3,781
Views
54
CrossRef citations to date
0
Altmetric
REVIEW

Modify or die? - RNA modification defects in metazoans

&
Pages 1555-1567 | Received 30 Jun 2014, Accepted 10 Nov 2014, Published online: 26 Feb 2015

References

  • Grosjean H. Nucleic acids are not boring long polymers of only four types of nucleotides: a guided tour. In: Grosjean H, ed. DNA and RNA Modification Enzymes: Structure, Mechanism, Function and Evolution. 2009. 1-18.
  • Grosjean H, Breton M, Sirand-Pugnet P, Tardy F, Thiaucourt F, Citti C, Barré A, Yoshizawa S, Fourmy D, de Crécy-Lagard V, et al. Predicting the inimal translation apparatus: lessons from the reductive evolution of mollicutes. PLoS Genet 2014; 10:e1004363; PMID:24809820
  • Esberg A, Huang B, Johansson MJO, Byström AS. Elevated levels of two tRNA species bypass the requirement for elongator complex in transcription and exocytosis. Mol Cell 2006; 24:139-48; PMID:17018299[http://dx.doi.org/10.1016/j.molcel.2006.07.031]
  • Chen Y-T, Hims MM, Shetty RS, Mull J, Liu L, Leyne M, Slaugenhaupt SA. Loss of mouse Ikbkap, a subunit of elongator, leads to transcriptional deficits and embryonic lethality that can be rescued by human IKBKAP. Mol Cell Biol 2009; 29:736-44; PMID:19015235[http://dx.doi.org/10.1128/MCB.01313-08]
  • Towns WL, Begley TJ. Transfer RNA methytransferases and their corresponding modifications in budding yeast and humans: activities, predications, and potential roles in human health. DNA Cell Biol 2012; 31:434; PMID:22191691[http://dx.doi.org/10.1089/dna.2011.1437]
  • Suzuki T, Suzuki T. A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs. Nucleic Acids Res 2014; 42:7346-57; PMID:24831542[http://dx.doi.org/10.1093/nar/gku390]
  • Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001; 414:782-7; PMID:11742409[http://dx.doi.org/10.1038/414782a]
  • van der Hoeven F, Schimmang T, Volkmann A, Mattei MG, Kyewski B, Rüther U. Programmed cell death is affected in the novel mouse mutant Fused toes (Ft). Development 1994; 120:2601-7; PMID:7956835
  • Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JRB, Elliott KS, Lango H, Rayner NW, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007; 316:889-94; PMID: 17434869[http://dx.doi.org/ 10.1126/science.1141634]
  • Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, Erdos MR, Stringham HM, Chines PS, Jackson AU, et al. A Genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 2007; 316:1341-5; PMID:17463248[http://dx.doi.org/10.1126/science.1142382]
  • Dina C, Meyre D, Gallina S, Durand E, Körner A, Jacobson P, Carlsson LMS, Kiess W, Vatin V, Lecoeur C, et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet 2007; 39:724-6; PMID:17496892[http://dx.doi.org/10.1038/ng2048]
  • Scuteri A, Sanna S, Chen W-M, Uda M, Albai G, Strait J, Najjar S, Nagaraja R, Orrú M, Usala G, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet 2007; 3:e115; PMID:17658951
  • Liu C, Mou S, Cai Y. FTO gene variant and risk of overweight and obesity among children and adolescents: a systematic review and meta-analysis. PLoS One 2013; 8:e82133; PMID:24278475; http://dx.doi.org/10.1371/journal.pone.0082133
  • Gerken T, Girard CA, Tung Y-CL, Webby CJ, Saudek V, Hewitson KS, Yeo GSH, McDonough MA, Cunliffe S, McNeill LA, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 2007; 318:1469-72; PMID:17991826[http://dx.doi.org/10.1126/science.1151710]
  • Jia G, Yang C-G, Yang S, Jian X, Yi C, Zhou Z, He C. Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett 2008; 582:3313-9; PMID:18775698[http://dx.doi.org/10.1016/j.febslet.2008.08.019]
  • Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang Y-G, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 2011; 7:885-7; PMID:22002720[http://dx.doi.org/10.1038/nchembio.687]
  • Fu Y, Jia G, Pang X, Wang RN, Wang X, Li CJ, Smemo S, Dai Q, Bailey KA, Nóbrega MA, et al. FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA. Nat Commun 2013; 4:1798; PMID:23653210[http://dx.doi.org/10.1038/ncomms2822]
  • Zhong S, Li H, Bodi Z, Button J, Vespa L, Herzog M, Fray RG. MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Plant Cell 2008; 20:1278-88; PMID:18505803[http://dx.doi.org/10.1105/tpc.108.058883]
  • Hongay CF, Orr-Weaver TL. Drosophila Inducer of MEiosis 4 (IME4) is required for Notch signaling during oogenesis. Proc Natl Acad Sci USA 2011; 108:14855-60.
