1,165
Views
16
CrossRef citations to date
0
Altmetric
Research Paper

The syntaxin 31-induced gene, LESION SIMULATING DISEASE1 (LSD1), functions in Glycine max defense to the root parasite Heterodera glycines

, , , &
Article: e977737 | Received 16 Jun 2014, Accepted 10 Sep 2014, Published online: 05 Feb 2015

References

  • Palade GE. Intracellular aspects of protein secretion. Science 1975; 189:347-58; PMID:1096303; http://dx.doi.org/10.1126/science.1096303
  • Novick P, Schekman R. Secretion and cell surface growth are blocked in a temperature sensitive mutant of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1979; 76:1858-62; http://dx.doi.org/10.1073/pnas.76.4.1858
  • Novick P, Field C, Schekman R. The identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 1980; 21:205-15; PMID:6996832; http://dx.doi.org/10.1016/0092-8674(80)90128-2
  • Novick P, Ferro S, Schekman R. Order of events in the yeast secretory pathway. Cell 1981; 25:461-9; PMID:7026045; http://dx.doi.org/10.1016/0092-8674(81)90064-7
  • Jahn R, Fasshauer D. Molecular machines governing exocytosis of synaptic vesicles. Nature 2012; 490:201-7; PMID:23060190; http://dx.doi.org/10.1038/nature11320
  • Lobingier BT, Nickerson DP, Lo S-Y, Merz AJ. SM proteins Sly1 and Vps33 co-assemble with Sec17 and SNARE complexes to oppose SNARE disassembly by Sec18. ELife 2014; PMID:24837546; http://dx.doi.org/10.7554/eLife.02272
  • Zhang Z, Feechan A, Pedersen C, Newman MA, Qiu JL, Olesen KL, Thordal-Christensen H. A SNARE-protein has opposing functions in penetration resistance and defence signalling pathways. Plant J 2007; 49:302-12; PMID:17241452; http://dx.doi.org/10.1111/j.1365-313X.2006.02961.x
  • Matsye PD, Lawrence GW, Youssef RM, Kim K-H, Matthews BF, Lawrence KS, Klink VP. The expression of a naturally occurring, truncated allele of an a-SNAP gene suppresses plant parasitic nematode infection. Plant Mol Biol 2012; 80:131-55; PMID:22689004; http://dx.doi.org/10.1007/s11103-012-9932-z
  • Pant SR, Matsye PD, McNeece BT, Sharma K, Krishnavajhala A, Lawrence GW, Klink VP. Syntaxin 31 functions in Glycine max resistance to the plant parasitic nematode Heterodera glycines Plant Mol Biol 2014; 85:107-21; PMID:24452833; http://dx.doi.org/10.1007/s11103-014-0172-2
  • Mayer U, Torres Ruiz RA, Berleth T, Mise´ra S, Ju¨rgens G. Mutations affecting body organization in the Arabidopsis embryo. Nature 1991; 353:402-7; http://dx.doi.org/10.1038/353402a0
  • Kwon C, Neu C, Pajonk S, Yun HS, Lipka U, Humphry M, Bau S, Straus M, Kwaaitaal M, Rampelt H, et al. Co-option of a default secretory pathway for plant immune responses. Nature 2008; 451:835-40; PMID:18273019; http://dx.doi.org/10.1038/nature06545
  • Hardwick KG, Pelham HR. SED5 encodes a 39-kD integral membrane protein required for vesicular transport between the ER and the Golgi complex. J Cell Biol 1992; 119:513-21; PMID:1400588; http://dx.doi.org/10.1083/jcb.119.3.513
  • Lukowitz W, Mayer U, Jürgens G. Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell 1996; 84:61-71; PMID:8548827; http://dx.doi.org/10.1016/S0092-8674(00)80993-9
  • Sanderfoot AA, Farhah F, Assaad FF, Natasha V, Raikhel NV. The Arabidopsis genome. An abundance of soluble N-ethylmaleimide-sensitive factor adaptor protein receptors. Plant Physiol 2001a; 124:1558-156; http://dx.doi.org/10.1104/pp.124.4.1558
