaeva VG, Lomakin IB, Pilipenko E V, Shatsky IN, Agol VI, Hellen CU. Molecular mechanisms of translation initiation in eukaryotes. Proc Nat lAcad Sci USA 2001; 98:7029-36.
  • Sulima SO, Gülay SP, Anjos M, Patchett S, Meskauskas A, Johnson AW, Dinman JD. Eukaryotic rpL10 drives ribosomal rotation. Nucleic Acids Res 2014; 42:2049-63; PMID:24214990; http://dx.doi.org/10.1093/nar/gkt1107
  • Bertram G, Innes S, Minella O, Richardson JP, Stansfield I. Endless possibilities: translation termination and stop codon recognition. Microbiology-Uk 2001; 147:255-69; PMID:11158343
  • Jacks T, Varmus HE. Expression of the Rous Sarcoma Virus pol gene by ribosomal frameshifting. Science 1985; 230:1237-42; PMID:2416054; http://dx.doi.org/10.1126/science.2416054
  • Craigen WJ, Cook RG, Tate WP, Caskey CT. Bacterial peptide chain release factors: conserved primary structure and possible frameshift regulation of release factor 2. Proc Natl Acad Sci USA 1985; 82:3616-20; PMID:3889910
  • Clare JJ, Belcourt M, Farabaugh PJ. Efficient translational frameshifting occurs within a conserved sequence of the overlap between the two genes of a yeast Ty1 transposon. Proc Nat lAcad Sc iUSA 1988; 85:6816-20; PMID:2842793; http://dx.doi.org/10.1073/pnas.85.18.6816
  • Tang CK, Draper DE. Unusual mRNA pseudoknot structure is recognized by a protein translational repressor. Cell 1989; 57:531-6; PMID:2470510; http://dx.doi.org/10.1016/0092-8674(89)90123-2
  • Brierley I, Boursnell ME, Binns MM, Bilimoria B, Blok VC, Brown TD, Inglis SC. An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO J 1987; 6:3779-85; PMID:3428275
  • Baranov PV, Gurvich OL, Fayet O, Prere MF, Miller WA, Gesteland RF, Atkins JF, Giddings MC. RECODE: a database of frameshifting, bypassing and codon redefinition utilized for gene expression. Nucleic Acids Res 2001; 29:264-7; PMID:11125107; http://dx.doi.org/10.1093/nar/29.1.264
  • Bekaert M, Firth AEA, Zhang Y, Gladyshev VN, Atkins JF, Baranov PV. Recode-2: new design, new search tools, and many more genes. Nucleic Acids Res 2010; 38:D69-74; PMID:19783826; http://dx.doi.org/10.1093/nar/gkp788
  • Girnary R, King L, Robinson L, Elston R, Brierley I. Structure-function analysis of the ribosomal frameshifting signal of two human immunodeficiency virus type 1 isolates with increased resistance to viral protease inhibitors. J Gen Virol 2007; 88:226-35; PMID:17170455; http://dx.doi.org/10.1099/vir.0.82064-0
  • Kollmus H, Hentze MW, Hauser H. Regulated ribosomal frameshifting by an RNA-protein interaction. RNA 1996; 2:316-23; PMID:8634912
  • Yu CH, Noteborn MH, Pleij CW, Olsthoorn RC. Stem-loop structures can effectively substitute for an RNA pseudoknot in -1 ribosomal frameshifting. Nucleic Acids Res 2011; 39:8952-9; PMID:21803791; http://dx.doi.org/10.1093/nar/gkr579
  • Su L, Chen L, Egli M, Berger JM, Rich A. Minor groove RNA triplex in the crystal structure of a ribosomal frameshifting viral pseudoknot. Nat Struct Biol 1999; 6:285-92; PMID:10074948; http://dx.doi.org/10.1038/6722
  • Clark MB, Janicke M, Gottesbuhren U, Kleffmann T, Legge M, Poole ES, Tate WP. Mammalian gene PEG10 expresses two reading frames by high efficiency -1 frameshifting in embryonic-associated tissues. J Biol Chem 2007; 282:37359-69; PMID:17942406; http://dx.doi.org/10.1074/jbc.M705676200
