4,553
Views
62
CrossRef citations to date
0
Altmetric
Review

Reprogramming during epithelial to mesenchymal transition under the control of TGFβ

, &
Pages 233-246 | Received 18 Jun 2014, Accepted 13 Oct 2014, Published online: 03 Apr 2015

References

  • Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139(5):871-90; PMID:19945376; http://dx.doi.org/10.1016/j.cell.2009.11.007
  • Bissell MJ, Rizki A, Mian IS. Tissue architecture: the ultimate regulator of breast epithelial function. Curr Opin Cell Biol 2003; 15(6):753-62; PMID:14644202; http://dx.doi.org/10.1016/j.ceb.2003.10.016
  • Hay ED. An overview of epithelio-mesenchymal transformation. Acta Anat (Basel) 1995; 154(1):8-20; PMID:8714286; http://dx.doi.org/10.1159/000147748
  • Ansieau S, Bastid J, Doreau A, Morel AP, Bouchet BP, Thomas C, Fauvet F, Puisieux I, Doglioni C, Piccinin S, et al. Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell 2008; 14(1):79-89; PMID:18598946; http://dx.doi.org/10.1016/j.ccr.2008.06.005
  • Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133(4):704-15; PMID:18485877; http://dx.doi.org/10.1016/j.cell.2008.03.027
  • Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 2008; 3(8):e2888; PMID:18682804; http://dx.doi.org/10.1371/journal.pone.0002888
  • Nieto MA. The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu Rev Cell Dev Biol 2011; 27:347-76; PMID:21740232; http://dx.doi.org/10.1146/annurev-cellbio-092910-154036
  • Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 2007; 7(6):415-28; PMID:17508028; http://dx.doi.org/10.1038/nrc2131
  • De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 2013; 13(2):97-110; PMID:23344542; http://dx.doi.org/10.1038/nrc3447
  • Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, Garcia De Herreros A. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2000; 2(2):84-9; PMID:10655587; http://dx.doi.org/10.1038/35000034
  • Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000; 2(2):76-83; PMID:10655586; http://dx.doi.org/10.1038/35000025
  • Hajra KM, Chen DY, Fearon ER. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 2002; 62(6):1613-8; PMID:11912130
  • Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M, Berx G, Cano A, Beug H, Foisner R. DEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 2005; 24(14):2375-85; PMID:15674322; http://dx.doi.org/10.1038/sj.onc.1208429
  • Vandewalle C, Comijn J, De Craene B, Vermassen P, Bruyneel E, Andersen H, Tulchinsky E, Van Roy F, Berx G. SIP1ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res 2005; 33(20):6566-78; PMID:16314317; http://dx.doi.org/10.1093/nar/gki965
  • Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004; 117(7):927-39; PMID:15210113; http://dx.doi.org/10.1016/j.cell.2004.06.006
  • Fang X, Cai Y, Liu J, Wang Z, Wu Q, Zhang Z, Yang CJ, Yuan L, Ouyang G. Twist2 contributes to breast cancer progression by promoting an epithelial-mesenchymal transition and cancer stem-like cell self-renewal. Oncogene 2011; 30(47):4707-20; PMID:21602879; http://dx.doi.org/10.1038/onc.2011.181
  • Perez-Moreno MA, Locascio A, Rodrigo I, Dhondt G, Portillo F, Nieto MA, Cano A. A new role for E12E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions. J Biol Chem 2001; 276(29):27424-31; PMID:11309385; http://dx.doi.org/10.1074/jbc.M100827200