  • Clary DO, Griff IC, Rothman JE. SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell 1990; 61:709-21; PMID:2111733; http://dx.doi.org/10.1016/0092-8674(90)90482-T
  • Lupashin VV, Pokrovskaya ID, McNew JA, Waters MG. Characterization of a novel yeast SNARE protein implicated in Golgi retrograde traffic. Mol Biol Cell 1997; 8:2659-76; PMID:9398683; http://dx.doi.org/10.1091/mbc.8.12.2659
  • Sanderfoot AA, Pilgrim M, Adam L, Raikhel NV. Disruption of individual members of Arabidopsis syntaxin gene families indicates each has essential functions. Plant Cell 2001b; 13:659-66; http://dx.doi.org/10.1105/tpc.13.3.659
  • Sanderfoot AA, Kovaleva V, Bassham DC, Raikhel NV. Interactions between Syntaxins Identify at Least five SNARE complexes within the Golgi/Prevacuolar system of the Arabidopsis cell. Mol Biol Cell 2001c; 12:3733-43; http://dx.doi.org/10.1091/mbc.12.12.3733
  • Bennett MK, Calakos N, Scheller RH. Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 1992; 257:255-9; PMID:1321498; http://dx.doi.org/10.1126/science.1321498
  • Boyd RS, Duggan MJ, Shone CC, Foster KA. The effect of botulinum neurotoxins on the release of insulin from the insulinoma cell lines HIT-15 and RINm5F J Biol Chem 1995; 270:18216-8; PMID:7629139; http://dx.doi.org/10.1074/jbc.270.31.18216
  • Vroemen CW, Langeveld S, Mayer U, Ripper G, Jurgens G, Van Kammen A, De Vries SC. Pattern formation in the Arabidopsis embryo revealed by position-specific lipid transfer protein gene expression. Plant Cell 1996; 8:783-91; PMID:12239400; http://dx.doi.org/10.1105/tpc.8.5.783
  • Lauber MH, Waizenegger I, Steinmann T, Schwarz H, Mayer U, Hwang I, Lukowitz W, Jürgens G. The Arabidopsis KNOLLE protein is a cytokinesis-specific syntaxin. J Cell Biol 1997; 139:1485-93; PMID:9396754; http://dx.doi.org/10.1083/jcb.139.6.1485
  • Burgess RW, Deitcher DL, Schwarz TL. The synaptic protein syntaxin1 is required for cellularization of Drosophila embryos. J Cell Biol 1997; 138:861-75; PMID:9265652; http://dx.doi.org/10.1083/jcb.138.4.861
  • Schulz JR, Wessel GM, Vacquier VD. The exocytosis regulatory proteins syntaxin and VAMP are shed from sea urchin sperm during the acrosome reaction. Dev Biol 1997; 191:80-7; PMID:9356173; http://dx.doi.org/10.1006/dbio.1997.8712
  • Neiman AM. Prospore membrane formation defines a developmentally regulated branch of the secretory pathway in yeast. J Cell Biol 1998; 140:29-37; PMID:9425151; http://dx.doi.org/10.1083/jcb.140.1.29
  • Peter F, Wong SH, Subramaniam VN, Tang BL, Hong W. Alpha-SNAP but not gamma-SNAP is required for ER-Golgi transport after vesicle budding and the Rab1-requiring step but before the EGTA-sensitive step. J Cell Sci 1998; 111:2625-33; PMID:9701561
  • Ramalho-Santos J, Moreno RD, Sutovsky P, Chan AW, Hewitson L, Wessel GM, Simerly CR, Schatten G. SNAREs in mammalian sperm: possible implications for fertilization. Dev Biol 2000; 223:54-69; PMID:10864460; http://dx.doi.org/10.1006/dbio.2000.9745
  • Waizenegger I, Lukowitz W, Assaad F, Schwarz H, Jürgens G, Mayer U. The Arabidopsis KNOLLE and KEULE genes interact to promote vesicle fusion during cytokinesis. Curr Biol 2000; 2:1371-4; http://dx.doi.org/10.1016/S0960-9822(00)00775-2