  • Bodi Z, Zhong S, Mehra S, Song J, Graham N, Li H, May S, Fray RG. Adenosine methylation in arabidopsis mRNA is associated with the 3′ end and reduced levels cause developmental defects. Front Plant Sci 2012; 3:48; PMID:22639649[http://dx.doi.org/10.3389/fpls.2012.00048]
  • Sibbritt T, Patel HR, Preiss T. Mapping and significance of the mRNA methylome. WIREs RNA 2013; 4:397-422; PMID: 23681756[http://dx.doi.org/ 10.1002/wrna.1166]
  • Fischer J, Koch L, Emmerling C, Vierkotten J, Peters T, Brüning JC, Rüther U. Inactivation of the Fto gene protects from obesity. Nature 2009; 458:894-8; PMID:19234441[http://dx.doi.org/10.1038/nature07848]
  • Gao X, Shin Y-H, Li M, Wang F, Tong Q, Zhang P. The fat mass and obesity associated gene FTO functions in the brain to regulate postnatal growth in mice. PLoS One 2010; 5:e14005; PMID:21103374; http://dx.doi.org/10.1371/journal.pone.0014005
  • Church C, Lee S, Bagg EAL, McTaggart JS, Deacon R, Gerken T, Lee A, Moir L, Mecinović J, Quwailid MM, et al. A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene. PLoS Genet 2009; 5:e1000599. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=19680540&retmode=ref&cmd=prlinks; PMID:19680540; http://dx.doi.org/10.1371/journal.pgen.1000599
  • Church C, Moir L, McMurray F, Girard C, Banks GT, Teboul L, Wells S, Brüning JC, Nolan PM, Ashcroft FM, et al. Overexpression of Fto leads to increased food intake and results in obesity. Nat Genet 2010; 42:1086-92; PMID :21076408[http://dx.doi.org/ 10.1038/ng.713]
  • Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell 2012; 149:1635-46; PMID:22608085[http://dx.doi.org/10.1016/j.cell.2012.05.003]
  • Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 2012; 485:201-6; PMID:22575960[http://dx.doi.org/10.1038/nature11112]
  • Hess ME, Hess S, Meyer KD, Verhagen LAW, Koch L, Brönneke HS, Dietrich MO, Jordan SD, Saletore Y, Elemento O, et al. The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nat Neurosci 2013; 16:1042-8; PMID:23817550; http://dx.doi.org/10.1038/nn.3449
  • Osborn DPS, Roccasecca RM, McMurray F, Hernandez-Hernandez V, Mukherjee S, Barroso I, Stemple D, Cox R, Beales PL, Christou-Savina S. Loss of FTO antagonises Wnt signaling and leads to developmental defects associated with ciliopathies. PLoS One 2014; 9:e87662; PMID:24503721
  • Ho AJ, Stein JL, Hua X, Lee S, Hibar DP, Leow AD, Dinov ID, Toga AW, Saykin AJ, Shen L, et al. A commonly carried allele of the obesity-related FTO gene is associated with reduced brain volume in the healthy elderly. Proc Natl Acad Sci USA 2010; 107:8404-9.
  • Boissel S, Reish O, Proulx K, Kawagoe-Takaki H, Sedgwick B, Yeo GSH, Meyre D, Golzio C, Molinari F, Kadhom N, et al. Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am J Hum Genet 2009; 85:106-11; PMID: 19559399[http://dx.doi.org/ 10.1016/j.ajhg.2009.06.002]
  • van den Berg L, de Waal HD-V, Han JC, Ylstra B, Eijk P, Nesterova M, Heutink P, Stratakis CA. Investigation of a patient with a partial trisomy 16q including the fat mass and obesity associated gene (FTO): fine mapping and FTO gene expression study. Am J Med Genet A 2010; 152A:630-7; PMID:20186806[http://dx.doi.org/10.1002/ajmg.a.33229]
  • Smemo S, Tena JJ, Kim K-H, Gamazon ER, Sakabe NJ, Gómez-Marín C, Aneas I, Credidio FL, Sobreira DR, Wasserman NF, et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 2014; 507:371-5; PMID:24646999[http://dx.doi.org/10.1038/nature13138]
  • Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, Walters GB, Styrkarsdottir U, Gretarsdottir S, Emilsson V, Ghosh S, et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet 2007; 39:770-5; PMID:17460697[http://dx.doi.org/10.1038/ng2043]
  • Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research, Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PIW, Chen H, Roix JJ, Kathiresan S, Hirschhorn JN, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007; 316:1331-6.
  • Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, Timpson NJ, Perry JRB, Rayner NW, Freathy RM, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 2007; 316:1336-41; PMID:17463249[http://dx.doi.org/ 10.1126/science.1142364]
  • Arragain S, Handelman SK, Forouhar F, Wei F-Y, Tomizawa K, Hunt JF, Douki T, Fontecave M, Mulliez E, Atta M. Identification of eukaryotic and prokaryotic methylthiotransferase for biosynthesis of 2-methylthio-N6-threonylcarbamoyladenosine in tRNA. J Biol Chem 2010; 285:28425-33; PMID:20584901[http://dx.doi.org/10.1074/jbc.M110.106831]
  • Wei F-Y, Suzuki T, Watanabe S, Kimura S, Kaitsuka T, Fujimura A, Matsui H, Atta M, Michiue H, Fontecave M, et al. Deficit of tRNA(Lys) modification by Cdkal1 causes the development of type 2 diabetes in mice. J Clin Invest 2011; 121:3598-608; PMID:21841312[http://dx.doi.org/10.1172/JCI58056]
  • Ohara-Imaizumi M, Yoshida M, Aoyagi K, Saito T, Okamura T, Takenaka H, Akimoto Y, Nakamichi Y, Takanashi-Yanobu R, Nishiwaki C, et al. Deletion of CDKAL1 Affects Mitochondrial ATP Generation and First-Phase Insulin Exocytosis. PLoS ONE 2010; 5:e15553; PMID:21151568
  • Kirchhoff K, Machicao F, Haupt A, Schäfer SA, Tschritter O, Staiger H, Stefan N, Häring H-U, Fritsche A. Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 2008; 51:597-601; PMID:18264689[http://dx.doi.org/10.1007/s00125-008-0926-y]
  • Stančáková A, Pihlajamäki J, Kuusisto J, Stefan N, Fritsche A, Häring H, Andreozzi F, Succurro E, Sesti G, Boesgaard TW, et al. Single-nucleotide polymorphism rs7754840 of CDKAL1Is associated with impaired insulin secretion in nondiabetic offspring of type 2 diabetic subjects and in a large sample of men with normal glucose tolerance. J Clin Endocrinol Metab 2008; 93:1924-30; PMID:18285412[http://dx.doi.org/10.1210/jc.2007-2218]