  • Tan E-J, Thuault S, Caja L, Carletti T, Heldin C-H, Moustakas A. Regulation of transcription factor Twist expression by the DNA architectural protein high mobility group A2 during epithelial-to-mesenchymal transition. J Biol Chem 2012; 287(10):7134-45; PMID:22241470; http://dx.doi.org/10.1074/jbc.M111.291385
  • Thuault S, Valcourt U, Petersen M, Manfioletti G, Heldin C-H, Moustakas A. Transforming growth factor-b employs HMGA2 to elicit epithelial-mesenchymal transition. J Cell Biol 2006; 174(2):175-83; PMID:16831886; http://dx.doi.org/10.1083/jcb.200512110
  • Thuault S, Tan E-J, Peinado H, Cano A, Heldin C-H, Moustakas A. HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. J Biol Chem 2008; 283(48):33437-46; PMID:18832382; http://dx.doi.org/10.1074/jbc.M802016200
  • Tiwari N, Tiwari VK, Waldmeier L, Balwierz PJ, Arnold P, Pachkov M, Meyer-Schaller N, Schubeler D, van Nimwegen E, Christofori G. Sox4 is a master regulator of epithelial-mesenchymal transition by controlling Ezh2 expression and epigenetic reprogramming. Cancer Cell 2013; 23(6):768-83; PMID:23764001; http://dx.doi.org/10.1016/j.ccr.2013.04.020
  • Zhang J, Liang Q, Lei Y, Yao M, Li L, Gao X, Feng J, Zhang Y, Gao H, Liu DX, et al. SOX4 induces epithelial-mesenchymal transition and contributes to breast cancer progression. Cancer Res 2012; 72(17):4597-608; PMID:22787120; http://dx.doi.org/10.1158/0008-5472.CAN-12-1045
  • Dave N, Guaita-Esteruelas S, Gutarra S, Frias A, Beltran M, Peiro S, de Herreros AG. Functional cooperation between Snail1 and twist in the regulation of ZEB1 expression during epithelial to mesenchymal transition. J Biol Chem 2011; 286(14):12024-32; PMID:21317430; http://dx.doi.org/10.1074/jbc.M110.168625
  • Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J, Hartwell K, Onder TT, Gupta PB, Evans KW, et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci U S A 2010; 107(35):15449-54; PMID:20713713; http://dx.doi.org/10.1073/pnas.1004900107
  • Young RA. Control of the embryonic stem cell state. Cell 2011; 144(6):940-54; PMID:21414485; http://dx.doi.org/10.1016/j.cell.2011.01.032
  • Furuhashi M, Yagi K, Yamamoto H, Furukawa Y, Shimada S, Nakamura Y, Kikuchi A, Miyazono K, Kato M, Axin facilitates Smad3 activation in the transforming growth factor β signaling pathway. Mol Cell Biol 2001; 21(15):5132-41; PMID:11438668; http://dx.doi.org/10.1128/MCB.21.15.5132-5141.2001
  • Guo X, Ramirez A, Waddell DS, Li Z, Liu X, Wang X-F. Axin and GSK3-b control Smad3 protein stability and modulate TGF-b signaling. Genes Dev 2008; 22(1):106-20; PMID:18172167; http://dx.doi.org/10.1101/gad.1590908
  • Eger A, Stockinger A, Park J, Langkopf E, Mikula M, Gotzmann J, Mikulits W, Beug H, Foisner R. b-Catenin and TGFb signalling cooperate to maintain a mesenchymal phenotype after FosER-induced epithelial to mesenchymal transition. Oncogene 2004; 23(15):2672-80; PMID:14755243; http://dx.doi.org/10.1038/sj.onc.1207416
  • Kim Y, Kugler MC, Wei Y, Kim KK, Li X, Brumwell AN, Chapman HA. Integrin a3b1-dependent b-catenin phosphorylation links epithelial Smad signaling to cell contacts. J Cell Biol 2009; 184(2):309-22; PMID:19171760; http://dx.doi.org/10.1083/jcb.200806067
  • Liebner S, Cattelino A, Gallini R, Rudini N, Iurlaro M, Piccolo S, Dejana E. B-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. J Cell Biol 2004; 166(3):359-67; PMID:15289495; http://dx.doi.org/10.1083/jcb.200403050