  • Babcock M, Macleod GT, Leither J, Pallanck L. Genetic analysis of soluble N ethylmaleimide-sensitive factor attachment protein function in Drosophila reveals positive and negative secretory roles. J Neurosci 2004; 24:3964-73; PMID:15102912; http://dx.doi.org/10.1523/JNEUROSCI.5259-03.2004
  • Hong K–K, Chakravarti A, Takahashi JS. The gene for soluble N-ethylmaleimide sensitive factor attachment protein a is mutated in hydrocephaly with hop gait (hyh) mice. Proc Natl Acad Sci USA 2004; 101:1748-53; PMID:14755058; http://dx.doi.org/10.1073/pnas.0308268100
  • Perrotta C, Bizzozero L, Cazzato D, Morlacchi S, Assi E, Simbari F, Zhang Y, Gulbins E, Bassi MT, Rosa P, et al. Syntaxin 4 is required for acid sphingomyelinase activity and apoptotic function. J Biol Chem 2010; 285: 40240-51; PMID:20956541; http://dx.doi.org/10.1074/jbc.M110.139287
  • Cotrufo T, Pérez-Brangulí F, Muhaisen A, Ros O, Andrés R, Baeriswyl T, Fuschini G, Tarrago T, Pascual M, Ureña J, et al. A signaling mechanism coupling netrin-1/deleted in colorectal cancer chemoattraction to SNARE-mediated exocytosis in axonal growth cones. J Neurosci 2011; 31:14463-80; PMID:21994363; http://dx.doi.org/10.1523/JNEUROSCI.3018-11.2011
  • Rodrıguez F, Bustos MA, Zanetti MN, Ruete MC, Mayorga LS, Tomes CN. a-SNAP prevents docking of the acrosome during sperm exocytosis because it sequesters monomeric syntaxin. PLoS One 2011; 6:e21925; PMID:21789195; http://dx.doi.org/10.1371/journal.pone.0021925
  • Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, Hückelhoven R, Stein M, Freialdenhoven A, Somerville SC, et al. SNARE-protein mediated disease resistance at the plant cell wall. Nature 2003; 425:973-7; PMID:14586469; http://dx.doi.org/10.1038/nature02076
  • Assaad FF, Qiu JL, Youngs H, Ehrhardt D, Zimmerli L, Kalde M, Wanner G, Peck SC, Edwards H, Ramonell K, et al. The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae. Mol Biol Cell 2004; 15:5118-29; PMID:15342780; http://dx.doi.org/10.1091/mbc.E04-02-0140
  • An Q, Ehlers K, Kogel KH, van Bel AJ, Hückelhoven R. Multivesicular compartments proliferate in susceptible and resistant MLA12-barley leaves in response to infection by the biotrophic powdery mildew fungus. New Phytol 2006a; 172:563-57; http://dx.doi.org/10.1111/j.1469-8137.2006.01844.x
  • An Q, Hückelhoven R, Kogel KH, van Bel AJ. Multivesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus. Cell Microbiol 2006b; 8:1009-19; http://dx.doi.org/10.1111/j.1462-5822.2006.00683.x
  • Kalde M, Nühse TS, Findlay K, Peck SC. The syntaxin SYP132 contributes to plant resistance against bacteria and secretion of pathogenesis-related protein 1. Proc Natl Acad Sci U S A 2007; 104:11850-5; PMID:17592123; http://dx.doi.org/10.1073/pnas.0701083104
  • Patel S, Dinesh-Kumar SP. Arabidopsis ATG6 is required to limit the pathogen-associated cell death response. Autophagy 2008; 4:20-7; PMID:17932459; http://dx.doi.org/10.4161/auto.5056
  • Hofius D, Schultz-Larsen T, Joensen J, Tsitsigiannis DI, Petersen NH, Mattsson O, Jørgensen LB, Jones JD, Mundy J, Petersen M. Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 2009; 137:773-83; PMID:19450522; http://dx.doi.org/10.1016/j.cell.2009.02.036
