4,913
Views
61
CrossRef citations to date
0
Altmetric
VIEWS AND COMMENTARIES

Age associated communication between cells and matrix: a potential impact on stem cell-based tissue regeneration strategies

&
Pages 289-298 | Received 11 Jul 2014, Accepted 11 Sep 2014, Published online: 21 Jan 2015

References

  • Li J, Hansen K, Zhang Y, Dong C, Dinu C, Dzieciatkowska M, Pei M. Rejuvenation of chondrogenic potential in a young stem cell microenvironment. Biomaterials 2014; 35:642-53; PMID: 24148243; http://dx.doi.org/10.1016/j.biomaterials.2013.09.099
  • Li JT, Pei M. Cell senescence: a challenge in cartilage engineering and regeneration. Tissue Eng Part B 2012; 18:270-87; PMID: 22273114; http://dx.doi.org/10.1089/ten.TEB.2011.0583
  • Sharpless N. Hot topics in stem cells and self renewal: 2010. Aging Cell 2010; 9:457-61; PMID: 20579010; http://dx.doi.org/10.1111/j.1474-9726.2010.00592.x
  • Bajek A, Czerwinski M, Olkowska J, Gurtowska N, Kloskowski T, Drewa T. Does aging of mesenchymal stem cells limit their potential application in clinical practice? Aging Clin Exp Res 2012; 24:404-11; PMID: 22595834; http://dx.doi.org/10.3275/8424
  • Sethe S, Scutt A, Stolzing A. Aging of mesenchymal stem cells. Ageing Res Rev 2006; 5:91-116; PMID: 16310414; http://dx.doi.org/10.1016/j.arr.2005.10.001
  • Yu J, Wu X, Gimble J, Guan X, Freitas M, Bunnell B. Age related changes in mesenchymal stem cells derived from rhesus macaque bone marrow. Aging Cell 2011; 10:66-79; PMID: 20969724; http://dx.doi.org/10.1111/j.1474-9726.2010.00646.x
  • Alt E, Senst C, Murty S, Slakey D, Dupin C, Chaffin A, Kadowitz P, Izadpanah R. Aging alters tissue resident mesenchymal stem cell properties. Stem Cell Res 2012; 8:215-25; PMID: 22265741; http://dx.doi.org/10.1016/j.scr.2011.11.002
  • Efimenko A, Dzhoyashviu N, Kalinina N, Kochegura T, Akchurin R, Tkachuk V, Parfyonova Y. Adipose derived mesenchymal stromal cells from aged patients with coronary artery disease keep mesenchymal stromal cell properties but exhibit characteristics of aging and have impaired angiogenic potential. Stem Cells Transl Med 2014; 3:32-41; PMID: 24353175; http://dx.doi.org/10.5966/sctm.2013-0014
  • Choumerianou DM, Martimianaki G, Stiakaki E, Kalmanti L, Kalmanti M, Dimitriou H. Comparative study of stemness characteristics of mesenchymal cells from bone marrow of children and adults. Cytotherapy 2010; 12:881-7; PMID: 20662612; http://dx.doi.org/10.3109/14653249.2010.501790
  • Choudhery M, Kan M, Mahmood R, Mehmood A, Khan S, Riazuddin S. Bone marrow derived mesenchymal stem cells from aged mice have reduced wound healing, angiogenesis, proliferation and anti-apoptosis capabilities. Cell Biol Int 2012; 36:747-53; PMID: 22352320; http://dx.doi.org/10.1042/CBI20110183
  • Kuilman T, Peeper D. Senescence messaging secretome: SMSing cellular stress. Nat Rev Cancer 2009; 9:81-94; PMID: 19132009; http://dx.doi.org/10.1038/nrc2560
  • Campisi J, Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 2007; 8:729-40; PMID: 17667954; http://dx.doi.org/10.1038/nrm2233
  • Guang L, Boskey A, Zhu W. Age-related CXC chemokine receptor-4-deficiency impairs osteogenic differentiation potency of mouse bone marrow mesenchymal stromal stem cells. Int J Biochem Cell Biol 2013; 45:1813-20; PMID: 23742988; http://dx.doi.org/10.1016/j.biocel.2013.05.034