  • Nawshad A, Medici D, Liu CC, Hay ED. TGFb3 inhibits E-cadherin gene expression in palate medial-edge epithelial cells through a Smad2-Smad4-LEF1 transcription complex. J Cell Sci 2007; 120(Pt 9):1646-53; PMID:17452626; http://dx.doi.org/10.1242/jcs.003129
  • Jian H, Shen X, Liu I, Semenov M, He X, Wang X-F. Smad3-dependent nuclear translocation of b-catenin is required for TGF-b1-induced proliferation of bone marrow-derived adult human mesenchymal stem cells. Genes Dev 2006; 20(6):666-74; PMID:16543220; http://dx.doi.org/10.1101/gad.1388806
  • Yook JI, Li XY, Ota I, Hu C, Kim HS, Kim NH, Cha SY, Ryu JK, Choi YJ, Kim J, et al. A Wnt-Axin2-GSK3b cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol 2006; 8(12):1398-406; PMID:17072303; http://dx.doi.org/10.1038/ncb1508
  • Labbé E, Lock L, Letamendia A, Gorska AE, Gryfe R, Gallinger S, Moses HL, Attisano L. Transcriptional cooperation between the transforming growth factor-b and Wnt pathways in mammary and intestinal tumorigenesis. Cancer Res 2007; 67(1):75-84; PMID:17210685; http://dx.doi.org/10.1158/0008-5472.CAN-06-2559
  • Roarty K, Serra R. Wnt5a is required for proper mammary gland development and TGF-b-mediated inhibition of ductal growth. Development 2007; 134(21):3929-39; PMID:17898001; http://dx.doi.org/10.1242/dev.008250
  • Roarty K, Baxley SE, Crowley MR, Frost AR, Serra R. Loss of TGF-b or Wnt5a results in an increase in Wntb-catenin activity and redirects mammary tumour phenotype. Breast Cancer Res 2009; 11(2):R19; PMID:19344510; http://dx.doi.org/10.1186/bcr2244
  • Shi J, Wang Y, Zeng L, Wu Y, Deng J, Zhang Q, Lin Y, Li J, Kang T, Tao M, et al. Disrupting the interaction of BRD4 with diacetylated Twist suppresses tumorigenesis in basal-like breast cancer. Cancer Cell 2014; 25(2):210-25; PMID:24525235; http://dx.doi.org/10.1016/j.ccr.2014.01.028
  • Placencio VR, Sharif-Afshar AR, Li X, Huang H, Uwamariya C, Neilson EG, Shen MM, Matusik RJ, Hayward SW, Bhowmick NA. Stromal transforming growth factor-b signaling mediates prostatic response to androgen ablation by paracrine Wnt activity. Cancer Res 2008; 68(12):4709-18; PMID:18559517; http://dx.doi.org/10.1158/0008-5472.CAN-07-6289
  • Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, Kah KJ, Bell G, Guo W, Rubin J, Richardson AL, et al. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 2011; 145(6):926-40; PMID:21663795; http://dx.doi.org/10.1016/j.cell.2011.04.029
  • Katsuno Y, Lamouille S, Derynck R. TGF-b signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol 2013; 25(1):76-84; PMID:23197193; http://dx.doi.org/10.1097/CCO.0b013e32835b6371
  • Moustakas A, Heldin C-H. Induction of epithelial-mesenchymal transition by transforming growth factor b. Semin Cancer Biol 2012; 22(5-6):446-54; PMID:22548724; http://dx.doi.org/10.1016/j.semcancer.2012.04.002
  • Gal A, Sjöblom T, Fedorova L, Imreh S, Beug H, Moustakas A. Sustained TGF b exposure suppresses Smad and non-Smad signalling in mammary epithelial cells, leading to EMT and inhibition of growth arrest and apoptosis. Oncogene 2008; 27(9):1218-30; PMID:17724470; http://dx.doi.org/10.1038/sj.onc.1210741
  • Miettinen PJ, Ebner R, Lopez AR, Derynck R. TGF-b induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 1994; 127(6 Pt 2):2021-36; PMID:7806579; http://dx.doi.org/10.1083/jcb.127.6.2021