  • Lenz HD, Haller E, Melzer E, Kober K, Wurster K, Stahl M, Bassham DC, Vierstra RD, Parker JE, Bautor J, et al. Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. Plant J 2011; 66:818-30; PMID:21332848; http://dx.doi.org/10.1111/j.1365-313X.2011.04546.x
  • Lai Z, Wang F, Zheng Z, Fan B, Chen Z. A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. Plant J 2011; 66:953-68; PMID:21395886; http://dx.doi.org/10.1111/j.1365-313X.2011.04553.x
  • Cook DE, Lee TG, Guo X, Melito S, Wang K, Bayless A, Wang J, Hughes TJ, Willis DK, Clemente T, et al. Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 2012; 338:1206-9; PMID:23065905; http://dx.doi.org/10.1126/science.1228746
  • Esmon B, Novick P, Schekman R. Compartmentalized assembly of oligosaccharides on exported glycoproteins in yeast. Cell 1981; 25:451-60; PMID:7026044; http://dx.doi.org/10.1016/0092-8674(81)90063-5
  • Antoniw JF, Pierpoint WS. The purification and properties of one of the 'b" proteins from virus-infected tobacco plants. J Gen Virol 1978; 39:343-50; http://dx.doi.org/10.1099/0022-1317-39-2-343
  • Kauffmann S, Legrand M, Geoffroy P, Fritig B. Biological function of 'pathogenesis-related" proteins: four PR proteins of tobacco have 1,3-b-glucanase activity. EMBO J 1987; 6:3209-12; PMID:16453802
  • Legrand M, Kauffman S, Geoffroy P, Fritig B. Biological function of pathogenesis-related proteins: four tobacco pathogenesis related proteins are chitinases. Proc Natl Acad Sci USA 1987; 84: 6750-4; PMID:16578819; http://dx.doi.org/10.1073/pnas.84.19.6750
  • Kauffmann S, Legrand M, Fritig B. Isolation and characterization of six pathogenesis-related (PR) proteins of Samsun NN tobacco. Plant Mol Biol 1990; 14:381-90; PMID:2102821; http://dx.doi.org/10.1007/BF00028774
  • Falk A, Feys BJ, Frost LN, Jones JDG, Daniels MJ, Parker JE. EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc Natl Acad Sci U S A 1999; 96:3292-7
  • Feys BJ, Moisan LJ, Newman MA, Parker JE. Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J 2001; 20:5400-11; PMID:11574472; http://dx.doi.org/10.1093/emboj/20.19.5400
  • Zhou N, Tootle TL, Tsui F, Klessig DF, Glazebrook J. PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis. Plant Cell 1998; 10:1021-30; PMID:9634589; http://dx.doi.org/10.1105/tpc.10.6.1021
  • Nawrath C, Me´traux JP. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 1999; 11:1393-404; PMID:10449575
  • Nawrath C, Heck S, Parinthawong N, Me´traux J-P. EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell 2002; 14:275-86; PMID:11826312; http://dx.doi.org/10.1105/tpc.010376
  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM. Isochorismate synthase is required to synthesize salicylic acid for plant defense. Nature 2001; 414:562-5; PMID:11734859; http://dx.doi.org/10.1038/35107108
  • Niggeweg R, Thurow C, Kegler C, Gatz C. Tobacco transcription factor TGA2.2 is the main component of as-1-binding factor ASF1 and is involved in salicylic acid- and auxin-inducible expression of as-1-containing target promoters. J Biol Chem 2000; 275:19897-905; PMID:10751419; http://dx.doi.org/10.1074/jbc.M909267199
  • Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle ID, De Luca V, Despre C. The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep 2012; 1:639-47; PMID:22813739; http://dx.doi.org/10.1016/j.celrep.2012.05.008
  • Cao H, Bowling SA, Gordon AS, Dong X. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 1994; 6:1583-92; PMID:12244227; http://dx.doi.org/10.1105/tpc.6.11.1583
  • Delaney TP, Friedrich L, Ryals JA. Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci USA 1995; 92:6602-6; PMID:11607555; http://dx.doi.org/10.1073/pnas.92.14.6602
  • Glazebrook J, Rogers EE, Ausubel FM. Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics 1996; 143:973-98; PMID:8725243
  • Shah J, Tsui F, Klessig DF. Characterization of a salicylic acid insensitive mutant (sai1) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Mol Plant Microbe Interact 1997; 10:69-78; PMID:9002272; http://dx.doi.org/10.1094/MPMI.1997.10.1.69
  • Pieterse CMJ, Van Loon LC. NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 2004; 7:456-64; PMID:15231270; http://dx.doi.org/10.1016/j.pbi.2004.05.006
  • Dietrich RA, Delaney TP, Uknes SJ, Ward ER, Ryals JA, Dangl JL. Arabidopsis mutants simulating disease resistance response. Cell 1994; 77:565-77; PMID:8187176; http://dx.doi.org/10.1016/0092-8674(94)90218-6
  • Jabs T, Dietrich RA, Dangl JL. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 1996; 273:1853-6; PMID:8791589; http://dx.doi.org/10.1126/science.273.5283.1853
  • Dietrich RA, Richberg MH, Schmidt R, Dean C, Dangl JL. A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell 1997; 88:685-94; PMID:9054508; http://dx.doi.org/10.1016/S0092-8674(00)81911-X
  • Kliebenstein DJ, Dietrich RA, Martin AC, Last RL, Dangl JL. LSD1 regulates salicylic acid induction of copper zinc superoxide dismutase in Arabidopsis thaliana. Mol Plant Microbe Interact 1999; 12:1022-6; PMID:10550898; http://dx.doi.org/10.1094/MPMI.1999.12.11.1022
  • Epple P, Mack AA, Morris VR, Dangl JL. Antagonistic control of oxidative stress-induced cell death in Arabidopsis by two related, plant-specific zinc finger proteins. Proc Natl Acad Sci U S A 2001; 100:6831-6; http://dx.doi.org/10.1073/pnas.1130421100
  • Wituszynska W, Slesak I, Vanderauwera S, Szechynska-Hebda M, Kornas A, Van Der Kelen K, Mühlenbock P, Karpinska B, Mackowski S, Van Breusegem F, et al. Lesion simulating disease1, enhanced disease susceptibility1, and phytoalexin deficient4 conditionally regulate cellular signaling homeostasis, photosynthesis, water use efficiency, and seed yield in Arabidopsis. Plant Physiol 2013; 161:1795-805; PMID:23400705; http://dx.doi.org/10.1104/pp.112.208116
  • Liu S, Kandoth PK, Warren SD, Yeckel G, Heinz R, Alden J, Yang C, Jamai A, El-Mellouki T, Juvale PS, et al. A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature 2012; 492:256-60; PMID:23235880; http://dx.doi.org/10.1038/nature11651
  • Matthews BF, Beard H, MacDonald MH, Kabir S, Youssef RM, Hosseini P, Brewer E. Engineered resistance and hypersusceptibility through functional metabolic studies of 100 genes in soybean to its major pathogen, the soybean cyst nematode. Planta 2013; 237:1337-57; PMID:23389673; http://dx.doi.org/10.1007/s00425-013-1840-1