  • Wagner W, Bork S, Horn P, Krunic D, Walenda T, Diehlmann A, Benes V, Blake J, Huber F, Eckstein V, et al. Aging and replicative senescence have related effects on human stem and progenitor cells. PLoS One 2009; 4:e5846; PMID: 19513108; http://dx.doi.org/10.1371/journal.pone.0005846
  • Mimeault M, Batra S. Recent insights into the molecular mechanisms involved in aging and the malignant transformation of adult stem/progenitor cells and their therapeutic implications. Ageing Res Rev 2009; 8:94-112; PMID: 19114129; http://dx.doi.org/10.1016/j.arr.2008.12.001
  • Veronesi F, Torricelli P, Borsari V, Tschon M, Rimondini L, Fini M. Mesenchymal stem cells in the aging and osteoporotic population. Crit Rev Eukaryot Gene Expr 2011; 21:363-77; PMID: 22181705; http://dx.doi.org/10.1615/CritRevEukarGeneExpr.v21.i4.60
  • Lu P, Weaver V, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 2012; 196:395-406; PMID: 22351925; http://dx.doi.org/10.1083/jcb.201102147
  • Hynes R. Extracellular matrix: not just pretty fibrils. Science 2009; 326:1216-9; PMID: 19965464; http://dx.doi.org/10.1126/science.1176009
  • Fehrer C, Laschober G, Lepperdinger G. Aging of murine mesenchymal stem cells. Ann NY Acad Sci 2006; 1067:235-42; PMID: 16803992; http://dx.doi.org/10.1196/annals.1354.030
  • Labat-Robert J, Robert AM, Robert L. Aging of the extracellular matrix. Med Longevite 2012; 4:3-32; http://dx.doi.org/10.1016/j.mlong.2012.02.003
  • Sun Y, Li W, Lu Z, Chen R, Ling J, Ran Q, Jilka RL, Chen XD. Rescuing replication and osteogenesis of aged mesenchymal stem cells by exposure to a young extracellular matrix. FASEB J 2011; 25:1474-85; PMID: 21248241; http://dx.doi.org/10.1096/fj.10-161497
  • Kretlow J, Jin Y, Liu W, Zhang W, Hong T, Zhou G, Baggett L, Mikos A, Cao Y. Donor age and cell passage affects differentiation potential of murine bone marrow derived stem cells. BMC Cell Biol 2008; 9:60; PMID: 18957087; http://dx.doi.org/10.1186/1471-2121-9-60
  • Valyushina MP, Buravkova LB. Age related differences in rat multipotent mesenchymal stromal bone marrow cells. Bull Exp Biol Med 2013; 155:129-33; PMID: 23667890; http://dx.doi.org/10.1007/s10517-013-2097-1
  • Zhang Z, Teoh S, Chong M, Schantz J, Fisk N, Choolani M, Chan J. Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells. Stem Cells 2009; 27:126-37; PMID: 18832592; http://dx.doi.org/10.1634/stemcells.2008-0456
  • Stenderup K, Justensen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 2003; 22:919-26; PMID: 14678851; http://dx.doi.org/10.1016/j.bone.2003.07.005
  • Mareschi K, Ferrero I, Rustichelli D, Aschero S, Gammaitoni L, Aglietta M, Madon E, Fagioli F. Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow. J Cell Biochem 2006; 97:744-54; PMID: 16229018; http://dx.doi.org/10.1002/jcb.20681
  • Zaim M, Karaman S, Cetin G, Isik S. Donor age and long term culture affect differentiation and proliferation of human bone marrow mesenchymal stem cells. Ann Hematol 2012; 91:1175-86; PMID: 22395436; http://dx.doi.org/10.1007/s00277-012-1438-x
  • Fickert S, Bobsin U, Grob A, Hempel U, Wojciechowski C, Rentsch C, Corbeil D, Gunther K. Human mesenchymal stem cell proliferation and osteogenic differentiation during long term ex vivo cultivation is not age dependent. J Bone Mineral Metab 2011; 29:224-35; PMID: 20811759; http://dx.doi.org/10.1007/s00774-010-0215-y