  • Groenewoud MJ, Dekker JM, Fritsche A, Reiling E, Nijpels G, Heine RJ, Maassen JA, Machicao F, Schäfer SA, Häring H-U, et al. Variants of CDKAL1 and IGF2BP2 affect first-phase insulin secretion during hyperglycaemic clamps. Diabetologia 2008; 51:1659-63; PMID:18618095[http://dx.doi.org/10.1007/s00125-008-1083-z]
  • Xie P, Wei F-Y, Hirata S, Kaitsuka T, Suzuki T, Suzuki T, Tomizawa K. Quantitative PCR measurement of tRNA 2-methylthio modification for assessing type 2 diabetes risk. Clin Chem 2013;; 59:1604-12. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=23974085&retmode=ref&cmd=prlinks; PMID:23974085; http://dx.doi.org/10.1373/clinchem.2013.210401
  • Schroner Z, Javorský M, Halušková J, Klimčáková L, Babjaková E, Fabianová M, Slabá E, Kozárová M, Tkáč I. Variation in CDKAL1 gene is associated with therapeutic response to sulphonylureas. Physiol Res 2012; 61:177-83; PMID:22292718
  • Saade S, Cazier J-B, Ghassibe-Sabbagh M, Youhanna S, Badro DA, Kamatani Y, Hager J, Yeretzian JS, El-Khazen G, Haber M, et al. Large scale association analysis identifies three susceptibility loci for coronary artery disease. PLoS One 2011; 6:e29427; PMID: 22216278;http://dx.doi.org/10.1371/journal.pone.0029427
  • Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, Brant SR, Silverberg MS, Taylor KD, Barmada MM, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet 2008; 40:955-62; PMID: 18587394[http://dx.doi.org/ 10.1038/ng.175]
  • Quaranta M, Burden AD, Griffiths CEM, Worthington J, Barker JN, Trembath RC, Capon F. Differential contribution of CDKAL1 variants to psoriasis, Crohn's disease and type II diabetes. Genes Immun 2009; 10:654-8; PMID: 19587699[http://dx.doi.org/ 10.1038/gene.2009.51]
  • Kunert N, Marhold J, Stanke J, Stach D, Lyko F. A Dnmt2-like protein mediates DNA methylation in Drosophila. Development 2003; 130:5083-90; PMID:12944428[http://dx.doi.org/10.1242/dev.00716]
  • Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh C-L, Zhang X, Golic KG, Jacobsen SE, Bestor TH. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 2006; 311:395-8; PMID:16424344[http://dx.doi.org/10.1126/science.1120976]
  • Rai K, Chidester S, Zavala CV, Manos EJ, James SR, Karpf AR, Jones DA, Cairns BR. Dnmt2 functions in the cytoplasm to promote liver, brain, and retina development in zebrafish. Genes Dev 2007; 21:261-6; PMID:17289917[http://dx.doi.org/10.1101/gad.1472907]
  • Schaefer M, Pollex T, Hanna K, Lyko F. RNA cytosine methylation analysis by bisulfite sequencing. Nucleic Acids Res 2009; 37:e12; PMID:19059995
  • Squires JE, Patel HR, Nousch M, Sibbritt T, Humphreys DT, Parker BJ, Suter CM, Preiss T. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res 2012; 40:5023-33; PMID:22344696; http://dx.doi.org/10.1093/nar/gks144
  • Tuorto F, Liebers R, Musch T, Schaefer M, Hofmann S, Kellner S, Frye M, Helm M, Stoecklin G, Lyko F. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol 2012; 19:900-5; PMID:22885326[http://dx.doi.org/10.1038/nsmb.2357]
  • Franke B, Vermeulen SHHM, Steegers-Theunissen RPM, Coenen MJ, Schijvenaars MMVAP, Scheffer H, Heijer den M, Blom HJ. An association study of 45 folate-related genes in spina bifida: Involvement of cubilin (CUBN) and tRNA aspartic acid methyltransferase 1(TRDMT1). Birth Defect Res A 2009; 85:216-26; PMID:19161160
  • Chowdhury S, Hobbs CA, MacLeod SL, Cleves MA, Melnyk S, James SJ, Hu P, Erickson SW. Molecular genetics and metabolism. Mol Gen Meta 2012; 107:596-604; PMID:23059056[http://dx.doi.org/10.1016/j.ymgme.2012.09.022]
  • Blanco S, Kurowski A, Nichols J, Watt FM, Benitah SA, Frye M. The RNA–methyltransferase misu (NSun2) poises epidermal stem cells to differentiate. PLoS Genet 2011; 7:e1002403; PMID:22144916; http://dx.doi.org/10.1371/journal.pgen.1002403
  • Durdevic Z, Hanna K, Gold B, Pollex T, Cherry S, Lyko F, Schaefer M. Efficient RNA virus control in Drosophila requires the RNA methyltransferase Dnmt2. EMBO Rep 2013; 14:269-75; PMID:23370384[http://dx.doi.org/10.1038/embor.2013.3]
  • Durdevic Z, Mobin MB, Hanna K, Lyko F, Schaefer M. The RNA methyltransferase Dnmt2 is required for efficient Dicer-2-dependent siRNA pathway activity in Drosophila. Cell Rep 2013; 4:931-7; PMID:24012760; http://dx.doi.org/10.1016/j.celrep.2013.07.046
  • Watanabe K. Unique features of animal mitochondrial translation systems. Proc Japan Acad 2010; 86:11-39; PMID:20075606
  • Suzuki T, Nagao A, Suzuki T. Human mitochondrial diseases caused by lack of taurine modification in mitochondrial tRNAs. WIREs RNA 2011; 2:376-86; PMID:21957023[http://dx.doi.org/10.1002/wrna.65]
  • Meziane El A, Lehtinen SK, Hance N, Nijtmans LG, Dunbar D, Holt IJ, Jacobs HT. A tRNA suppressor mutation in human mitochondria. Nat Genet 1998; 18:350-3; PMID:9537417[http://dx.doi.org/10.1038/ng0498-350]
  • Kirino Y, Suzuki T. Human mitochondrial diseases associated with tRNA wobble modification deficiency. RNA Biol 2005; 2:41-4; PMID:17132941[http://dx.doi.org/10.4161/rna.2.2.1610]
  • Yasukawa T, Suzuki T, Ueda T, Ohta S, Watanabe K. Modification defect at anticodon wobble nucleotide of mitochondrial tRNAs(Leu)(UUR) with pathogenic mutations of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. J Biol Chem 2000; 275:4251-7; PMID:10660592[http://dx.doi.org/10.1074/jbc.275.6.4251]
  • Kirino Y, Goto Y, Campos Y, Arenas J, Suzuki T. Specific correlation between the wobble modification deficiency in mutant tRNAs and the clinical features of a human mitochondrial disease. Proc Natl Acad Sci USA 2005; 102:7127-32.
