1,020
Views
12
CrossRef citations to date
0
Altmetric
RESEARCH PAPER

Pretreatment of chemically-synthesized Aβ42 affects its biological activity in yeast

, &
Pages 404-410 | Received 24 Jun 2014, Accepted 19 Nov 2014, Published online: 08 Jan 2015

References

  • Morgan C, Colombres M, Nuñez MT, Inestrosa NC. Structure and function of amyloid in Alzheimer's disease. Prog Neurobiol 2004; 74:323-49; PMID:15649580; http://dx.doi.org/10.1016/j.pneurobio.2004.10.004
  • Steckmann T, Awan Z, Gerstman BS, Chapagain PP. Kinetics of peptide secondary structure conversion during amyloid β-protein fibrillogenesis. J Theor Biol 2012; 301:95-102; PMID:22586726; http://dx.doi.org/10.1016/j.jtbi.2012.02.012
  • Stefani M, Dobson CM. Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Molec Med (Berlin, Germany) 2003; 81:678-99
  • Zagorski MG, Yang J, Shao H, Ma K, Zeng H, Hong A. Methodological and chemical factors affecting amyloid β peptide amyloidogenicity. Methods Enzymol 1999; 309:189-204; PMID:10507025; http://dx.doi.org/10.1016/S0076-6879(99)09015-1
  • Chen J, Armstrong AH, Koehler AN, Hecht MH. Small molecule microarrays enable the discovery of compounds that bind the Alzheimer's Aβ peptide and reduce its cytotoxicity. J Am Chem Soc 2010; 132:17015-22; PMID:21062056; http://dx.doi.org/10.1021/ja107552s
  • Macreadie I, Lotfi-Miri M, Mohotti S, Shapira D, Bennett L, Varghese J. Validation of folate in a convenient yeast assay suited for identification of inhibitors of Alzheimer's Aβ aggregation. J Alzheimers Dis 2008; 15:391-6; PMID:18997292
  • Matlack KE, Tardiff DF, Narayan P, Hamamichi S, Caldwell KA, Caldwell GA, Lindquist S. Clioquinol promotes the degradation of metal-dependent amyloid-β (Aβ) oligomers to restore endocytosis and ameliorate Aβ toxicity. Proc Natl Acad Sci USA 2014; 111:4013-8; PMID:24591589; http://dx.doi.org/10.1073/pnas.1402228111
  • Park SK, Pegan SD, Mesecar AD, Jungbauer LM, LaDu MJ, Liebman SW. Development and validation of a yeast high-throughput screen for inhibitors of Aβ42 oligomerization. Dis model Mech 2011; 4:822-31; PMID:21810907; http://dx.doi.org/10.1242/dmm.007963
  • Roccatano D, Fioroni M, Zacharias M, Colombo G. Effect of hexafluoroisopropanol alcohol on the structure of melittin: a molecular dynamics simulation study. Protein Sci 2005; 14:2582-9; PMID:16155200; http://dx.doi.org/10.1110/ps.051426605
  • Lioudyno MI, Broccio M, Sokolov Y, Rasool S, Wu J, Alkire MT, Liu V, Kozak JA, Dennison PR, Glabe CG, et al. Effect of synthetic Aβ peptide oligomers and fluorinated solvents on Kv1.3 channel properties and membrane conductance. PloS One 2012; 7:e35090; PMID:22563377; http://dx.doi.org/10.1371/journal.pone.0035090
  • Selkoe DJ. Alzheimer's Disease is a synaptic failure. Science 2002; 298:789-91; PMID:12399581; http://dx.doi.org/10.1126/science.1074069
  • Yoshiike Y, Minai R, Matsuo Y, Chen YR, Kimura T, Takashima A. Amyloid oligomer conformation in a group of natively folded proteins. PloS One 2008; 3:e3235; PMID:18800165; http://dx.doi.org/10.1371/journal.pone.0003235
  • Kumar S, Walter J. Phosphorylation of amyloid β (Aβ) peptides - a trigger for formation of toxic aggregates in Alzheimer's disease. Aging 2011; 3:803-12; PMID:21869458