  • Stolzing A, Jones E, McGonagle D, Scutt A. Age related changes in human bone marrow derived mesenchymal stem cells: consequences for cell therapy. Mech Ageing Dev 2008; 129:163-73; PMID: 18241911; http://dx.doi.org/10.1016/j.mad.2007.12.002
  • Bellantuono I, Aldahmash A, Kassem M. Aging of stromal (skeletal) stem cells and their contribution to age related bone loss. Biochim Biophys Acta 2009; 1792:364-70; PMID: 19419706; http://dx.doi.org/10.1016/j.bbadis.2009.01.008
  • Asumda FZ, Chase PB. Age related changes in rat bone marrow mesenchymal stem cell plasticity. BMC Cell Biol 2011; 12:44; PMID: 21992089; http://dx.doi.org/10.1186/1471-2121-12-44
  • Wilson A, Shehadeh L, Yu H, Webster K. Age related molecular genetic changes of murine bone marrow mesenchymal stem cells. BMC Genomics 2010; 11:229; PMID: 20374652; http://dx.doi.org/10.1186/1471-2164-11-229
  • Mueller S, Glowacki J. Age related decline in the osteogenic potential of human bone marrow cells cultured in three dimensional collagen sponges. J Cell Biochem 2001; 82:583-90; PMID: 11500936; http://dx.doi.org/10.1002/jcb.1174
  • Kanawa M, Igarashi A, Ronald V, Higashi Y, Kurihara H, Sugiyama M, Saskianti T, Pan H, Kato Y. Age dependent decrease in the chondrogenic potential of human bone marrow mesenchymal stromal cells expanded with fibroblast growth factor 2. Cytotherapy 2013; 15:1062-72; PMID: 23800732; http://dx.doi.org/10.1016/j.jcyt.2013.03.015
  • Kim M, Kim C, Choi Y, Kim M, Park C, Suh Y. Age related alterations in mesenchymal stem cells related to shift in differentiation from osteogenic to adipogenic potential: implications to age associated bone diseases and defects. Mech Ageing Dev 2012; 133:215-25; PMID: 22738657; http://dx.doi.org/10.1016/j.mad.2012.03.014
  • Katsara O, Mahaira L, Iliopoulou E, Moustaki A, Antsaklis A, Loutradis D, Stefanidis K, Baxevanis C, Papamichail M, Perez S. Effects of donor age, gender and in vitro cellular aging on the phenotypic, functional and molecular characteristics of mouse bone marrow derived mesenchymal stem cells. Stem cells Dev 2011; 20:1549-61; PMID: 21204633; http://dx.doi.org/10.1089/scd.2010.0280
  • Jiang Y, Mishima H, Sakai S, Liu Y, Ohyabu Y, Uemura T. Gene expression analysis of major lineage defining factors in human bone marrow cells: effect of aging, gender, and age related disorders. J Orthop Res 2008; 26:910-7; PMID: 18302252; http://dx.doi.org/10.1002/jor.20623
  • Kasper G, Mao L, Geissler S, Draycheva A, Trippens J, Kühnisch J, Tschirschmann M, Kaspar K, Perka C, Duda GN, et al. Insights into mesenchymal stem cell aging: involvement of antioxidant defense and actin cytoskeleton. Stem Cells 2009; 27:1288-97; PMID: 19492299; http://dx.doi.org/10.1002/stem.49
  • Raveh-Amit H, Berzsenyi S, Vas V, Ye D, Dinnyes A. Tissue resident stem cells: till death do us part. Biogerontology 2013; 14:573-90; PMID: 24085521; http://dx.doi.org/10.1007/s10522-013-9469-9
  • Pei M, Li J, Shoukry M, Zhang Y. Decellularized stem cell matrix: a novel cell expansion system for cartilage tissue engineering. Eur Cells Mater 2011; 22:333-43; PMID: 22116651