  • Piek E, Moustakas A, Kurisaki A, Heldin C-H, ten Dijke P. TGF-b type I receptorALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J Cell Sci 1999; 112 (Pt 24):4557-68; PMID:10574705
  • Valcourt U, Kowanetz M, Niimi H, Heldin C-H, Moustakas A. TGF-b and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell 2005; 16(4):1987-2002; PMID:15689496
  • Janda E, Lehmann K, Killisch I, Jechlinger M, Herzig M, Downward J, Beug H, Grunert S. Ras and TGFb cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol 2002; 156(2):299-313; PMID:11790801; http://dx.doi.org/10.1083/jcb.200109037
  • Moustakas A, Heldin P. TGFb and matrix-regulated epithelial to mesenchymal transition. Biochim Biophys Acta 2014; 1840(8):2621-34; PMID:24561266; http://dx.doi.org/10.1016/j.bbagen.2014.02.004
  • Mercado-Pimentel ME, Runyan RB. Multiple transforming growth factor-b isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart. Cells Tissues Organs 2007; 185(1-3):146-56; PMID:17587820; http://dx.doi.org/10.1159/000101315
  • Azhar M, Runyan RB, Gard C, Sanford LP, Miller ML, Andringa A, Pawlowski S, Rajan S, Doetschman T. Ligand-specific function of transforming growth factor b in epithelial-mesenchymal transition in heart development. Dev Dyn 2009; 238(2):431-42; PMID:19161227; http://dx.doi.org/10.1002/dvdy.21854
  • Kokudo T, Suzuki Y, Yoshimatsu Y, Yamazaki T, Watabe T, Miyazono K. Snail is required for TGFb-induced endothelial-mesenchymal transition of embryonic stem cell-derived endothelial cells. J Cell Sci 2008; 121(Pt 20):3317-24; PMID:18796538; http://dx.doi.org/10.1242/jcs.028282
  • Luna-Zurita L, Prados B, Grego-Bessa J, Luxan G, del Monte G, Benguria A, Adams RH, Perez-Pomares JM, de la Pompa JL. Integration of a Notch-dependent mesenchymal gene program and Bmp2-driven cell invasiveness regulates murine cardiac valve formation. J Clin Invest 2010; 120(10):3493-507; PMID:20890042; http://dx.doi.org/10.1172/JCI42666
  • Townsend TA, Robinson JY, How T, DeLaughter DM, Blobe GC, Barnett JV. Endocardial cell epithelial-mesenchymal transformation requires Type III TGFb receptor interaction with GIPC. Cell Signal 2012; 24(1):247-56; PMID:21945156; http://dx.doi.org/10.1016/j.cellsig.2011.09.006
  • Stevens MV, Broka DM, Parker P, Rogowitz E, Vaillancourt RR, Camenisch TD. MEKK3 initiates transforming growth factor b 2-dependent epithelial-to-mesenchymal transition during endocardial cushion morphogenesis. Circ Res 2008; 103(12):1430-40; PMID:19008476; http://dx.doi.org/10.1161/CIRCRESAHA.108.180752
  • Medici D, Hay ED, Olsen BR. Snail and Slug promote epithelial-mesenchymal transition through b-catenin-T-cell factor-4-dependent expression of transforming growth factor-b3. Mol Biol Cell 2008; 19(11):4875-87
  • Jalali A, Zhu X, Liu C, Nawshad A. Induction of palate epithelial mesenchymal transition by transforming growth factor b3 signaling. Dev Growth Differ 2012; 54(6):633-48; PMID:22775504; http://dx.doi.org/10.1111/j.1440-169X.2012.01364.x
  • Kaartinen V, Haataja L, Nagy A, Heisterkamp N, Groffen J. TGFb3-induced activation of RhoARho-kinase pathway is necessary but not sufficient for epithelio-mesenchymal transdifferentiation: implications for palatogenesis. Int J Mol Med 2002; 9(6):563-70; PMID:12011971
  • Paruchuri S, Yang JH, Aikawa E, Melero-Martin JM, Khan ZA, Loukogeorgakis S, Schoen FJ, Bischoff J. Human pulmonary valve progenitor cells exhibit endothelialmesenchymal plasticity in response to vascular endothelial growth factor-A and transforming growth factor-b2. Circ Res 2006; 99(8):861-9; PMID:16973908; http://dx.doi.org/10.1161/01.RES.0000245188.41002.2c
