1,440
Views
35
CrossRef citations to date
0
Altmetric
Short Communication

Interactive effects of nitric oxide and glutathione in mitigating copper toxicity of rice (Oryza sativa L.) seedlings

, &
Article: e991570 | Received 07 Oct 2014, Accepted 21 Oct 2014, Published online: 21 Apr 2015

References

  • Nagajyoti PC, Lee KD, Sreekanth TVM. Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 2010; 8:199-216; http://dx.doi.org/10.1007/s10311-010-0297-8
  • Yruela I. Copper in plants: acquisition, transport and interactions. Funct Plant Biol 2009; 36:409-30; http://dx.doi.org/10.1071/FP08288
  • Burkhead JL, Reynolds KAG, Abdel-Ghany SE, Cohu CM, Pilon M. Copper homeostasis. New Phytol 2009;182:799-816; PMID:19402880; http://dx.doi.org/10.1111/j.1469-8137.2009.02846.x
  • Fernandes JC, Henriques FS. Biochemical, physiological and structural effects of excess copper in plants. Bot Rev 1991; 57:247-73; http://dx.doi.org/10.1007/BF02858564
  • Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 2002; 7:405-10; PMID:12234732; http://dx.doi.org/10.1016/S1360-1385(02)02312-9
  • Mostofa MG, Seraj ZI, Fujita M. Exogenous sodium nitroprusside and glutathione alleviate copper toxicity by reducing copper uptake and oxidative damage in rice (Oryza sativa L.) seedlings. Protoplasma 2014; http://dx.doi.org/10.1007/s00709-014-0639-7
  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Queval G, Foyer CH. Glutathione in plants: an integrated overview. Plant Cell Env 2012; 35:454-8; http://dx.doi.org/10.1111/j.1365-3040.2011.02400.x
  • Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M, et al. Modulation of glutathione and its related enzymes in plants' responses to toxic metals and metalloids - a review. Environ Exp Bot 2012; 75:307-24.
  • Tausz M, Sˇircelj H, Grill D. The GSH system as a stress marker in plant ecophysiology: is a stress-response concept valid?. J Exp Bot 2004; 55:1955-62; PMID:15234995; http://dx.doi.org/10.1093/jxb/erh194
  • Gill SS, Tuteja N. Cadmium stress tolerance in crop plants: probing the role of sulfur. Plant Signal Behav 2011; 6:215-22; PMID:21330784; http://dx.doi.org/10.4161/psb.6.2.14880
  • Mostofa MG, Fujita M. Salicylic acid alleviates copper toxicity in rice (Oryza sativa L.) seedlings by up-regulating antioxidative and glyoxalase systems. Ecotoxicology 2013; 22:959-73; PMID:23579392; http://dx.doi.org/10.1007/s10646-013-1073-x
  • Chen F, Wang F, Wu FB, Mao WH, Zhang GP, Zhou M. Modulation of exogenous GSH on antioxidant defense system against Cd stress in two barley genotypes differing in Cd tolerance. Plant Physiol Biochem 2010; 48:663-72; PMID:20605723; http://dx.doi.org/10.1016/j.plaphy.2010.05.001
  • Cuypers A, Vangronsveld J, Clijsters H. Biphasic effect of copper on the ascorbate–glutathione pathway in primary leaves of Phaseolus vulgaris seedlings during the early stages of metal assimilation. Physiol Plant 2000;110:512-7; http://dx.doi.org/10.1111/j.1399-3054.2000.1100413.x
  • Nagalakshmi N, Prasad MNV. Responses of GSH cycle enzymes and GSH metabolism to Cu stress in Scenedesmus bijugatus. Plant Sci. 2001; 160:291-9; PMID:11164601; http://dx.doi.org/10.1016/S0168-9452(00)00392-7
  • Wójcik M, Tukiendorf A. Glutathione in adaptation of Arabidopsis thaliana to cadmium stress. Biol Plant 2011; 55:125-32; http://dx.doi.org/10.1007/s10535-011-0017-7
  • Kastori R, Petrovic M, Petrovic N. Effect of excess lead, cadmium, copper and zinc on water relations in sunflower. J Plant Nut 1992; 15:2427-39; http://dx.doi.org/10.1080/01904169209364485
  • Vernay P, Gauthier-Moussard C, Hitmi A. Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere 2007; 68:1563-75; PMID:17434568; http://dx.doi.org/10.1016/j.chemosphere.2007.02.052
  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A. Role of proline under changing environments. Plant Signal Behav 2012; 7:1456-66; PMID:22951402; http://dx.doi.org/10.4161/psb.21949
  • Backor M, Fahselt D, Wu CT. Free proline content is positively correlated with copper tolerance of the lichen photobiont Trebouxia erici (Chlorophyta). Plant Sci 2004; 167:151-157; http://dx.doi.org/10.1016/j.plantsci.2004.03.012