  • Ono R, Kobayashi S, Wagatsuma H, Aisaka K, Kohda T, Kaneko-Ishino T, Ishino F. A retrotransposon-derived gene, PEG10, is a novel imprinted gene located on human chromosome 7q21. Genomics 2001; 73:232-7; PMID:11318613; http://dx.doi.org/10.1006/geno.2001.6494
  • Manktelow E, Shigemoto K, Brierley I. Characterization of the frameshift signal of Edr, a mammalian example of programmed -1 ribosomal frameshifting. Nucleic Acids Res 2005; 33:1553-63; PMID:15767280; http://dx.doi.org/10.1093/nar/gki299
  • Dinman JD, Wickner RRB. Translational maintenance of frame: mutants of Saccharomyces cerevisiae with altered -1 ribosomal frameshifting efficiencies. Genetics 1994; 136:75-86; PMID:8138178
  • Baranov P V, Gesteland RF, Atkins JF. Recoding: translational bifurcations in gene expression. Gene 2002; 286:187-201; PMID:11943474; http://dx.doi.org/10.1016/S0378-1119(02)00423-7
  • Michel AM, Choudhury KR, Firth AE, Ingolia NT, Atkins JF, Baranov PV. Observation of dually decoded regions of the human genome using ribosome profiling data. Genome Res 2012; 22:2219-29; PMID:22593554; http://dx.doi.org/10.1101/gr.133249.111
  • Lyngsø RB, Pedersen CNS. Pseudoknots in RNA secondary structures. In Proc Fourth Annu Int Conf Comput Mol Biol 2000; 201-9.
  • Hammell AB, Taylor RLC, Peltz SW, Dinman JD. Identification of putative programmed -1 ribosomal frameshift signals in large DNA databases. Genome Res 1999; 9:417-27; PMID:10330121
  • Jacobs JL, Belew AT, Rakauskaite R, Dinman JD. Identification of functional, endogenous programmed -1 ribosomal frameshift signals in the genome of Saccharomyces cerevisiae. Nucleic Acids Res 2007; 35:165-74; PMID:17158156; http://dx.doi.org/10.1093/nar/gkl1033
  • Belew AT, Hepler NL, Jacobs JL, Dinman JD. PRFdb: a database of computationally predicted eukaryotic programmed -1 ribosomal frameshift signals. BMC Genomics 2008; 9:339; PMID:18637175; http://dx.doi.org/10.1186/1471-2164-9-339
  • Plant EP, Wang P, Jacobs JL, Dinman JD. A programmed -1 ribosomal frameshift signal can function as a cis-acting mRNA destabilizing element. Nucleic Acids Res 2004; 32:784-90; PMID:14762205; http://dx.doi.org/10.1093/nar/gkh256
  • Belew AT, Advani VM, Dinman JD. Endogenous ribosomal frameshift signals operate as mRNA destabilizing elements through at least two molecular pathways in yeast. Nucleic Acids Res 2010; 39:2799-808; PMID:21109528; http://dx.doi.org/10.1093/nar/gkq1220
  • Belew AT, Meskauskas A, Musalgaonkar S, Advani VM, Sulima SO, Kasprzak, WK, Shapiro, BA, Dinman JD. Ribosomal frameshifting in the CCR5 mRNA is regulated by miRNAs and the NMD pathway. Nature 2014; 512:265-9; PMID:25043019; http://dx.doi.org/10.1038/nature13429
  • Dinman JD, Wickner RB. Translational maintenance of frame:  mutants of Saccharomyces cerevisiae with altered -1 ribosomal frameshifting efficiencies. Genetics 1994; 136:75-86; PMID:8138178
  • Dinman JD, O’Connor M. Mutants that affect recoding. In: Atkins JF, Gesteland RF, editors. Recoding: Expansion of Decoding Rules Enriches Gene Expression. New York, Dordrecht, Heidelberg, London.: Springer; 2010. page 321-44.