  • Ladiwala AR, Litt J, Kane RS, Aucoin DS, Smith SO, Ranjan S, Davis J, Van Nostrand WE, Tessier PM. Conformational differences between two amyloid β oligomers of similar size and dissimilar toxicity. J Biol Chem 2012; 287:24765-73; PMID:22547072; http://dx.doi.org/10.1074/jbc.M111.329763
  • Evangelisti E, Wright D, Zampagni M, Cascella R, Fiorillo C, Bagnoli S, Relini A, Nichino D, Scartabelli T, Nacmias B, et al. Lipid rafts mediate amyloid-induced calcium dyshomeostasis and oxidative stress in Alzheimer's disease. Curr Alzheimer Res 2013; 10:143-53; PMID:22950913; http://dx.doi.org/10.2174/1567205011310020004
  • Gella A, Durany N. Oxidative stress in Alzheimer disease. Cell Adh Migr 2009; 3:88-93; PMID:19372765; http://dx.doi.org/10.4161/cam.3.1.7402
  • Poojari C, Kukol A, Strodel B. How the amyloid-β peptide and membranes affect each other: An extensive simulation study. Biochim Biophys Acta 2013; 1828:327-39; PMID:22975281; http://dx.doi.org/10.1016/j.bbamem.2012.09.001
  • Mattson MP, Goodman Y. Different amyloidogenic peptides share a similar mechanism of neurotoxicity involving reactive oxygen species and calcium. Brain Res 1995; 676:219-24; PMID:7796173; http://dx.doi.org/10.1016/0006-8993(95)00148-J
  • Nakamura M, Shishido N, Nunomura A, Smith MA, Perry G, Hayashi Y, Nakayama K, Hayashi T. Three histidine residues of amyloid-β peptide control the redox activity of copper and iron. Biochemistry 2007; 46:12737-43; PMID:17929832; http://dx.doi.org/10.1021/bi701079z
  • Cali T, Ottolini D, Brini M. Mitochondria, calcium, and endoplasmic reticulum stress in Parkinson's disease. BioFactors (Oxford, England) 2011; 37:228-40; PMID:21674642; http://dx.doi.org/10.1002/biof.159
  • Ferreiro E, Baldeiras I, Ferreira IL, Costa RO, Rego AC, Pereira CF, Oliveira CR. Mitochondrial- and Endoplasmic Reticulum-Associated Oxidative Stress in Alzheimer's Disease: From Pathogenesis to Biomarkers. Int J Cell Biol 2012; 2012:23; PMID:22701485; http://dx.doi.org/10.1155/2012/735206
  • Selfridge JE, E L, Lu J, Swerdlow RH. Role of mitochondrial homeostasis and dynamics in Alzheimer's disease. Neurobiol Dis 2013; 51:3-12; PMID:22266017; 10; http://dx.doi.org/10.16/j.nbd.2011.12.057
  • Huang CJ, Haataja L, Gurlo T, Butler AE, Wu X, Soeller WC, Butler PC. Induction of endoplasmic reticulum stress-induced β-cell apoptosis and accumulation of polyubiquitinated proteins by human islet amyloid polypeptide. Am J Physiol Endocrinol Metab 2007; 293:E1656-62; PMID:17911343; http://dx.doi.org/10.1152/ajpendo.00318.2007
  • Umeda T, Tomiyama T, Sakama N, Tanaka S, Lambert MP, Klein WL, Mori H. Intraneuronal amyloid β oligomers cause cell death via endoplasmic reticulum stress, endosomal/lysosomal leakage, and mitochondrial dysfunction in vivo. J Neurosci Res 2011; 89:1031-42; PMID:21488093; http://dx.doi.org/10.1002/jnr.22640
  • Porzoor A, Macreadie IG. Application of yeast to study the tau and Amyloid-β abnormalities of Alzheimer's disease. J Alzheimers Dis 2013; 35; PMID:23396350
  • Xie L, Helmerhorst E, Taddei K, Plewright B, Van Bronswijk W, Martins R. Alzheimer's β-amyloid peptides compete for insulin binding to the insulin receptor. J Neurosci 2002; 22:Rc221; PMID:12006603
  • Wang HY, Lee DH, Davis CB, Shank RP. Amyloid peptide Abeta(1-42) binds selectively and with picomolar affinity to alpha7 nicotinic acetylcholine receptors. J Neurochem 2000; 75:1155-61; PMID:10936198; http://dx.doi.org/10.1046/j.1471-4159.2000.0751155.x