  • Lindner U, Kramer J, Behrends J, Driller B, Wendler N, Boehrnsen F, Rohwedel J, Schlenke P. Improved proliferation and differentiation capacity of human mesenchymal stromal cells cultured with basement membrane extracellular matrix proteins. Cytotherapy 2010; 12:992-1005; PMID: 20807021; http://dx.doi.org/10.3109/14653249.2010.510503
  • Conboy I, Conboy M, Wagers A, Girma E, Weissman I, Rando T. Rejuvenation of aged progenitor cells by exposure to a young system environment. Nature 2005; 433:760-4; PMID: 15716955; http://dx.doi.org/10.1038/nature03260
  • Chen X. Extracellular matrix provides an optimal niche for the maintenance and propagation of mesenchymal stem cells. Birth Defects Res (Part C) 2010; 90:45-54; PMID: 20301219; http://dx.doi.org/10.1002/bdrc.20171
  • Wagers A. The stem cell niche in regenerative medicine. Cell Stem Cell 2012; 10:362-9; PMID: 22482502; http://dx.doi.org/10.1016/j.stem.2012.02.018
  • Nakayama K, Batchelder C, Lee C, Tarantal A. Renal tissue engineering with decellularized rhesus monkeys kidneys: age related differences. Tissue Eng Part A 2011; 17:2891-901; PMID: 21902603; http://dx.doi.org/10.1089/ten.TEA.2010.0714
  • Choi H, Cho K, Kang H, Lee J, Kaeberlein M, Suh Y, Chung K, Park S. Restoration of senescent human diploid fibroblasts by modulation of the extracellular matrix. Aging cell 2011; 10:148-57; PMID: 21108727; http://dx.doi.org/10.1111/j.1474-9726.2010.00654.x
  • Ng CP, Sharif AR, Heath DE, Chow JW, Zhang CB, Chan-Park MB, Hammond PT, Chan JK, Griffith LG. Enhanced ex vivo expansion of adult mesenchymal stem cells by fetal mesenchymal stem cell ECM. Biomaterials 2014; 35:4046-57; PMID: 24560460; http://dx.doi.org/10.1016/j.biomaterials.2014.01.081
  • Kurtz A, Oh SJ. Age related changes of the extracellular matrix and stem cell maintenance. Prev Med 2012; 54 Suppl: S50-6; PMID: 22285947; http://dx.doi.org/10.1016/j.ypmed.2012.01.003
  • Gao Y, Kostrominova T, Faulkner J, Wineman A. Age related changes in mechanical properties of the epimysium in skeletal muscles of rats. J Biomech 2008; 41:465-9; PMID: 18031752; http://doi.org/10.1016/j.jbiomech.2007.09.021
  • Rosant C, Nagel M, Perot C. Aging affects passive stiffness and spindle function of the rat soleus muscle. Exp Gerontol 2007; 42:301-8; PMID: 17118602; http://dx.doi.org/10.1016/j.exger.2006.10.007
  • Wozniak M, Desai R, Solski P, Der C, Keely P. ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J Cell Biol 2003; 163:583-95; PMID: 14610060; http://doi.org/10.1083/jcb.200305010
  • Paszek M, Zahir N, Johnson K, Lakins J, Rozenberg G, Gefen A, Reinhart-King C, Margulies S, Dembo M, Boettinger D, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 2005; 8:241-54; PMID: 16169468; http://dx.doi.org/10.1016/j.ccr.2005.08.010
  • Cosgrove B, Sacco A, Gilbert P, Blau H. A home away from home: challenges and opportunities in engineering in vitro muscle satellite cell niches. Differentiation 2009; 78:185-94; PMID: 19751902; http://dx.doi.org/10.1016/j.diff.2009.08.004
  • Robert L, Labat-Robert J. Aging of connective tissues: from genetic to epigenetic mechanisms. Biogerontology 2000; 1:123-31; PMID: 11707928
  • Tottey S, Johnson SA, Crapo PM, Reing JE, Zhang L, Jiang H, Medberry CJ, Reines B, Badylak SF. The effect of source animal age upon extracellular matrix scaffold properties. Biomaterials 2011; 32:128-36; PMID: 20870285; http://dx.doi.org/10.1016/j.biomaterials.2010.09.006