  • Chen X, Xiao W, Liu X, Zeng M, Luo L, Wu M, Ye S, Liu Y. Blockade of JaggedNotch pathway abrogates transforming growth factor b2-induced epithelial-mesenchymal transition in human retinal pigment epithelium cells. Curr Mol Med 2014; 14(4):523-34; PMID:24694299; http://dx.doi.org/10.2174/1566524014666140331230411
  • Gotzmann J, Fischer AN, Zojer M, Mikula M, Proell V, Huber H, Jechlinger M, Waerner T, Weith A, Beug H, et al. A crucial function of PDGF in TGF-b-mediated cancer progression of hepatocytes. Oncogene 2006; 25(22):3170-85; PMID:16607286; http://dx.doi.org/10.1038/sj.onc.1209083
  • Xue G, Restuccia DF, Lan Q, Hynx D, Dirnhofer S, Hess D, Ruegg C, Hemmings BA. AktPKB-mediated phosphorylation of Twist1 promotes tumor metastasis via mediating cross-talk between PI3KAkt and TGF-b signaling axes. Cancer Discov 2012; 2(3):248-59; PMID:22585995; http://dx.doi.org/10.1158/2159-8290.CD-11-0270
  • Wyatt L, Wadham C, Crocker LA, Lardelli M, Khew-Goodall Y. The protein tyrosine phosphatase Pez regulates TGFb, epithelial-mesenchymal transition, and organ development. J Cell Biol 2007; 178(7):1223-35; PMID:17893246; http://dx.doi.org/10.1083/jcb.200705035
  • Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 2008; 9(6):582-9; PMID:18483486; http://dx.doi.org/10.1038/embor.2008.74
  • Wang B, Koh P, Winbanks C, Coughlan MT, McClelland A, Watson A, Jandeleit-Dahm K, Burns WC, Thomas MC, Cooper ME, et al. miR-200a Prevents renal fibrogenesis through repression of TGF-b2 expression. Diabetes 2011; 60(1):280-7; PMID:20952520; http://dx.doi.org/10.2337/db10-0892
  • Pickup M, Novitskiy S, Moses HL. The roles of TGFb in the tumour microenvironment. Nat Rev Cancer 2013; 13(11):788-99; PMID:24132110
  • Massagué J. TGFb signalling in context. Nat Rev Mol Cell Biol 2012; 13(10):616-30; PMID:22992590; http://dx.doi.org/10.1038/nrm3434
  • Moustakas A, Pardali K, Gaal A, Heldin C-H. Mechanisms of TGF-b signaling in regulation of cell growth and differentiation. Immunol Lett 2002; 82(1-2):85-91; PMID:12008039; http://dx.doi.org/10.1016/S0165-2478(02)00023-8
  • Smith AP, Verrecchia A, Faga G, Doni M, Perna D, Martinato F, Guccione E, Amati B. A positive role for Myc in TGFb-induced Snail transcription and epithelial-to-mesenchymal transition. Oncogene 2009; 28(3):422-30; PMID:18978814; http://dx.doi.org/10.1038/onc.2008.395
  • Yang L, Moses HL. Transforming growth factor b: tumor suppressor or promoter? Are host immune cells the answer? Cancer Res 2008; 68(22):9107-11; PMID:19010878; http://dx.doi.org/10.1158/0008-5472.CAN-08-2556
  • Moustakas A, Heldin C-H. Dynamic control of TGF-b signaling and its links to the cytoskeleton. FEBS Lett 2008; 582(14):2051-65; PMID:18375206; http://dx.doi.org/10.1016/j.febslet.2008.03.027
  • Deckers M, van Dinther M, Buijs J, Que I, Lowik C, van der Pluijm G, ten Dijke P. The tumor suppressor Smad4 is required for transforming growth factor b-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res 2006; 66(4):2202-9; PMID:16489022; http://dx.doi.org/10.1158/0008-5472.CAN-05-3560
  • Hesling C, Fattet L, Teyre G, Jury D, Gonzalo P, Lopez J, Vanbelle C, Morel AP, Gillet G, Mikaelian I, et al. Antagonistic regulation of EMT by TIF1g and Smad4 in mammary epithelial cells. EMBO Rep 2011; 12(7):665-72; PMID:21597466; http://dx.doi.org/10.1038/embor.2011.78
