928
Views
12
CrossRef citations to date
0
Altmetric
Addendum

Species-specific photorespiratory rate, drought tolerance and isoprene emission rate in plants

, , &
Article: e990830 | Received 30 Sep 2014, Accepted 10 Nov 2014, Published online: 25 Mar 2015

References

  • Hartmann H. Will a 385 million year-struggle for light become a struggle for water and for carbon?–How trees may cope with more frequent climate change-type drought events. Global Change Biol 2011; 17:642-55; http://dx.doi.org/10.1111/j.1365-2486.2010.02248.x
  • Melillo JM, McGuire AD, Kicklighter DW, Moore B, Vorosmarty CJ, Schloss AL. Global climate change and terrestrial net primary production. Nature 1993; 363:234-40; http://dx.doi.org/10.1038/363234a0
  • Zhao M, Running SW. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 2010; 329:940-3; PMID:20724633; http://dx.doi.org/10.1126/science.1192666
  • Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos Chem Phys 2006; 6:3181-210; http://dx.doi.org/10.5194/acp-6-3181-2006
  • Vickers CE, Gershenzon J, Lerdau MT, Loreto F. A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nature Chemical Biol. 2009; 5:283-91; PMID:19377454; http://dx.doi.org/10.1038/nchembio.158
  • Dani KGS, Jamie IM, Prentice IC, Atwell BJ. Evolution of isoprene emission capacity in plants. Trends Plant Sci. 2014; 19:439-46; PMID:24582468; http://dx.doi.org/10.1016/j.tplants.2014.01.009
  • Monson RK, Jones RT, Rosenstiel TN, Schnitzler JP. Why only some plants emit isoprene. Plant Cell Environ. 2013; 36:503-16; PMID:22998549; http://dx.doi.org/10.1111/pce.12015
  • Sharkey TD, Monson RK. The future of isoprene emission from leaves, canopies and landscapes. Plant Cell Environ. 2014; 37:1727-40; PMID:24471530; http://dx.doi.org/10.1111/pce.12289
  • Loreto F, Schnitzler J-P. Abiotic stresses and induced BVOCs. Trends Plant Sci. 2010; 15:154-66; PMID:20133178; http://dx.doi.org/10.1016/j.tplants.2009.12.006
  • Delwiche CF, Sharkey TD. Rapid appearance of 13C in biogenic isoprene when 13CO2 is fed to intact leaves. Plant Cell Environ. 1993; 16:587-91; http://dx.doi.org/10.1111/j.1365-3040.1993.tb00907.x
  • Loreto F, Sharkey TD. On the relationship between isoprene emission and photosynthetic metabolites under different environmental conditions. Planta, 1993; 189:420-4; PMID:24178500; http://dx.doi.org/10.1007/BF00194440
  • Seemann M, Tse Sum Bui B, Wolff M, Miginiac-Maslow M, Rohmer M. Isoprenoid biosynthesis in plant chloroplasts via the MEP pathway: direct thylakoid/ferredoxin-dependent photoreduction of GcpE/IspG. FEBS Lett. 2006; 580:1547-52; PMID:16480720; http://dx.doi.org/10.1016/j.febslet.2006.01.082
  • Niinemets Ü, Tenhunen JD, Harley PC, Steinbrecher R. A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf photosynthetic properties for Liquidambar and Quercus. Plant Cell Environ. 1999; 22:1319-35; http://doi/10.1046/j.1365-3040.1999.00505.x/abstract
  • Harrison SP, Morfopoulos C, Dani KGS, Prentice IC, Arneth A, Atwell BJ, Barkley, P, Leishman M, Loreto F, Medlyn B, et al, Wright IJ. Volatile isoprenoid emission from plastids to planet. New Phytol. 2013; 197:49-57; PMID:23145556; http://dx.doi.org/10.1111/nph.12021/full
  • Selmar D, Kleinwächter M. Stress enhances the synthesis of secondary plant products: the impact of the stress-related over-reduction on the accumulation of natural products. Plant Cell Physiol 2013; 54:817-826; PMID:23612932; http://dx.doi.org/10.1093/pcp/pct054
  • Dani KGS, Jamie IM, Prentice IC, Atwell BJ. Increased ratio of electron transport to net assimilation rate supports elevated isoprenoid emission rate in eucalypts under drought. Plant Physiol 2014; 166:1-14; http://dx.doi.org/10.1104/pp.114.900492
  • Morfopoulos C, Sperlich D, Peñuelas J, Filella I, Llusià J, Medlyn BE, Niinemets U, Possell M, Sun Z, Prentice IC. A model of plant isoprene emission based on available reducing power captures responses to atmospheric CO2. New Phytol 2014; 203:125-139; PMID:24661143; http://dx.doi.org/10.1111/nph.12770/full
  • Niinemets Ü, Hauff K, Bertin N, Tenhunen JD, Steinbrecher R, Seufert G. Monoteprene emissions in relation to foliar photosynthetic and structural variables in Mediterranean evergreen Quercus species. New Phytologist 2002; 153:243-56; http://dx.doi.org/10.1046/j.0028-646X.2001.00323.x/full
  • Warren CR, Adams MA, Chen Z. Is photosynthesis related to concentrations of nitrogen and Rubisco in leaves of Australian native plants? Aust J Plant Physiol 2000; 27:407-16; http://dx.doi.org/10.1071/PP98162
  • Black CC Jr. Photosynthetic carbon fixation in relation to net CO2 uptake. Annu Rev Plant Physiol 1973; 24:253-86; http://dx.doi.org/10.1146/annurev.pp.24.060173.001345
  • Tenhunen JD, Lange OL, Gebel J, Beyschlag W, Weber JA. Changes in photosynthetic capacity, carboxylation efficiency, and CO2 compensation point associated with midday stomatal closure and midday depression of net CO2 exchange of leaves of Quercus suber. Planta 1984; 162:193-203; PMID:24253090
  • Rodríguez-Calcerrada J, Buatois B, Chiche E, Shahin O, Staudt M. Leaf isoprene emission declines in Quercus pubescens seedlings experiencing drought – Any implication of soluble sugars and mitochondrial respiration? Environ Expt Bot 2013; 85:36-42; http://dx.doi.org/10.1016/j.envexpbot.2012.08.001; PMID:Can't
  • Norby RJ, Wullschleger SD, Gunderson CA, Johnson DW, Ceulemans R. Tree responses to rising CO2 in field experiments: implications for the future forest. Plant Cell Environ 1999; 22:683-714; http://dx.doi.org/10.1046/j.1365-3040.1999.00391.x
  • Medlyn BE, Badeck F-W, De Pury DGG, Barton CVM, Broadmeadow M, Ceulemans R, DeAngelis P, Forstreuter M, Jach ME, Kellomachi S et al. Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant Cell Environ 1999; 22:1475-1495; http://dx.doi.org/10.1046/j.1365-3040.1999.00523.x
  • Haxeltine A, Prentice IC. A general model for the light-use efficiency of primary production. Funct. Ecol 1996; 10:551-61; http://www.jstor.org/stable/2390165; http://dx.doi.org/10.2307/2390165
  • Maire V, Martre P, Kattge J, Gastal F, Esser G, Fontaine S, Soussana J-F. The coordination of leaf photosynthesis links C and N fluxes in C3 plant species. PLoS One 2012; 7:e38345; http://dx.doi.org/10.1371/journal.pone.0038345

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.