  • Gershlak JR, Resnikoff JI, Sullivan KE, Williams C, Wang RM, Black LD 3rd. Mesenchymal stem cells ability to generate traction stress in response to substrate stiffness is modulated by the changing extracellular matrix composition of the heart during development. Biochem Biophys Res Commun 2013; 439:161-6; PMID: 23994333; http://dx.doi.org/10.1016/j.bbrc.2013.08.074
  • Antia M, Baneyx G, Kubow K, Vogel V. Fibronectin in aging extracellular matrix fibrils is progressively unfolded by cells and elicits an enhanced rigidity response. Farady Discuss 2008; 139:229-49; PMID: 19048998
  • Erickson I, van Veen S, Sengupta S, Kestle S, Mauck R. Cartilage matrix formation by bovine mesenchymal stem cells in three dimensional culture is age dependent. Clin Orthop Relat Res 2011; 469:2744-53; PMID: 21424832; http://dx.doi.org/10.1007/s11999-011-1869-z
  • Guilak F, Cohen D, Estes B, Gimble J, Liedtke W, Chen C. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 2009; 5:17-26; PMID: 19570510; http://dx.doi.org/10.1016/j.stem.2009.06.016
  • Lopez J, Mouw J, Weaver V. Biomechanical regulation of cell orientation and fate. Oncogene 2008; 27:6981-93; PMID: 19029939; http://dx.doi.org/10.1038/onc.2008.348
  • Xue R, Li J, Yeh Y, Yang L, Chien S. Effects of matrix elasticity and cell density on human mesenchymal stem cells differentiation. J Orthop Res 2013; 31:1360-5; PMID: 23606500; http://dx.doi.org/10.1002/jor.22374
  • Ogneva I. Cell mechanosensitivity: mechanical properites and interaction with gravitational field. BioMed Res Int 2013; 2013:598461; PMID: 23509748; http://dx.doi.org/ http://dx.doi.org/10.1155/2013/598461
  • Ingber D. Mechanobiology and diseases of mechanotransduction. Ann Med 2003; 35:564-77; PMID: 14708967; http://dx.doi.org/10.1080/07853890310016333
  • Hadjipanayi E, Mudera V, Brown R. Close dependence of fibroblast proliferation on collagen scaffold matrix stiffness. J Tissue Eng Reg Med 2009; 3:77-84; PMID: 19051218; http://dx.doi.org/10.1002/term.136
  • Wang W, Passaniti A. Extracellular matrix inhibits apoptosis and enhances endothelial cell differentiation by a NFkappaB dependent mechanism. J Cell Biochem 1999; 73:321-31; PMID: 10321832; http://dx.doi.org/10.1002/(SICI)1097-4644(19990601)73:3
  • Winer J, Janmey P, McCormick M, Funaki M. Bone marrow derived human mesenchymal stem cells become quiescent on soft substrates but remain responsive to chemical or mechanical stimuli. Tissue Eng Part A 2009; 15:147-54; PMID: 18673086; http://dx.doi.org/10.1089/ten.tea.2007.0388
  • Lee J, Abdeen A, Huang T, Kilian K. Controlling cell geometry on substrates of variable stiffness can tune the degree of osteogenesis in human mesenchymal stem cells. J Mech Behav Biomed Mater 2014; 38:209-18; pii: S1751-6161(14)00010-1; PMID: 24556045; http://dx.doi.org/10.1016/j.jmbbm.2014.01.009
  • Kolf C, Cho E, Tuan R. Mesenchymal stromal Cells. Biology of adult mesenchymal stem cells: regulation of niche, self renewal and differentiation. Arth Res Ther 2007; 9:204; PMID: 17316462; http://dx.doi.org/10.1186/ar2116
  • Engler A, Sen S, Sweeney L, Dischler D. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126:677-89; PMID: 16923388; http://dx.doi.org/10.1016/j.cell.2006.06.044
  • Trappmann B, Gautrot J, Connelly J, Strange D, Li Y, Oyen M, Stuart C, Boehm H, Li B, Vogel V, et al. Extracellular matrix tethering regulates stem cell fate. Nat Mater 2012; 11:642-9; PMID: 22635042; http://dx.doi.org/10.1038/nmat3339