  • Renner M, Lacor PN, Velasco PT, Xu J, Contractor A, Klein WL, Triller A. Deleterious effects of amyloid β oligomers acting as an extracellular scaffold for mGluR5. Neuron 2010; 66:739-54; PMID:20547131; http://dx.doi.org/10.1016/j.neuron.2010.04.029
  • Lauren J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers. Nature 2009; 457:1128-32; PMID:19242475; http://dx.doi.org/10.1038/nature07761
  • Chacińska A, Woźny W, Boguta M, Misicka A, Brzyska M, Elbaum D. Effects of β-amyloid on proliferation and morphology of yeast Saccharomyces cerevisiae. Lett Pept Sci 2002; 9:197-201
  • Bharadwaj P, Waddington L, Varghese J, Macreadie IG. A new method to measure cellular toxicity of non-fibrillar and fibrillar Alzheimer's Aβ using yeast. J Alzheimers Dis 2008; 13:147-50; PMID:18376056
  • Ryan TM, Caine J, Mertens HD, Kirby N, Nigro J, Breheney K, Waddington LJ, Streltsov VA, Curtain C, Masters CL, et al. Ammonium hydroxide treatment of Abeta produces an aggregate free solution suitable for biophysical and cell culture characterization. PeerJ 2013; 1:e73; PMID:23678397; http://dx.doi.org/10.7717/peerj.73
  • Bharadwaj, P. Ph. D. Thesis. Yeast as a model for studying Aβ aggregation, toxicity and clearance. (2011); http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1403&context=theses
  • Bezsonov EE, Groenning M, Galzitskaya OV, Gorkovskii AA, Semisotnov GV, Selyakh IO, Ziganshin RH, Rekstina VV, Kudryashova IB, Kuznetsov SA, et al. Amyloidogenic peptides of yeast cell wall glucantransferase Bgl2p as a model for the investigation of its pH-dependent fibril formation. Prion 2013; 7:175-84; PMID:23208381; http://dx.doi.org/10.4161/pri.22992
  • Gorkovskii AA, Bezsonov EE, Plotnikova TA, Kalebina TS, Kulaev IS. Revealing of Saccharomyces cerevisiae yeast cell wall proteins capable of binding thioflavin T, a fluorescent dye specifically interacting with amyloid fibrils. Biochem (Mosc) 2009; 74:1219-24; PMID:19916936; http://dx.doi.org/10.1134/S0006297909110066
  • Kalebina TS, Plotnikova TA, Gorkovskii AA, Selyakh IO, Galzitskaya OV, Bezsonov EE, Gellissen G, Kulaev IS. Amyloid-like properties of Saccharomyces cerevisiae cell wall glucantransferase Bgl2p: prediction and experimental evidences. Prion 2008; 2:91-6; PMID:19098439; http://dx.doi.org/10.4161/pri.2.2.6645
  • Ramsook CB, Tan C, Garcia MC, Fung R, Soybelman G, Henry R, Litewka A, O'Meally S, Otoo HN, Khalaf RA, et al. Yeast cell adhesion molecules have functional amyloid-forming sequences. Eukaryotic cell 2010; 9:393-404; PMID:20038605; http://dx.doi.org/10.1128/EC.00068-09
  • Allen C, Buttner S, Aragon AD, Thomas JA, Meirelles O, Jaetao JE, Benn D, Ruby SW, Veenhuis M, Madeo F, et al. Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures. J Cell Biol 2006; 174:89-100; PMID:16818721; http://dx.doi.org/10.1083/jcb.200604072
  • Crescenzi O, Tomaselli S, Guerrini R, Salvadori S, D'Ursi AM, Temussi PA, Picone D. Solution structure of the Alzheimer amyloid β-peptide (1–42) in an apolar microenvironment. Eur J Biochem 2002; 269:5642-8; PMID:12423364; http://dx.doi.org/10.1046/j.1432-1033.2002.03271.x
  • LeVine H, 3rd. Thioflavine T interaction with synthetic Alzheimer's disease β-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci 1993; 2:404-10; PMID:8453378; http://dx.doi.org/10.1002/pro.5560020312

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.