  • Chen SL, Kao CH. Cadmium induced changes in proline level and peroxidase activity in roots of rice seedlings. Plant Growth Regul 1995; 17:67-71.
  • Mostofa MG, Yoshida N, Fujita M. Spermidine pretreatment enhances heat tolerance in rice seedlings through modulating antioxidative and glyoxalase systems. Plant Growth Regul 2013; 73:31-44; http://dx.doi.org/10.1007/s10725-013-9865-9
  • Metwally A, Finkemeier I, Georgi M, Dietz KJ. Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 2003; 132:272-81; PMID:12746532; http://dx.doi.org/10.1104/pp.102.018457
  • Chang B, Yang L, Cong W, Zu Y, Tang Z. The improved resistance to high salinity induced by trehalose is associated with ionic regulation and osmotic adjustment in Catharanthus roseus. Plant Physiol Biochem 2014; 14:140-8; http://dx.doi.org/10.1016/j.plaphy.2014.02.001
  • Panda P, Nath S, Chanu TT, Sharma GD, Panda SK. Cadmium stress-induced oxidative stress and role of nitric oxide in rice (Oryza sativa L.). Acta Physiol Plant 2011; 33:1737-47; http://dx.doi.org/10.1007/s11738-011-0710-3
  • Cai Y, Cao F, Cheng W, Zhang G, Wu F. Modulation of exogenous glutathione in phytochelatins and photosynthetic performance against Cd stress in the two rice genotypes differing in Cd tolerance. Biol Trace Elem Res 2010; 143:1159-73; PMID:21191821; http://dx.doi.org/10.1007/s12011-010-8929-1
  • Kazemi N, Khavari-Nejad RA, Fahimi H, Saadatmand S, Nejad-Sattari T. Effects of exogenous salicylic acid and nitric oxide on lipid peroxidation and antioxidant enzyme activities in leaves of Brassica napus L. under nickel stress. Sci. Hortic 2010; 126:402-7; http://dx.doi.org/10.1016/j.scienta.2010.07.037
  • Koen E, Szymańska K, Klinguer A, Dobrowolska G, Besson-Bard A, Wendehenne D. Nitric oxide and glutathione impact the expression of iron uptake- and iron transport-related genes as well as the content of metals in A. thaliana plants grown under iron deficiency. Plant Signal Behav 2012; 7:1246-50; PMID:22902693; http://dx.doi.org/10.4161/psb.21548
  • Xu J, Yin H, Li Y, Liu X. Nitric oxide is associated with long-term zinc tolerance in Solanum nigrum. Plant Physiol 2010; 154:1319-34; PMID:20855519; http://dx.doi.org/10.1104/pp.110.162982
  • Xiong J, Fu G, Tao L, Zhu C. Roles of nitric oxide in alleviating heavy metal toxicity in plants. Arch Biochem Biophys 2010; 497:13-20; PMID:20193657; http://dx.doi.org/10.1016/j.abb.2010.02.014
  • Siddiqui MH, Al‑Whaibi MH, Basalah MO. Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 2011; 248:447-55; PMID:20827494; http://dx.doi.org/10.1007/s00709-010-0206-9
  • Corpas FJ, Alché JD, Barroso JB. Current overview of S-nitrosoglutathione (GSNO) in higher plants. Front Plant Sci. 2013; 4:1-3; PMID:23346092
  • Romero-Puertas MC, Rodríguez-Serrano M, Sandalio LM. Protein S-nitrosylation in plants under abiotic stress: an overview. Front Plant Sci 2013; 4:1-6; PMID:23346092; http://dx.doi.org/10.3389/fpls.2013.00373
  • Espunya MC, De Michele R, Gómez-Cadenas A, Martínez MC. S-Nitrosoglutathione is a component of wound- and salicylic acid-induced systemic responses in Arabidopsis thaliana. J Exp Bot 2012; 63:3219-27; PMID:22371078; http://dx.doi.org/10.1093/jxb/ers043
  • Barroso JB, Corpas FJ, Carreras A, Rodríguez-Serrano M, Esteban FJ, Fernández-Ocaña A, Chaki M, Romero-Puertas MC, Valderrama R, Sandalio LM, et al. Localization of S-nitrosoglutathione and expression of S-nitrosoglutathione reductase in pea plants under cadmium stress. J Exp Bot 2006; 57:1785-93; PMID:16595575; http://dx.doi.org/10.1093/jxb/erj175
  • Chaki M, Valderrama R, Fernández-Ocaña AM, Carreras A, Gómez-Rodríguez MV, Pedrajas JR, Begara-Morales JC, Sánchez-Calvo B, Luque F, Leterrier M, et al. Mechanical wounding induces a nitrosative stress by down-regulation of GSNO reductase and an increase in S-nitrosothiols in sunflower (Helianthus annuus) seedlings. J Exp Bot 2011; 62:1803-13; PMID:21172815; http://dx.doi.org/10.1093/jxb/erq358
  • Leterrier M, Chaki M, Airaki M, Valderrama R, Palma JM, Barroso JB, Corpas FJ. Function of S-nitrosoglutathione reductase (GSNOR) in plant development and under biotic/abiotic stress. Plant Signal Behav 2011; 6:789-93; PMID:21543898; http://dx.doi.org/10.4161/psb.6.6.15161

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.