  • Keung A, Juan-Pardo E, Schaffer D, Kumar S. Rho GTPases mediate the mechanosensitive lineage commitment of neural stem cells. Stem Cells 2011; 29:1886-97; PMID: 21956892; http://dx.doi.org/10.1002/stem.746
  • Sicari B, Johnson S, Siu B, Crapo P, Daly K, Jiang H, Medberry C, Tottey S, Turner N, Badylak S. The effect of source animal age upon the in vivo remodeling characteristics of an extracellular matrix scaffold. Biomaterials 2012; 33:5524-33; PMID: 22575834; http://dx.doi.org/10.1016/j.biomaterials.2012.04.017
  • Magnuson V, Young M, Schattenberg D, Mancini M, Chen D, Steffensen B, Klebe R. The alternative splicing of fibronectin pre-mRNA is altered during aging and in response to growth factors. J Biol Chem 1991; 266:14654-62; PMID: 1713586
  • Oxlund B, Ortoft G, Bruel A, Danielsen C, Bor P, Oxlund H, Uldbjerg N. Collagen concentration and biomechanical properties of samples from the lower uterine cervix in relation to age and parity in non-pregnant women. Reprod Biol Endocrinol 2010; 8:82; PMID: 20604933; http://dx.doi.org/10.1186/1477-7827-8-82
  • Singh K, Masuda K, Thonar E, An H, Cs-Szabo G. Age related changes in the extracellular matrix of nucleus puposus and annulus fibrosus of human intervertebral disc. Spine 2009; 34:10-6; PMID: 19127156; http://dx.doi.org/10.1097/BRS.0b013e31818e5ddd
  • Bradshaw A, Baicu C, Rentz T, Laer A, Bonnema D, Zile M. Age dependent alternation in fibrillar collagen content and myocardial diastolic function: role of SPARC in post synthetic procollagen processing. Am J Physiol Heart Circ Physiol 2010; 298:H614-22; PMID: 20604933; http://dx.doi.org/10.1186/1477-7827-8-82
  • Horn M, Graham H, Richards M, Clarke J, Greensmith D, Briston S, Hall M, Dibb K, Trafford A. Age related divergent remodeling of the cardiac extracellular matrix in heart failure: collagen accumulation in the young and loss in the aged. J Mol Cell Cardiol 2012; 53:82-90; PMID: 22516365; http://dx.doi.org/10.1016/j.yjmcc.2012.03.011
  • Lakatta E. Cardiovascular ageing in health sets the stage for cardiovascular disease. Heart Lung Circ 2002; 11:76-91; PMID: 16352074; http://dx.doi.org/10.1046/j.1444-2892.2002.00126.x
  • Lakatta, E. Cardiovascular aging research: the next horizons. J Am Geriatr Soc 1999; 47:613-25; PMID: 10323658
  • Debessa C, Maifrino L, de Souza R. Age related changes of the collagen network of the human heart. Mech Ageing Dev 2001; 122:1049-58; PMID: 11389923; http://dx.doi.org/10.1016/S0047-6374(01)00238-X
  • Kwak H. Aging, exercise, and the extracellular matrix in the heart. J Exerc Rehabil 2013; 9:338-47; PMID: 24278882; http://dx.doi.org/10.12965/jer.130049
  • Burgess M, McCrea J, Hedrick H. Age associated changes in cardiac matrix and integrins. Mech ageing Dev 2001; 122:1739-56; PMID: 11557277; http://dx.doi.org/10.1016/S0047-6374(01)00296-2
  • Lindsey M, Gosorn D, Squires C, Escobar P, Hendrick J, Mingoia J, Sweterlitsch S, Spinale F. Aged dependent changes in myocardial matrix metalloproteinase/tissue inhibitor of metalloproteinase profiles and fibroblast function. Cardiovasc Res 2005; 66:410-9; PMID: 15820210; http://dx.doi.org/10.1016/j.cardiores.2004.11.029