  • Yasukawa T, Suzuki T, Ishii N, Ueda T, Ohta S, Watanabe K. Defect in modification at the anticodon wobble nucleotide of mitochondrial tRNA(Lys) with the MERRF encephalomyopathy pathogenic mutation. FEBS Lett 2000; 467:175-8; PMID:10675533[http://dx.doi.org/10.1016/S0014-5793(00)01145-5]
  • Villarroya M, Prado S, Esteve JM, Soriano MA, Aguado C, Perez-Martinez D, Martinez-Ferrandis JI, Yim L, Victor VM, Cebolla E, et al. Characterization of human GTPBP3, a GTP-binding protein involved in mitochondrial tRNA modification. Mol Cell Biol 2008; 28:7514-31; PMID:18852288[http://dx.doi.org/10.1128/MCB.00946-08]
  • Kirino Y, Yasukawa T, Ohta S, Akira S, Ishihara K, Watanabe K, Suzuki T. Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease. Proc Natl Acad Sci USA 2004; 101:15070-5.
  • Meziane El A, Lehtinen SK, Holt IJ, Jacobs HT. Mitochondrial tRNALeu isoforms in lung carcinoma cybrid cells containing the np 3243 mtDNA mutation. Hum Mol Genet 1998; 7:2141-7; PMID:9817933[http://dx.doi.org/10.1093/hmg/7.13.2141]
  • Kirino Y, Yasukawa T, Marjavaara SK, Jacobs HT, Holt IJ, Watanabe K, Suzuki T. Acquisition of the wobble modification in mitochondrial tRNALeu(CUN) bearing the G12300A mutation suppresses the MELAS molecular defect. Hum Mol Genet 2006; 15:897-904; PMID:16446307
  • Metodiev MD, Spåhr H, Loguercio Polosa P, Meharg C, Becker C, Altmueller J, Habermann B, Larsson N-G, Ruzzenente B. NSUN4 is a dual function mitochondrial protein required for both methylation of 12S rRNA and coordination of mitoribosomal assembly. PLoS Genet 2014; 10:e1004110; PMID:24516400
  • Cámara Y, Asin-Cayuela J, Park CB, Metodiev MD, Shi Y, Ruzzenente B, Kukat C, Habermann B, Wibom R, Hultenby K, et al. MTERF4 regulates translation by targeting the methyltransferase NSUN4 to the mammalian mitochondrial ribosome. Cell Metab 2011; 13:527-39; PMID:21531335[http://dx.doi.org/10.1016/j.cmet.2011.04.002]
  • Huang B, Johansson MJO, Byström AS. An early step in wobble uridine tRNA modification requires the Elongator complex. RNA 2005; 11:424-36; PMID:15769872[http://dx.doi.org/10.1261/rna.7247705]
  • Mehlgarten C, Jablonowski D, Wrackmeyer U, Tschitschmann S, Sondermann D, Jager G, Gong Z, Byström AS, Schaffrath R, Breunig KD. Elongator function in tRNA wobble uridine modification is conserved between yeast and plants. Mol Microbiol 2010; 76:1082-94; PMID:20398216[http://dx.doi.org/10.1111/j.1365-2958.2010.07163.x]
  • Lin F-J, Shen L, Jang C-W, Falnes PØ, Zhang Y. Ikbkap/Elp1 deficiency causes male infertility by disrupting meiotic progression. PLoS Genet 2013; 9:e1003516; PMID:23717213
  • Riley CM, Day RL. Central autonomic dysfunction with defective lacrimation; report of five cases. Pediatrics 1949; 3:468-78; PMID:18118947
  • Gold-von Simson G, Axelrod FB. Familial dysautonomia: update and recent advances. Curr Probl Pediatr Adolesc Health Care 2006; 36:218-37; PMID:16777588[http://dx.doi.org/10.1016/j.cppeds.2005.12.001]
  • Slaugenhaupt SA, Blumenfeld A, Gill SP, Leyne M, Mull J, Cuajungco MP, Liebert CB, Chadwick B, Idelson M, Reznik L, et al. Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet 2001; 68:598-605; PMID:11179008[http://dx.doi.org/10.1086/318810]
  • Anderson SL, Coli R, Daly IW, Kichula EA, Rork MJ, Volpi SA, Ekstein J, Rubin BY. Familial dysautonomia is caused by mutations of the IKAP gene. Am J Hum Genet 2001; 68:753-8; PMID:11179021[http://dx.doi.org/10.1086/318808]
  • Cuajungco MP, Leyne M, Mull J, Gill SP, Lu W, Zagzag D, Axelrod FB, Maayan C, Gusella JF, Slaugenhaupt SA. Tissue-specific reduction in splicing efficiency of IKBKAP due to the major mutation associated with familial dysautonomia. Am J Hum Genet 2003; 72:749-58; PMID:12577200[http://dx.doi.org/10.1086/368263]
  • Karlsborn T, Tükenmez H, Chen C, Byström AS. Biochemical and Biophysical Research Communications. Biochem Biophys Res Commun 2014; 1-5.