  • Sundqvist A, Zieba A, Vasilaki E, Herrera Hidalgo C, Soderberg O, Koinuma D, Miyazono K, Heldin C-H, Landegren U, ten Dijke P, et al. Specific interactions between Smad proteins and AP-1 components determine TGFb-induced breast cancer cell invasion. Oncogene 2013; 32(31):3606-15; PMID:22926518; http://dx.doi.org/10.1038/onc.2012.370
  • Termén S, Tan EJ, Heldin C-H, Moustakas A. p53 regulates epithelial-mesenchymal transition induced by transforming growth factor b. J Cell Physiol 2013; 228(4):801-13; PMID:23018556; http://dx.doi.org/10.1002/jcp.24229
  • Chang CJ, Chao CH, Xia W, Yang JY, Xiong Y, Li CW, Yu WH, Rehman SK, Hsu JL, Lee HH, et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 2011; 13(3):317-23; PMID:21336307; http://dx.doi.org/10.1038/ncb2173
  • Kim NH, Kim HS, Li XY, Lee I, Choi HS, Kang SE, Cha SY, Ryu JK, Yoon D, Fearon ER, et al. A p53miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J Cell Biol 2011; 195(3):417-33; PMID:22024162; http://dx.doi.org/10.1083/jcb.201103097
  • Herschkowitz JI, Zhao W, Zhang M, Usary J, Murrow G, Edwards D, Knezevic J, Greene SB, Darr D, Troester MA, et al. Comparative oncogenomics identifies breast tumors enriched in functional tumor-initiating cells. Proc Natl Acad Sci U S A 2012; 109(8):2778-83; PMID:21633010; http://dx.doi.org/10.1073/pnas.1018862108
  • Morishita A, Zaidi MR, Mitoro A, Sankarasharma D, Szabolcs M, Okada Y, D’Armiento J, Chada K. HMGA2 is a driver of tumor metastasis. Cancer Res 2013; 73(14):4289-99; PMID:23722545; http://dx.doi.org/10.1158/0008-5472.CAN-12-3848
  • Pegoraro S, Ros G, Piazza S, Sommaggio R, Ciani Y, Rosato A, Sgarra R, Del Sal G, Manfioletti G. HMGA1 promotes metastatic processes in basal-like breast cancer regulating EMT and stemness. Oncotarget 2013; 4(8):1293-308; PMID:23945276
  • Peinado H, Quintanilla M, Cano A. Transforming growth factor b-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem 2003; 278(23):21113-23; PMID:12665527; http://dx.doi.org/10.1074/jbc.M211304200
  • Vincent T, Neve EP, Johnson JR, Kukalev A, Rojo F, Albanell J, Pietras K, Virtanen I, Philipson L, Leopold PL, et al. A SNAIL1-SMAD34 transcriptional repressor complex promotes TGF-b mediated epithelial-mesenchymal transition. Nat Cell Biol 2009; 11(8):943-50; PMID:19597490; http://dx.doi.org/10.1038/ncb1905
  • Shirakihara T, Saitoh M, Miyazono K. Differential regulation of epithelial and mesenchymal markers by dEF1 proteins in epithelial mesenchymal transition induced by TGF-b. Mol Biol Cell 2007; 18(9):3533-44; PMID:17615296
  • Verschueren K, Remacle JE, Collart C, Kraft H, Baker BS, Tylzanowski P, Nelles L, Wuytens G, Su MT, Bodmer R, et al. SIP1, a novel zinc fingerhomeodomain repressor, interacts with Smad proteins and binds to 5’-CACCT sequences in candidate target genes. J Biol Chem 1999; 274(29):20489-98; PMID:10400677; http://dx.doi.org/10.1074/jbc.274.29.20489
  • Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL. Phosphatidylinositol 3-kinase function is required for transforming growth factor b-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 2000; 275(47):36803-10; PMID:10969078; http://dx.doi.org/10.1074/jbc.M005912200