  • Robert V, Besse S, Sabri A, Silvestre J, Asayag P, Thiem N, Swynghedauw B, Delcayre C. Differential regulation of matrix metalloproteinases associated with aging and hypertension in the rat heart. Lab Invest 1997; 76:729-38; PMID: 9166291
  • Kostrominova T, Brooks S. Age related changes in structure and extracellular matrix protein expression levels in rat tendons. Age 2013; 35:2203-12; PMID: 23354684; http://dx.doi.org/10.1007/s11357-013-9514-2
  • Bonnema D, Webb C, Pennington W, Stroud R, Leonardi A, Clark L, McClure C, Finklea L, Spinale F, Zile M. Effects of age on plasma matrix metalloproteinases and tissue inhibitor of metalloproteinases. J Cardiac Failure 2007; 13:530-40; PMID: 17826643; http://dx.doi.org/10.1016/j.cardfail.2007.04.010
  • Yu T, Pang J, Wu K, Chen M, Chen C, Tsai W. Age is associated with increased activities of matrix metalloproteinase-2 and 9 in tenocytes. BMC Musculoskelet Disord 2013; 14:2; PMID: 23281803; http://dx.doi.org/10.1186/1471-2474-14-2
  • Luria A, Chu C. Articular cartilage changes in maturing athletes: new targets for joint rejuvenation. Sports Health 2014; 6:18-30; PMID: 24427438; http://dx.doi.org/10.1177/1941738113514369
  • Gentili C, Cancedda R. Cartilage and bone extracellular matrix. Curr Pharm Des 2009; 15:1334-48; PMID: 19355972
  • Tran-Khanh N, Hoemann C, McKee M, Henderson J, Buschmann M. Aged bovine chondrocytes display a diminished capacity to produce a collagen-rich, mechanically functional cartilage extracellular matrix. J Orthop Res 2005; 23:1354-62; PMID: 16048738; http://dx.doi.org/10.1016/j.orthres.2005.05.009.1100230617
  • Adkisson H, Gillis M, Davis E, Maloney W, Hruska K. In vitro generation of scaffold independent neocartilage. Clin Orthop Relat Res 2001; 391 Suppl: S280-94; PMID: 11603712; http://dx.doi.org/10.1097/00003086-200110001-00026
  • Mays P, Bishop J, Laurent G. Age related changes in the proportion of types 1 and 3 collagen. Mech Ageing Dev 1988; 45:203-12; PMID: 3266279; http://dx.doi.org/10.1016/0047-6374(88)90002-4
  • Wei X, Messner K. Age and injury dependent concnetrations of transforming growth factor b1 and proteoglycan fragments in rabbit knee joint fluid. Osteoarthritis Cartilage 1998; 6:10-8; PMID: 9616434; http://dx.doi.org/10.1053/joca.1997.0087
  • Takubo Y, Hirai T, Muro S, Kogishi K, Hosokawa M, Mishima M. Age associated changes in elastin and collagen content and the proportion of types I and III collagen in the lungs of mice. Exp Gerontol 1999; 34:353-64; PMID: 10433389; http://dx.doi.org/10.1016/S0531-5565(99)00017-0
  • Krizhanovsky V, Yon M, Dickins R, Hearn S, Simon J, Miething C, Yee H, Zender L, Lowe S. Senescence of activated stellate cells limits liver fibrosis. Cell 2008; 134:657-67; PMID: 18724938; http://dx.doi.org/10.1016/j.cell.2008.06.049
  • Huang N, Patlolla B, Abilez O, Sharma H, Rajadas J, Beygui R, Zarins C, Cooke J. A matrix micropatterning platform for cell localization and stem cell fate determination. Acta Biomater 2010; 6:4614-21; PMID: 20601236; http://dx.doi.org/10.1016/j.actbio.2010.06.033
  • Zheng H, Martin J, Duwayri Y, Falcon G, Buckwalter J. Impact of aging on rat bone marrow derived stem cell chondrogenesis. J Gerontol A Biol Sci Med Sci 2007; 62:136-48; PMID: 17339639