  • Anderson SL, Qiu J, Rubin BY. EGCG corrects aberrant splicing of IKAP mRNA in cells from patients with familial dysautonomia. Biochem Biophys Res Commun 2003; 310:627-33; PMID:14521957[http://dx.doi.org/10.1016/j.bbrc.2003.09.019]
  • Anderson SL, Qiu J, Rubin BY. Tocotrienols induce IKBKAP expression: a possible therapy for familial dysautonomia. Biochem Biophys Res Commun 2003; 306:303-9; PMID:12788105[http://dx.doi.org/10.1016/S0006-291X(03)00971-9]
  • Slaugenhaupt SA, Mull J, Leyne M, Cuajungco MP, Gill SP, Hims MM, Quintero F, Axelrod FB, Gusella JF. Rescue of a human mRNA splicing defect by the plant cytokinin kinetin. Hum Mol Genet 2004; 13:429-36; PMID:14709595[http://dx.doi.org/10.1093/hmg/ddh046]
  • Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ, Fasano CA, Ganat YM, Menon J, Shimizu F, Viale A, et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 2009; 461:402-6; PMID:19693009[http://dx.doi.org/10.1038/nature08320]
  • Axelrod FB, Liebes L, Gold-von Simson G, Mendoza S, Mull J, Leyne M, Norcliffe-Kaufmann L, Kaufmann H, Slaugenhaupt SA. Kinetin improves IKBKAP mRNA splicing in patients with familial dysautonomia. Pediatr Res 2011; 70:480-3; PMID:21775922[http://dx.doi.org/10.1203/PDR.0b013e31822e1825]
  • Dietrich P, Yue J, E S, Dragatsis I. Deletion of exon 20 of the familial dysautonomia gene Ikbkap in mice causes developmental delay, cardiovascular defects, and early embryonic lethality. PLoS One 2011; 6:e27015; PMID:22046433
  • Dietrich P, Alli S, Shanmugasundaram R, Dragatsis I. IKAP expression levels modulate disease severity in a mouse model of familial dysautonomia. Hum Mol Genet 2012; 21:5078-90; PMID: 22922231[http://dx.doi.org/10.1093/hmg/dds354]
  • Najmabadi H, Hu H, Garshasbi M, Zemojtel T, Abedini SS, Chen W, Hosseini M, Behjati F, Haas S, Jamali P, et al. Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 2011; 478:57-63; PMID:21937992[http://dx.doi.org/10.1038/nature10423]
  • Simpson CL, Lemmens R, Miskiewicz K, Broom WJ, Hansen VK, van Vught PWJ, Landers JE, Sapp P, Van Den Bosch L, Knight J, et al. Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration. Hum Mol Genet 2009; 18:472-81; PMID:18996918[http://dx.doi.org/10.1093/hmg/ddn375]
  • Chen C, Tuck S, Byström AS. Defects in tRNA modification associated with neurological and developmental dysfunctions in Caenorhabditis elegans elongator mutants. PLoS Genet 2009; 5:e1000561; PMID:19593383; http://dx.doi.org/10.1371/journal.pgen.1000561
  • Strug LJ, Clarke T, Chiang T, Chien M, Baskurt Z, Li W, Dorfman R, Bali B, Wirrell E, Kugler SL, et al. Centrotemporal sharp wave EEG trait in rolandic epilepsy maps to Elongator Protein Complex 4 (ELP4). Eur J Hum Genet 2009; 17:1171-81; PMID:19172991[http://dx.doi.org/10.1038/ejhg.2008.267]
  • Strug LJ, Hodge SE, Chiang T, Pal DK, Corey PN, Rohde C. A pure likelihood approach to the analysis of genetic association data: an alternative to Bayesian and frequentist analysis. Eur J Hum Genet 2010; 18:933-41; PMID:20424645[http://dx.doi.org/10.1038/ejhg.2010.47]
  • Griffin C, Kleinjan DA, Doe B, van Heyningen V. New 3' elements control Pax6 expression in the developing pretectum, neural retina and olfactory region. Mech Dev 2002; 112:89-100; PMID:11850181[http://dx.doi.org/10.1016/S0925-4773(01)00646-3]
  • Bolukbasi E, Vass S, Cobbe N, Nelson B, Simossis V, Dunbar DR, Heck MMS. Drosophila poly suggests a novel role for the Elongator complex in insulin receptor-target of rapamycin signalling. Open Biol 2012; 2:110031; PMID:22645656[http://dx.doi.org/10.1098/rsob.110031]
  • Pedrioli PGA, Leidel S, Hofmann K. Urm1 at the crossroad of modifications. “Protein Modifications: Beyond the Usual Suspects” Review Series. EMBO Rep 2008; 9:1196-202; PMID:19047990
  • Leiber R-M, John F, Verhertbruggen Y, Diet A, Knox JP, Ringli C. The TOR pathway modulates the structure of cell walls in Arabidopsis. Plant Cell 2010; 22:1898-908; PMID:20530756[http://dx.doi.org/10.1105/tpc.109.073007]
  • Pintard L, Lecointe F, Bujnicki JM, Bonnerot C, Grosjean H, Lapeyre B. Trm7p catalyses the formation of two 2′-O-methylriboses in yeast tRNA anticodon loop. EMBO J 2002; 21:1811-20; PMID:11927565[http://dx.doi.org/10.1093/emboj/21.7.1811]
  • Guy MP, Podyma BM, Preston MA, Shaheen HH, Krivos KL, Limbach PA, Hopper AK, Phizicky EM. Yeast Trm7 interacts with distinct proteins for critical modifications of the tRNAPhe anticodon loop. RNA 2012; 18:1921-33; PMID:22912484[http://dx.doi.org/10.1261/rna.035287.112]
  • Freude K, Hoffmann K, Jensen L, Delatycki M, Desportes V, Moser B, Hamel B, Vanbokhoven H, Moraine C, Fryns J. Mutations in the FTSJ1 gene coding for a novel S-Adenosylmethionine–binding protein cause nonsyndromic x-linked mental retardation. Am J Hum Gen 2004; 75:305-9; PMID:15162322[http://dx.doi.org/10.1086/422507]
  • Froyen G, Bauters M, Boyle J, Esch H, Govaerts K, Bokhoven H, Ropers H-H, Moraine C, Chelly J, Fryns J-P, et al. Loss of SLC38A5 and FTSJ1 at Xp11.23 in three brothers with non-syndromic mental retardation due to a microdeletion in an unstable genomic region. Hum Genet 2007; 121:539-47; PMID:17333282[http://dx.doi.org/10.1007/s00439-007-0343-1]