  • Vernooij, B, Friedrich, L, Ahl Goy, P, Staub, T, Kessmann, H, Ryals, J. 2,6-Dichloroisonicotinic acid-induced resistance to pathogens without the accumulation of salicylic acid. Mol Plant-Microbe Interact 1995; 8:228-34
  • Rusterucci C, Aviv DH, Holt BF 3rd, Dangl JL, Parker JE. The disease resistance signaling components EDS1 and PAD4 are essential regulators of the cell death pathway controlled by LSD1 in Arabidopsis. Plant Cell 2001; 13:2211-24; PMID:11595797; http://dx.doi.org/10.1105/tpc.13.10.2211
  • Aviv DH, Rusterucci C, Holt III BF, Dietrich RA, Parker JE, Jeffery L. Dangl JL. Runaway cell death, but not basal disease resistance, in lsd1 is SA- and NIM1/NPR1-dependent. Plant J 2002; 29: 381-91; PMID:11844114; http://dx.doi.org/10.1046/j.0960-7412.2001.01225.x
  • Mateo A, Muhlenbock P, Rusterucci C, Chang CC-C, Miszalski Z, Karpinska B, Parker JE, Mullineaux PM, Karpinski S. Lesion simulating disease 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiol 2004; 136: 2818-30; PMID:15347794; http://dx.doi.org/10.1104/pp.104.043646
  • Muhlenbock P, Plaszczyca M, Plaszczyca M, Mellerowicz E Karpinski S. Lysigenous aerenchyma formation in arabidopsis is controlled by lesion simulating disease1. Plant Cell 2007; 19:3819-30; PMID:18055613; http://dx.doi.org/10.1105/tpc.106.048843
  • Desikan R, Hancock JT, Coffey MJ, Neill SJ. Generation of active oxygen in elicited cells of Arabidopsis thaliana is mediated by a NADPH oxidase-like enzyme. FEBS Lett 1996; 382(1-2):213-7; PMID:8612756; http://dx.doi.org/10.1016/0014-5793(96)00177-9
  • Kadota Y, Sklenal J, Derbyshire P, Stransfeld L, Asai S, Ntoukakis V, Jones JDG, Shirasu K, Menke F, Jones A, et al. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Mol Cell 2014; 54:43-55; PMID:24630626; http://dx.doi.org/10.1016/j.molcel.2014.02.021
  • Wituszynska W, Slesak I, Vanderauwera S, Szechynska-Hebda M, Kornas A, Van Der Kelen K, Mühlenbock P, Karpinska B, Mackowski S, Van Breusegem F, et al. Lesion simulating disease1, enhanced disease susceptibility1, and phytoalexin deficient4 conditionally regulate cellular signaling homeostasis, photosynthesis, water use efficiency, and seed yield in Arabidopsis. Plant Physiol 2013; 161: 1795-1805; PMID:23400705
  • Caldwell BE, Brim CA, Ross JP. Inheritance of resistance of soybeans to the soybean cyst nematode, Heterodera glycines. Agron J 1960; 52:635-6; http://dx.doi.org/10.2134/agronj1960.00021962005200110007x
  • Matson AL, Williams LF. Evidence of a fourth gene for resistance to the soybean cyst nematode. Crop Sci 1965; 5:477; http://dx.doi.org/10.2135/cropsci1965.0011183X000500050032x
  • Kim M, Hyten DL, Bent AF, Diers BW. Fine mapping of the SCN resistance locus rhg1-b from PI 88788. Plant Genome 2010; 3:81-9; http://dx.doi.org/10.3835/plantgenome2010.02.0001
  • Matsye PD, Kumar R, Hosseini P, Jones CM, Tremblay A, Alkharouf NW, Matthews BF, Klink VP. Mapping cell fate decisions that occur during soybean defense responses. Plant Mol Biol 2011; 77:513-28; PMID:21986905; http://dx.doi.org/10.1007/s11103-011-9828-3
  • Cook DE, Bayless AM, Wang K, Guo X, Song Q Jiang, J, Bent AF. 2014. Distinct copy number, coding sequence and locus methylation patterns underlie Rhg1-mediated soybean resistance to soybean cyst nematode. Plant Physiol; 165:630-647.