  • Lundblad V, Morris DK. Programmed translational frameshifting in a gene required for yeast telomere replication. Curr Biol 1997; 7:969-76; PMID:9382847; http://dx.doi.org/10.1016/S0960-9822(06)00416-7
  • Dahlseid JN, Lew-Smith J, Lelivelt MJ, Enomoto S, Ford A, Desruisseaux M, McClellan M, Lue N, Culbertson MR, Berman J. mRNAs encoding telomerase components and regulators are controlled by UPF genes in Saccharomyces cerevisiae. EukaryotCell 2003; 2:134-42; PMID:12582130
  • Enomoto S, Glowczewski L, Lew-Smith J, Berman JG. Telomere cap components influence the rate of senescence in telomerase-deficient yeast cells. Mol Cell Biol 2004; 24:837-45; PMID:14701754; http://dx.doi.org/10.1128/MCB.24.2.837-845.2004
  • Lew JE, Enomoto S, Berman J. Telomere length regulation and telomeric chromatin require the nonsense- mediated mRNA decay pathway. Mo lCell Biol 1998; 18:6121-30; PMID:9742129
  • Teo SH, Jackson SP. Telomerase subunit overexpression suppresses telomere-specific checkpoint activation in the yeast yku80 mutant. EMBO Rep 2001; 2:197-202; PMID:11266360; http://dx.doi.org/10.1093/embo-reports/kve038
  • Mozdy AD, Cech TR. Low abundance of telomerase in yeast: implications for telomerase haploinsufficiency. RNA 2006; 12:1721-37; PMID:16894218; http://dx.doi.org/10.1261/rna.134706
  • Cristofari G, Lingner J. Telomere length homeostasis requires that telomerase levels are limiting. EMBO J 2006; 25:565-74; PMID:16424902; http://dx.doi.org/10.1038/sj.emboj.7600952
  • Shore D, Bianchi A. Telomere length regulation: coupling DNA end processing to feedback regulation of telomerase. EMBO J 2009; 28:2309-22; PMID:19629031; http://dx.doi.org/10.1038/emboj.2009.195
  • Pfeiffer V, Lingner J. Replication of telomeres and the regulation of telomerase. Cold Spring Harb. Perspect. Biol. 2013; 5:a010405; PMID:23543032 doi: 10.1101/cshperspect.a010405
  • Li Y, Treffers EE, Napthine S, Tas A, Zhu L, Sun Z, Bell S, Mark BL, van Veelen PA, van Hemert MJ, et al. Transactivation of programmed ribosomal frameshifting by a viral protein. Proc Natl Acad Sci U S A 2014; 1-10.
  • Ballew BJ, Savage SA. Updates on the biology and management of dyskeratosis congenita and related telomere biology disorders. Expert Rev Hematol 2013; 6:327-37; PMID:23782086; http://dx.doi.org/10.1586/ehm.13.23
  • Jack K, Bellodi C, Landry DM, Niederer RO, Meskauskas A, Musalgaonkar S, Kopmar N, Krasnykh O, Dean AM, Thompson SR, et al. rRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells. Mol Cell 2011; 44:660-6; PMID:22099312; http://dx.doi.org/10.1016/j.molcel.2011.09.017
  • McCann KL, Baserga SJ. Genetics. mysterious ribosomopathies. Science 2013; cited 2014 Jan 21; 341:849-50; PMID:23970686; http://dx.doi.org/10.1126/science.1244156
  • Hekman KE, Yu GY, Brown CD, Zhu H, Du X, Gervin K, Undlien DE, Peterson A, Stevanin G, Clark HB, et al. A conserved eEF2 coding variant in SCA26 leads to loss of translational fidelity and increased susceptibility to proteostatic insult. Hum Mol Genet 2012; 21:5472-83; PMID:23001565; http://dx.doi.org/10.1093/hmg/dds392
  • Caliskan N, Katunin VI, Belardinelli R, Peske F, Rodnina MV. Programmed -1 frameshifting by kinetic partitioning during impeded translocation. Cell 2014; 157:1619-31; PMID:24949973; http://dx.doi.org/10.1016/j.cell.2014.04.041
  • Sulima SO, Patchett S, Advani VM, De Keersmaecker K, Johnson AW, Dinman JD. Bypass of the pre-60S ribosomal quality control as a pathway to oncogenesis. Proc Natl Acad Sci 2014; 111:5640-5; PMID:24706786; http://dx.doi.org/10.1073/pnas.1400247111