1,098
Views
4
CrossRef citations to date
0
Altmetric
Article Addendum

Phytodetoxification of the environmental pollutant and explosive 2,4,6-trinitrotoluene

, , , , , , & show all
Article: e977714 | Received 22 Jul 2014, Accepted 04 Sep 2014, Published online: 05 Feb 2015

References

  • Rylott EL, Lorenz A, Bruce NC. Biodegradation and biotransformation of explosives. Curr Opin Biotechnol 2011; 22:434-40. PMID:21094036; http://dx.doi.org/10.1016/j.copbio.2010.10.014
  • United States General Accounting Office. Department of defense operational ranges, more reliable cleanup cost estimates and a proactive approach to identifying contamination are needed. Report to Congressional Requesters 2004; http://www.gao.gov/new.items/d04601.pdf
  • Hannink NK, Rosser SJ, Bruce NC. Phytoremediation of explosives. Crit Rev Plant Sci 2002; 21:511-38. http://dx.doi.org/10.1080/0735-260291044340
  • Rylott E, Bruce N. Plants disarm soil: engineering plants for the phytoremediation of explosives. Trends Biotechnol 2009; 27:73-81. PMID:19110329; http://dx.doi.org/10.1016/j.tibtech.2008.11.001
  • Beynon ER, Symons ZC, Jackson RG, Lorenz A, Rylott EL, Bruce NC. The role of oxophytodienoate reductases in the detoxification of the explosive 2,4,6-trinitrotoluene by Arabidopsis. Plant Physiol 2009; 151:253-61. PMID:19605548; http://dx.doi.org/10.1104/pp.109.141598
  • Bhadra R, Wayment DG, Williams RK, Barman SN, Stone MB, Hughes JB, Shanks JV. Studies on plant-mediated fate of the explosives RDX and HMX. Chemosphere 2001; 44:1259-64. PMID:11513416; http://dx.doi.org/10.1016/S0045-6535(00)00272-1
  • Bhadra R, Wayment DG, Hughes JB, Shanks JV. Confirmation of conjugation processes during TNT metabolism by axenic plant roots. Environ Sci Technol 1999; 33:446-52. http://dx.doi.org/10.1021/es980635m
  • Gandia-Herrero F, Lorenz A, Larson T, Graham IA, Bowles DJ, Rylott EL, Bruce NC. Detoxification of the explosive 2,4,6-trinitrotoluene in Arabidopsis: discovery of bifunctional O- and C-glucosyltransferases. Plant J 2008; 56:963-74. PMID:18702669; http://dx.doi.org/10.1111/j.1365-313X.2008.03653.x
  • Tanaka S, Brentner LB, Merchie KM, Schnoor JL, Yoon JM, Van Aken B. Analysis of gene expression in poplar trees (Populus deltoides x nigra, DN34) exposed to the toxic explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Int J Phytoremed 2007; 9:15-30. PMID:18246712; http://dx.doi.org/10.1080/15226510601139375
  • Brentner LB, Mukherji ST, Merchie KM, Yoon JM, Schnoor JL, Aken BV. Expression of glutathione S-transferases in poplar trees (Populus trichocarpa) exposed to 2,4,6-trinitrotoluene (TNT). Chemosphere 2008; 73:657-62. PMID:18774158; http://dx.doi.org/10.1016/j.chemosphere.2008.07.059
  • Ekman DR, Lorenz WW, Przybyla AE, Wolfe NL, Dean JF. SAGE analysis of transcriptome responses in Arabidopsis roots exposed to 2,4,6-trinitrotoluene. Plant Physiol 2003; 133:1397-406. PMID:14551330; http://dx.doi.org/10.1104/pp.103.028019
  • Mezzari MP, Walters K, Jelinkova M, Shih MC, Just CL, Schnoor JL. Gene expression and microscopic analysis of Arabidopsis exposed to chloroacetanilide herbicides and explosive compounds. A phytoremediation approach. Plant Physiol 2005; 138:858-69. PMID:15923336; http://dx.doi.org/10.1104/pp.104.056168
  • Gunning V, Tzafestas K, Sparrow H, Johnston EJ, Brentnall AS, Potts JR, Rylott EL, Bruce NC. Arabidopsis glutathione transferases U24 and U25 exhibit a range of detoxification activities with the environmental pollutant and explosive, 2,4,6-trinitrotoluene. Plant Physiol 2014; 165:854-65. PMID:24733884; http://dx.doi.org/10.1104/pp.114.237180