  • Takano K, Nakagawa E, Inoue K, Kamada F, Kure S, Goto Y-I, Japanese Mental Retardation Consortium. A loss-of-function mutation in the FTSJ1 gene causes nonsyndromic X-linked mental retardation in a Japanese family. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:479-84; PMID:18081026[http://dx.doi.org/10.1002/ajmg.b.30638]
  • Dai L, Xing L, Gong P, Zhang K, Gao X, Zheng Z, Zhou J, Guo Y, Guo S, Zhang F. Positive association of the FTSJ1 gene polymorphisms with nonsyndromic X-linked mental retardation in young Chinese male subjects. J Hum Genet 2008; 53:592-7; PMID:18401546[http://dx.doi.org/10.1007/s10038-008-0287-x]
  • Gong P, Li J, Dai L, Zhang K, Zheng Z, Gao X, Zhang F. Genetic Variations in FTSJ1Influence Cognitive Ability in Young Males in the Chinese Han Population. J Neurogenet 2008; 22:277-87; PMID:19012053[http://dx.doi.org/10.1080/01677060802337299]
  • Honda S, Hayashi S, Imoto I, Toyama J, Okazawa H, Nakagawa E, Goto Y-I, Inazawa J, Consortium JMR. Copy-number variations on the X chromosome in Japanese patients with mental retardation detected by array-based comparative genomic hybridization analysis. J Hum Genet 2010; 55:590-9; PMID:20613765[http://dx.doi.org/10.1038/jhg.2010.74]
  • El-Hattab AW, Bournat J, Eng PA, Wu J, Walker BA, Stankiewicz P, Cheung SW, Brown CW. Microduplication of Xp11.23p11.3 with effects on cognition, behavior, and craniofacial development. Clin Genet 2010; 79:531-8; http://dx.doi.org/10.1111/j.1399-0004.2010.01496.x
  • Bonnet C, Grégoire MJ, Brochet K, Raffo E, Leheup B, Jonveaux P. Pure de-novo 5 Mb duplication at Xp11.22-p11.23 in a male: phenotypic and molecular characterization. J Hum Genet 2006; 51:815-21; PMID:16900295
  • Abbasi-Moheb L, Mertel S, Gonsior M, Nouri-Vahid L, Kahrizi K, Cirak S, Wieczorek D, Motazacker MM, Esmaeeli-Nieh S, Cremer K, et al. Mutations in NSUN2 cause autosomal- recessive intellectual disability. Am J Hum Genet 2012; 90:847-55; PMID:22541559[http://dx.doi.org/10.1016/j.ajhg.2012.03.021]
  • Fahiminiya S, Almuriekhi M, Nawaz Z, Staffa A, Lepage P, Ali R, Hashim L, Schwartzentruber J, Abu Khadija K, Zaineddin S, et al. Whole exome sequencing unravels disease-causing genes in consanguineous families in Qatar. Clin Genet 2014; 86:134-41; PMID:24102521[http://dx.doi.org/10.1111/cge.12280]
  • Khan MA, Rafiq MA, Noor A, Hussain S, Flores JV, Rupp V, Vincent AK, Malli R, Ali G, Khan FS, et al. Mutation in NSUN2, which Encodes an RNA Methyltransferase, Causes Autosomal-Recessive Intellectual Disability. Am J Hum Genet 2012; 90:856-63; PMID:22541562[http://dx.doi.org/10.1016/j.ajhg.2012.03.023]
  • Martinez FJ, Lee JH, Lee JE, Blanco S, Nickerson E, Gabriel S, Frye M, Al-Gazali L, Gleeson JG. Whole exome sequencing identifies a splicing mutation in NSUN2 as a cause of a Dubowitz-like syndrome. J M Gen 2012; 49:380-5; PMID:22577224[http://dx.doi.org/10.1136/jmedgenet-2011-100686]
  • Hussain S, Tuorto F, Menon S, Blanco S, Cox C, Flores JV, Watt S, Kudo NR, Lyko F, Frye M. The mouse cytosine-5 RNA methyltransferase NSun2 is a component of the chromatoid body and required for testis differentiation. Mol Cell Biol 2013; 33:1561-70; PMID:23401851[http://dx.doi.org/10.1128/MCB.01523-12]
  • Chi L, Delgado-Olguín P. Expression of NOL1/NOP2/sun domain (Nsun) RNA methyltransferase family genes in early mouse embryogenesis. Gene Expr Pattern 2013; 13:319-27; PMID:23816522[http://dx.doi.org/10.1016/j.gep.2013.06.003]
  • Hussain S, Sajini AA, Blanco S, Dietmann S, Lombard P, Sugimoto Y, Paramor M, Gleeson JG, Odom DT, Ule J, et al. NSun2-mediated cytosine-5 methylation of vault noncoding RNA determinesIts processing into regulatory small RNAs. Cell Rep 2013; 4:255-61
  • Zhang X, Liu Z, Yi J, Tang H, Xing J, Yu M, Tong T, Shang Y, Gorospe M, Wang W. The tRNA methyltransferase NSun2 stabilizes p16INK⁴ mRNA by methylating the 3'-untranslated region of p16. Nat Commun 2012; 3:712; PMID:22395603[http://dx.doi.org/10.1038/ncomms1692]
  • Blanco S, Dietmann S, Flores JV, Hussain S, Kutter C, Humphreys P, Lukk M, Lombard P, Treps L, Popis M, et al. Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders. EMBO J 2014; PMID:25063673
  • Gillis D, Krishnamohan A, Yaacov B, Shaag A, Jackman JE, Elpeleg O. TRMT10A dysfunction is associated with abnormalities in glucose homeostasis, short stature and microcephaly. J Med Gen 2014; 51:581-6; PMID:25053765[http://dx.doi.org/10.1136/jmedgenet-2014-102282]
  • Igoillo-Esteve M, Genin A, Lambert N, Désir J, Pirson I, Abdulkarim B, Simonis N, Drielsma A, Marselli L, Marchetti P, et al. tRNA methyltransferase homolog gene TRMT10A mutation in young onset diabetes and primary microcephaly in humans. PLoS Genet 2013; 9:e1003888; PMID:24204302
  • Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 2014; 10:93-5; PMID:24316715[http://dx.doi.org/10.1038/nchembio.1432]
  • Ping X-L, Sun B-F, Wang L, Xiao W, Yang X, Wang W-J, Adhikari S, Shi Y, Lv Y, Chen Y-S, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 2014; 24:177-89; PMID:24407421[http://dx.doi.org/10.1038/cr.2014.3]
  • Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol 2014; 16:191-8; PMID:24394384[http://dx.doi.org/10.1038/ncb2902]
  • Horiuchi K, Umetani M, Minami T, Okayama H, Takada S, Yamamoto M, Aburatani H, Reid PC, Housman DE, Hamakubo T, et al. Wilms' tumor 1-associating protein regulates G2/M transition through stabilization of cyclin A2 mRNA. Proc Natl Acad Sci USA 2006; 103:17278-83.