  • Liu S, Kandoth PK, Warren SD, Yeckel G, Heinz R, Alden J, Yang C, Jamai A, El-Mellouki T, Juvale PS, et al. A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature 2012; 492:256-60; PMID:23235880; http://dx.doi.org/10.1038/nature11651
  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, et al. Genome sequence of the palaeopolyploid soybean. Nature 2010; 463:178-83; PMID:20075913; http://dx.doi.org/10.1038/nature08670
  • Banfield DK, Lewis MJ, Pelham HR. A SNARE-like protein required for traffic through the Golgi complex. Nature 1995; 375:806-9; PMID:7596416; http://dx.doi.org/10.1038/375806a0
  • Bubeck J, Scheuring D, Hummel E, Langhans M, Viotti C, Foresti O, Denecke J, Banfield DK, Robinson DG. The syntaxins SYP31 and SYP81 control ER-Golgi trafficking in the plant secretory pathway. Traffic 2008; 9:1629-52; PMID:18764818; http://dx.doi.org/10.1111/j.1600-0854.2008.00803.x
  • Melser S, Wattelet-Boyer V, Brandizzi F, Moreau P. Blocking ER export of the Golgi SNARE SYP31 affects plant growth. Plant Signal Behav 2009; 4:962-4; PMID:19826222; http://dx.doi.org/10.4161/psb.4.10.9643
  • Chatre L, Wattelet-Boyer V, Melser S, Maneta-Peyret L, Brandizzi F, Moreau P. A novel di-acidic motif facilitates ER export of the syntaxin SYP31. J Exp Bot 2009; 60:3157-65; PMID:19516076; http://dx.doi.org/10.1093/jxb/erp155
  • Endo BY. Histological responses of resistant and susceptible soybean varieties, and backcross progeny to entry development of Heterodera glycines. Phytopathology 1965; 55:375-81
  • Yokoyama R, Nishitani K. Endoxyloglucan transferase is localized both in the cell plate and in the secretory pathway destined for the apoplast in tobacco cells. Plant Cell Physiol 2001; 42: 292-300; PMID:11266580; http://dx.doi.org/10.1093/pcp/pce034
  • Matthews BF, Beard H, Brewer E, Kabir S, MacDonald MH, Youssef RM. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots. BMC Plant Biol 2014; 14:96; PMID:24739302; http://dx.doi.org/10.1186/1471-2229-14-96
  • Tepfer D. Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 1984; 37:959-67; PMID:6744417; http://dx.doi.org/10.1016/0092-8674(84)90430-6
  • Haas JH, Moore LW, Ream W, Manulis S. Universal PCR primers for detection of phytopathogenic Agrobacterium strains. Appl Environ Microbiol 1995; 61:2879-84; PMID:7487020
  • Hofgen R, Willmitzer L. Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 1988; 16:9877; PMID:3186459; http://dx.doi.org/10.1093/nar/16.20.9877
  • Jenkins WR. A rapid centrifugal flotation technique for separating nematodes from soil. Plant Dis Rep 1964; 48:692
  • Matthews B, MacDonald MH, Thai VK, Tucker ML. Molecular characterization of argenine kinase in the soybean cyst nematode (Heterodera glycines). J Nematol 2003; 35:252-8; PMID:19262758
  • Byrd DW Jr, Kirkpatrick T, Barker KR. An improved technique for clearing and staining plant tissue for detection of nematodes. J Nematol 1983; 15:142-3; PMID:19295781
  • Golden AM, Epps JM, Riggs RD, Duclos LA, Fox JA, Bernard RL. Terminology and identity of infraspecific forms of the soybean cyst nematode (Heterodera glycines). Plant Dis Rep 1970; 54:544-6
  • Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C, Richter J, et al. The gene ontology (GO) database and informatics resource. Nucleic Acids Res 2004; 32: D 258-61
  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 2012; 7:562-78; PMID:22383036; http://dx.doi.org/10.1038/nprot.2012.016
  • Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009; 25:1105-11; PMID:19289445; http://dx.doi.org/10.1093/bioinformatics/btp120
  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010; 28:511-5; PMID:20436464; http://dx.doi.org/10.1038/nbt.1621
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001; 25:402-8; http://dx.doi.org/10.1006/meth.2001.1262

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.