  • Qasim M, Gorb L, Magers D, Honea P, Leszczynski J, Moore B, Taylor L, Middleton M. Structure and reactivity of TNT and related species: application of spectroscopic approaches and quantum-chemical approximations toward understanding transformation mechanisms. J Hazard Mater 2009; 167:154-63. PMID:19200649; http://dx.doi.org/10.1016/j.jhazmat.2008.12.105
  • Nishino SF, Paoli GC, Spain JC. Aerobic degradation of dinitrotoluenes and pathway for bacterial degradation of 2,6-dinitrotoluene. Appl Environ Microbiol 2000; 66:2139-47. PMID:10788393; http://dx.doi.org/10.1128/AEM.66.5.2139-2147.2000
  • Spanggord RJ, Spain JC, Nishino SF, Mortelmans KE. Biodegradation of 2,4-dinitrotoluene by a Pseudomonas sp. Appl Environ Microbiol 1991; 57:3200-5. PMID:1781682
  • Brentner L, Mukherji S, Walsh S, Schnoor J. Localization of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) in poplar and switchgrass plants using phosphor imager autoradiography. Environmental Pollution 2010:470-5. PMID:19782446; http://dx.doi.org/10.1016/j.envpol.2009.08.022
  • Cummins I, Dixon D, Freitag-Pohl S, Skipsey M, Edwards R. Multiple roles for plant glutathione transferases in xenobiotic detoxification. Drug Met Rev 2011; 43:266-80. PMID:21425939; http://dx.doi.org/10.3109/03602532.2011.552910
  • Klein M, Burla B, Martinoia E. The multidrug resistance-associated protein (MRP/ABCC) subfamily of ATP-binding cassette transporters in plants. FEBS Lett 2006; 580:1112-22. PMID:16375897; http://dx.doi.org/10.1016/j.febslet.2005.11.056
  • Grzam A, Martin MN, Hell R, Meyer AJ. γ-Glutamyl transpeptidase GGT4 initiates vacuolar degradation of glutathione S-conjugates in Arabidopsis. FEBS Lett 2007; 581:3131-8. PMID:17561001; http://dx.doi.org/10.1016/j.febslet.2007.05.071
  • Grzam A, Tennstedt P, Clemens S, Hell R, Meyer AJ. Vacuolar sequestration of glutathione S-conjugates outcompetes a possible degradation of the glutathione moiety by phytochelatin synthase. FEBS Lett 2006; 580:6384-90. PMID:17097087; http://dx.doi.org/10.1016/j.febslet.2006.10.050
  • Ohkama-Ohtsu N, Zhao P, Xiang C, Oliver D. Glutathione conjugates in the vacuole are degraded by γ-glutamyl transpeptidase GGT3 in Arabidopsis. Plant J 2007; 49:878-88. PMID:17316176; http://dx.doi.org/10.1111/j.1365-313X.2006.03005.x
  • Ohkama-Ohtsu N, Oikawa A, Zhao P, Xiang C, Saito K, Oliver D. A γ-glutamyl transpeptidase-independent pathway of glutathione catabolism to glutamate via 5-oxoproline in Arabidopsis. Plant Physiology 2008; 148:1603-13. PMID:18768907; http://dx.doi.org/10.1104/pp.108.125716
  • Paulose B, Chhikara S, Coomey J, Jung HI, Vatamaniuk O, Dhankher OP. A γ-glutamyl cyclotransferase protects Arabidopsis plants from heavy metal toxicity by recycling glutamate to maintain glutathione homeostasis. Plant Cell 2013; 25:4580-95. PMID:24214398; http://dx.doi.org/10.1105/tpc.113.111815
  • Mazelis M, Creveling RK. Five-oxoprolinase (l-pyroglutamate hydrolase) in higher plants: partial purification and characterization of the wheat germ enzyme. Plant Physiol 1978; 62:798-801. PMID:16660609; http://dx.doi.org/10.1104/pp.62.5.798
  • Beck A, Lendzian K, Oven M, Christmann A, Grill E. Phytochelatin synthase catalyzes key step in turnover of glutathione conjugates. Phytochemistry 2003; 62:423-31. PMID:12620355; http://dx.doi.org/10.1016/S0031-9422(02)00565-4
  • Wolf AE, Dietz KJ, Schroder P. Degradation of glutathione S-conjugates by a carboxypeptidase in the plant vacuole. FEBS Lett 1996; 384:31-4. PMID:8797797; http://dx.doi.org/10.1016/0014-5793(96)00272-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.