  • Fukusumi Y, Naruse C, Asano M. Wtap is required for differentiation of endoderm and mesoderm in the mouse embryo. Dev Dyn 2008; 237:618-29; PMID:18224709[http://dx.doi.org/10.1002/dvdy.21444]
  • Higa-Nakamine S, Suzuki T, Uechi T, Chakraborty A, Nakajima Y, Nakamura M, Hirano N, Suzuki T, Kenmochi N. Loss of ribosomal RNA modification causes developmental defects in zebrafish. Nucleic Acids Res 2011; PMID:21908402
  • Alazami AM, Hijazi H, Al-Dosari MS, Shaheen R, Hashem A, Aldahmesh MA, Mohamed JY, Kentab A, Salih MA, Awaji A, et al. Mutation in ADAT3, encoding adenosine deaminase acting on transfer RNA, causes intellectual disability and strabismus. JM Gen 2013; 50:425-30; PMID:23620220[http://dx.doi.org/10.1136/jmedgenet-2012-101378]
  • Emmerich B, Zubrod E, Weber H, Maubach PA, Kersten H, Kersten W. Relationship of queuine-lacking transfer RNA to the grade of malignancy in human leukemias and lymphomas. Cancer Res 1985; 45:4308-14; PMID:4028017
  • Kretz KA, Katze JR, Trewyn RW. Guanine analog-induced differentiation of human promyelocytic leukemia cells and changes in queuine modification of tRNA. Mol Cell Biol 1987; 7:3613-9; PMID:3479681
  • Rodriguez V, Chen Y, Elkahloun A, Dutra A, Pak E, Chandrasekharappa S. Chromosome 8 BAC array comparative genomic hybridization and expression analysis identify amplification and overexpression of TRMT12 in breast cancer. Genes Chromosomes Cancer 2007; 46:694-707; PMID:17440925[http://dx.doi.org/10.1002/gcc.20454]
  • Pathak C, Jaiswal YK, Vinayak M. Modulation in the activity of lactate dehydrogenase and level of c-Myc and c-Fos by modified base queuine in cancer. Cancer Biol Ther 2008; 7:85-91; PMID:18347422[http://dx.doi.org/10.4161/cbt.7.1.5133]
  • Vachon CM, Sellers TA, Carlson EE, Cunningham JM, Hilker CA, Smalley RL, Schaid DJ, Kelemen LE, Couch FJ, Pankratz VS. Strong evidence of a genetic determinant for mammographic density, a major risk factor for breast cancer. Cancer Res 2007; 67:8412-8; PMID:17804758[http://dx.doi.org/10.1158/0008-5472.CAN-07-1076]
  • Shimada K, Nakamura M, Anai S, De Velasco M, Tanaka M, Tsujikawa K, Ouji Y, Konishi N. A novel human AlkB homologue, ALKBH8, contributes to human bladder cancer progression. Cancer Res 2009; 69:3157-64; PMID:19293182[http://dx.doi.org/10.1158/0008-5472.CAN-08-3530]
  • Berg M, Agesen TH, Thiis-Evensen E, group IN-S, Merok MA, Teixeira MR, Vatn MH, Nesbakken A, Skotheim RI, Lothe RA. Distinct high resolution genome profiles of early onset and late onset colorectal cancer integrated with gene expression data identify candidate susceptibility loci. Mol Cancer 2010; 9:100; PMID:20459617[http://dx.doi.org/10.1186/1476-4598-9-100]
  • Kerr SJ, Borek E. Regulation of the tRNA methyltransferases in normal and neoplastic tissues. Adv Enzyme Regul 1973; 11:63-77; PMID:4799201[http://dx.doi.org/10.1016/0065-2571(73)90009-5]
  • Dirheimer G, Baranowski W, Keith G. Variations in tRNA modifications, particularly of their queuine content in higher eukaryotes. Its relation to malignancy grading. Biochimie 1995; 77:99-103; PMID:7599283[http://dx.doi.org/10.1016/0300-9084(96)88111-9]
  • Okada N, Shindo-Okada N, Sato S, Itoh YH, Oda K, Nishimura S. Detection of unique tRNA species in tumor tissues by Escherichia coli guanine insertion enzyme. Proc Natl Acad Sci USA 1978; 75:4247-51.
  • Morris RC, Galicia MC, Clase KL, Elliott MS. Determination of queuosine modification system deficiencies in cultured human cells. Mol Gen Meta 1999; 68:56-67; PMID:10479483[http://dx.doi.org/10.1006/mgme.1999.2889]
  • Costa A, Pais de Barros JP, Keith G, Baranowski W, Desgres J. Determination of queuosine derivatives by reverse-phase liquid chromatography for the hypomodification study of Q-bearing tRNAs from various mammal liver cells. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 801:237-47; PMID:14751792[http://dx.doi.org/10.1016/j.jchromb.2003.11.022]
  • Shindo-Okada N, Terada M, Nishimura S. Changes in amount of hypo-modified tRNA having guanine in place of queuine during erythroid differentiation of murine erythroleukemia cells. Eur J Biochem 1981; 115:423-8; PMID:7238512[http://dx.doi.org/10.1111/j.1432-1033.1981.tb05254.x]
  • Huang BS, Wu RT, Chien KY. Relationship of the queuine content of transfer ribonucleic acids to histopathological grading and survival in human lung cancer. Cancer Res 1992; 52:4696-700; PMID:1511436
  • Katze JR, Basile B, McCloskey JA. Queuine, a modified base incorporated posttranscriptionally into eukaryotic transfer RNA: wide distribution in nature. Science 1982; 216:55-6; PMID:7063869[http://dx.doi.org/10.1126/science.7063869]
  • Pathak C, Jaiswal YK, Vinayak M. Queuine promotes antioxidant defence system by activating cellular antioxidant enzyme activities in cancer. Biosci Rep 2008; 28:73-81; PMID:18290765[http://dx.doi.org/10.1042/BSR20070011]
  • Shindo-Okada N, Akimoto H, Nomura H, Nishimura S. Recognition of UAG termination codon by mammalian tyrosine tRNA containing 6-thioqueuine in the first position of the anticodon. Proc Japan Acad 1985; 61(B):94-8.