  • Galliher AJ, Schiemann WP. Src phosphorylates Tyr284 in TGF-b type II receptor and regulates TGF-b stimulation of p38 MAPK during breast cancer cell proliferation and invasion. Cancer Res 2007; 67(8):3752-8; PMID:17440088; http://dx.doi.org/10.1158/0008-5472.CAN-06-3851
  • Lee MK, Pardoux C, Hall MC, Lee PS, Warburton D, Qing J, Smith SM, Derynck R. TGF-b activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J 2007; 26(17):3957-67; PMID:17673906; http://dx.doi.org/10.1038/sj.emboj.7601818
  • Mu Y, Sundar R, Thakur N, Ekman M, Gudey SK, Yakymovych M, Hermansson A, Dimitriou H, Bengoechea-Alonso MT, Ericsson J, et al. TRAF6 ubiquitinates TGFb type I receptor to promote its cleavage and nuclear translocation in cancer. Nat Commun 2011; 2:330; PMID:21629263; http://dx.doi.org/10.1038/ncomms1332
  • Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL. Regulation of the polarity protein Par6 by TGFb receptors controls epithelial cell plasticity. Science 2005; 307(5715):1603-9; PMID:15761148; http://dx.doi.org/10.1126/science.1105718
  • Dillon RL, Muller WJ. Distinct biological roles for the akt family in mammary tumor progression. Cancer Res 2010; 70(11):4260-4; PMID:20424120; http://dx.doi.org/10.1158/0008-5472.CAN-10-0266
  • Arboleda MJ, Lyons JF, Kabbinavar FF, Bray MR, Snow BE, Ayala R, Danino M, Karlan BY, Slamon DJ. Overexpression of AKT2protein kinase Bb leads to up-regulation of b1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. Cancer Res 2003; 63(1):196-206; PMID:12517798
  • Dillon RL, Marcotte R, Hennessy BT, Woodgett JR, Mills GB, Muller WJ. Akt1 and akt2 play distinct roles in the initiation and metastatic phases of mammary tumor progression. Cancer Res 2009; 69(12):5057-64; PMID:19491266; http://dx.doi.org/10.1158/0008-5472.CAN-08-4287
  • Cheng GZ, Chan J, Wang Q, Zhang W, Sun CD, Wang LH. Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res 2007; 67(5):1979-87; PMID:17332325; http://dx.doi.org/10.1158/0008-5472.CAN-06-1479
  • Villagrasa P, Diaz VM, Vinas-Castells R, Peiro S, Del Valle-Perez B, Dave N, Rodriguez-Asiain A, Casal JI, Lizcano JM, Dunach M, et al. Akt2 interacts with Snail1 in the E-cadherin promoter. Oncogene 2012; 31(36):4022-33; PMID:22158034; http://dx.doi.org/10.1038/onc.2011.562
  • Iliopoulos D, Polytarchou C, Hatziapostolou M, Kottakis F, Maroulakou IG, Struhl K, Tsichlis PN. MicroRNAs differentially regulated by Akt isoforms control EMT and stem cell renewal in cancer cells. Sci Signal 2009; 2(92):ra62; PMID:19825827; http://dx.doi.org/10.1126/scisignal.2000356
  • Lamouille S, Derynck R. Cell size and invasion in TGF-b-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J Cell Biol 2007; 178(3):437-51; PMID:17646396; http://dx.doi.org/10.1083/jcb.200611146
  • Lamouille S, Connolly E, Smyth JW, Akhurst RJ, Derynck R. TGF-b-induced activation of mTOR complex 2 drives epithelial-mesenchymal transition and cell invasion. J Cell Sci 2012; 125(Pt 5):1259-73; PMID:22399812; http://dx.doi.org/10.1242/jcs.095299
  • Serrano I, McDonald PC, Lock FE, Dedhar S. Role of the integrin-linked kinase (ILK)Rictor complex in TGFb-1-induced epithelial-mesenchymal transition (EMT). Oncogene 2013; 32(1):50-60; PMID:22310280; http://dx.doi.org/10.1038/onc.2012.30
  • Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 2009; 10(5):295-304; PMID:19308066; http://dx.doi.org/10.1038/nrg2540
  • Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011; 21(3):381-95; PMID:21321607; http://dx.doi.org/10.1038/cr.2011.22