  • Sokocevic D, Bonenfant N, Wagner D, Borg Z, Lathrop M, Lam Y, Deng B, DeSarno M, Ashikaga T, Loi R, et al. The effect of age and emphysematous and fibrotic injury on the re-cellularization of de-cellularized lungs. Biomaterials 2013; 34:3256-69; PMID: 23384794; http://dx.doi.org/10.1016/j.biomaterials.2013.01.028
  • Murphy C, Matsiko A, Haugh M, Gleeson J, O'Brien F. Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen glycosaminoglycan scaffolds. J Mech Behav Biomed Mater 2012; 11:53-62; PMID: 22658154; http://dx.doi.org/10.1016/j.jmbbm.2011.11.009
  • Frescaline G, Bouderlique T, Huynh M, Papy-Garcia D, Courty J, Albanese P. Glycosaminoglycans mimetic potentiate the clonogenicity, proliferation, migration and differentiation properties of rat mesenchymal stem cells. Stem Cell Res 2012; 8:180-92; PMID: 22265738; http://dx.doi.org/10.1016/j.scr.2011.09.005
  • Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta 2014; 1840:2506-19; PMID: 24418517; http://dx.doi.org/10.1016/j.bbagen.2014.01.010
  • Bi Y, Stuelten C, Kilts T, Wadhwa S, Iozzo R, Robey P, Chen X, Young M. Glycobiology and extracellular matrices: extracellular matrix proteoglycans control the fate of bone marrow stromal cells. J Biol Chem 2005; 280:30481-9; PMID: 15964849; http://dx.doi.org/10.1074/jbc.M500573200
  • Manton K, Leong D, Cool S, Nurcombe V. Disruption of heparin and chondroitin sulfate signaling enhances mesenchymal stem cell derived osteogenic differentiation via bone morphogenetic protein signaling pathways. Stem Cells 2007; 25:2845-54; PMID: 17702986; http://dx.doi.org/10.1634/stemcells.2007-0065
  • Seck T, Bretz A, Krempien R, Krempien B, Ziegler R, Pfeilschifter J. Age-related changes in insulin like growth factor I and II in human femoral cortical bone: lack of correlation with bone mass. Bone 1999; 24:387-93; PMID: 10221551; http:dx.doi/org/10.1016/S8756-3282(98)00186-0
  • Wang Y, Yu X, Cohen D, Wozniak M, Yang M, Gao L, Eyckmans J, Chen C. Bone morphogenetic protein 2 induced signaling and osteogenesis is regulated by cell shape, RhoA/Rock, and cytoskeletal tension. Stem Cells Dev 2012; 21:1176-8; PMID: 21967638; http://dx.doi.org/10.1089/scd.2011.0293
  • He F, Chen X, Pei M. Reconstruction of an in vitro tissue specific microenvironment to rejuvenate synovium derived stem cells for cartilage tissue engineering. Tissue Eng Part A 2009; 15:3809-21; PMID: 19545204; http://dx.doi.org/10.1089/ten.TEA.2009.0188
  • Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24:1294-301; PMID: 16410387; http://dx.doi.org/10.1634/stemcells.2005-0342
  • Branchet MC, Boisnic S, Frances C, Lesty C, Robert L. Morphometric analysis of dermal collagen fibers in normal human skin as a function of age. Arch Gerontol Geriatr 1991; 13:1-14; PMID: 15374431
  • Labat-Robert J, Robert L. Modifications of fibronectin in age related diseases: diabetes and cancer. Arch Gerontol Geriatri 1984; 3:1-10; PMID: 6378113; http://dx.doi.org/10.1016/0167-4943(84)90011-6
  • Schachtschabel DO, Wever J. Age-related decline in the synthesis of glycosaminoglycans by cultured human fibroblasts (WI-38). Mech Age Develop 1978; 8:257-64; PMID: 703401
  • Robert L, Robert A-M, Renard G. Biological effects of hyaluronan in connective tissues, eye, skin, venous wall. Role in Aging. Pathol Biol 2010; 58:187-98; PMID: 19932571; http://dx.doi.org/10.1016/j.patbio.2009.09.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.