  • Frye M, Watt FM. The RNA Methyltransferase Misu (NSun2) Mediates Myc-Induced Proliferation and Is Upregulated in Tumors. Curr Biol 2006; 16:971-81; PMID:16713953[http://dx.doi.org/10.1016/j.cub.2006.04.027]
  • Schaefer M, Hagemann S, Hanna K, Lyko F. Azacytidine inhibits RNA methylation at DNMT2 target sites in human cancer cell lines. Cancer Res 2009; 69:8127-32; PMID:19808971[http://dx.doi.org/10.1158/0008-5472.CAN-09-0458]
  • Christian T, Gamper H, Hou YM. Conservation of structure and mechanism by Trm5 enzymes. RNA 2013; 19:1192-9; PMID:23887145[http://dx.doi.org/10.1261/rna.039503.113]
  • Songe-Møller L, van den Born E, Leihne V, Vågbø CB, Kristoffersen T, Krokan HE, Kirpekar F, Falnes PØ, Klungland A. Mammalian ALKBH8 possesses tRNA methyltransferase activity required for the biogenesis of multiple wobble uridine modifications implicated in translational decoding. Mol Cell Biol 2010; 30:1814-27; PMID:20123966[http://dx.doi.org/10.1128/MCB.01602-09]
  • Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang C-M, Li CJ, Vågbø CB, Shi Y, Wang W-L, Song S-H, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 2013; 49:18-29; PMID:23177736
  • Leidel S, Pedrioli PGA, Bucher T, Brost R, Costanzo M, Schmidt A, Aebersold R, Boone C, Hofmann K, Peter M. Ubiquitin-related modifier Urm1 acts as a sulphur carrier in thiolation of eukaryotic transfer RNA. Nature 2009; 458:228-32; PMID:19145231[http://dx.doi.org/10.1038/nature07643]
  • Bloom-Ackermann Z, Navon S, Gingold H, Towers R, Pilpel Y, Dahan O. A Comprehensive tRNA Deletion Library Unravels the Genetic Architecture of the tRNA Pool. PLoS Genet 2014; 10:e1004084; PMID:24453985
  • Hanada T, Weitzer S, Mair B, Bernreuther C, Wainger BJ, Ichida J, Hanada R, Orthofer M, Cronin SJ, Komnenovic V, et al. CLP1 links tRNA metabolism to progressive motor-neuron loss. Nature 2013; 495:474-80; PMID:23474986[http://dx.doi.org/10.1038/nature11923]
  • Ishimura R, Nagy G, Dotu I, Zhou H, Yang X-L, Schimmel P, Senju S, Nishimura Y, Chuang JH, Ackerman SL. RNA function. Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration. Science 2014; 345:455-9; PMID:25061210[http://dx.doi.org/10.1126/science.1249749]
  • Karaca E, Weitzer S, Pehlivan D, Shiraishi H, Gogakos T, Hanada T, Jhangiani SN, Wiszniewski W, Withers M, Campbell IM, et al. Human CLP1 mutations alter tRNA biogenesis, affecting both peripheral and central nervous system function. Cell 2014; 157:636-50; PMID:24766809[http://dx.doi.org/10.1016/j.cell.2014.02.058]
  • Schaffer AE, Eggens VRC, Caglayan AO, Reuter MS, Scott E, Coufal NG, Silhavy JL, Xue Y, Kayserili H, Yasuno K, et al. CLP1 founder mutation links tRNA splicing and maturation to cerebellar development and neurodegeneration. Cell 2014; 157:651-63; PMID:24766810[http://dx.doi.org/10.1016/j.cell.2014.03.049]
  • Samaan Z, Anand S, Zhang X, Desai D, Rivera M, Pare G, Thabane L, Xie C, Gerstein H, Engert JC, et al. The protective effect of the obesity-associated rs9939609 A variant in fat mass- and obesity-associated gene on depression. Mol Psychiatry 2012; 18:1281-6; PMID:23164817[http://dx.doi.org/10.1038/mp.2012.160]
  • Sobczyk-Kopciol A, Broda G, Wojnar M, Kurjata P, Jakubczyk A, Klimkiewicz A, Ploski R. Inverse association of the obesity predisposing FTO rs9939609 genotype with alcohol consumption and risk for alcohol dependence. Addiction 2010; 106:739-48; PMID:21182554[http://dx.doi.org/10.1111/j.1360-0443.2010.03248.x]
  • Haverty PM, Fridlyand J, Li L, Getz G, Beroukhim R, Lohr S, Wu TD, Cavet G, Zhang Z, Chant J. High-resolution genomic and expression analyses of copy number alterations in breast tumors. Genes Chromosomes Cancer 2008; 47:530-42; PMID:18335499[http://dx.doi.org/10.1002/gcc.20558]
  • Guan M-X, Yan Q, Li X, Bykhovskaya Y, Gallo-Teran J, Hajek P, Umeda N, Zhao H, Garrido G, Mengesha E, et al. Mutation in TRMU related to transfer RNA modification modulates the phenotypic expression of the deafness-associated mitochondrial 12S ribosomal RNA mutations. Am J Hum Genet 2006; 79:291-302; PMID:16826519[http://dx.doi.org/10.1086/506389]
  • Zeharia A, Shaag A, Pappo O, Mager-Heckel A-M, Saada A, Beinat M, Karicheva O, Mandel H, Ofek N, Segel R, et al. Acute infantile liver failure due to mutations in the TRMU gene. Am J Hum Genet 2009; 85:401-7; PMID: 19732863[http://dx.doi.org/10.1016/j.ajhg.2009.08.004]
  • Blanco S, Kurowski A, Nichols J, Watt FM, Benitah SA, Frye M. The RNA-methyltransferase Misu (NSun2) poises epidermal stem cells to differentiate. PLoS Genet 2011; 7:e1002403
  • Schaefer M, Pollex T, Hanna K, Tuorto F, Meusburger M, Helm M, Lyko F. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev 2010; 24:1590-5; PMID:20679393[http://dx.doi.org/10.1101/gad.586710]
  • Penalva LO, Ruiz MF, Ortega A, Granadino B, Vicente L, Segarra C, Valcárcel J, Sánchez L. The Drosophila fl(2)d gene, required for female-specific splicing of Sxl and tra pre-mRNAs, encodes a novel nuclear protein with a HQ-rich domain. Genetics 2000; 155:129-39; PMID:10790389