  • Tam WL, Weinberg RA. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med 2013; 19(11):1438-49; PMID:24202396; http://dx.doi.org/10.1038/nm.3336
  • Wu CY, Tsai YP, Wu MZ, Teng SC, Wu KJ. Epigenetic reprogramming and post-transcriptional regulation during the epithelial-mesenchymal transition. Trends Genet 2012; 28(9):454-63; PMID:22717049; http://dx.doi.org/10.1016/j.tig.2012.05.005
  • Malouf GG, Taube JH, Lu Y, Roysarkar T, Panjarian S, Estecio MR, Jelinek J, Yamazaki J, Raynal NJ, Long H, et al. Architecture of epigenetic reprogramming following Twist1 mediated epithelial-mesenchymal transition. Genome Biol 2013; 14(12):R144; PMID:24367927; http://dx.doi.org/10.1186/gb-2013-14-12-r144
  • McDonald OG, Wu H, Timp W, Doi A, Feinberg AP. Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition. Nat Struct Mol Biol 2011; 18(8):867-74; PMID:21725293; http://dx.doi.org/10.1038/nsmb.2084
  • Dong C, Wu Y, Yao J, Wang Y, Yu Y, Rychahou PG, Evers BM, Zhou BP. G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer. J Clin Invest 2012; 122(4):1469-86; PMID:22406531; http://dx.doi.org/10.1172/JCI57349
  • Ramadoss S, Chen X, Wang CY. Histone demethylase KDM6B promotes epithelial-mesenchymal transition. J Biol Chem 2012; 287(53):44508-17; PMID:23152497; http://dx.doi.org/10.1074/jbc.M112.424903
  • Peinado H, Ballestar E, Esteller M, Cano A. Snail mediates E-cadherin repression by the recruitment of the Sin3Ahistone deacetylase 1 (HDAC1)HDAC2 complex. Mol Cell Biol 2004; 24(1):306-19; PMID:14673164; http://dx.doi.org/10.1128/MCB.24.1.306-319.2004
  • Dong C, Wu Y, Wang Y, Wang C, Kang T, Rychahou PG, Chi YI, Evers BM, Zhou BP. Interaction with Suv39H1 is critical for Snail-mediated E-cadherin repression in breast cancer. Oncogene 2013; 32(11):1351-62; PMID:22562246; http://dx.doi.org/10.1038/onc.2012.169
  • Herranz N, Pasini D, Diaz VM, Franci C, Gutierrez A, Dave N, Escriva M, Hernandez-Munoz I, Di Croce L, Helin K, et al. Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol Cell Biol 2008; 28(15):4772-81; PMID:18519590; http://dx.doi.org/10.1128/MCB.00323-08
  • Lin T, Ponn A, Hu X, Law BK, Lu J. Requirement of the histone demethylase LSD1 in Snai1-mediated transcriptional repression during epithelial-mesenchymal transition. Oncogene 2010; 29(35):4896-904; PMID:20562920; http://dx.doi.org/10.1038/onc.2010.234
  • Peinado H, Del Carmen Iglesias-de la Cruz M, Olmeda D, Csiszar K, Fong KS, Vega S, Nieto MA, Cano A, Portillo F. A molecular role for lysyl oxidase-like 2 enzyme in snail regulation and tumor progression. EMBO J 2005; 24(19):3446-58; PMID:16096638; http://dx.doi.org/10.1038/sj.emboj.7600781
  • Lin Y, Wu Y, Li J, Dong C, Ye X, Chi YI, Evers BM, Zhou BP. The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1. EMBO J 2010; 29(11):1803-16; PMID:20389281; http://dx.doi.org/10.1038/emboj.2010.63
  • Millanes-Romero A, Herranz N, Perrera V, Iturbide A, Loubat-Casanovas J, Gil J, Jenuwein T, Garcia de Herreros A, Peiro S. Regulation of heterochromatin transcription by Snail1LOXL2 during epithelial-to-mesenchymal transition. Mol Cell 2013; 52(5):746-57; PMID:24239292
  • Javaid S, Zhang J, Anderssen E, Black JC, Wittner BS, Tajima K, Ting DT, Smolen GA, Zubrowski M, Desai R, et al. Dynamic chromatin modification sustains epithelial-mesenchymal transition following inducible expression of Snail-1. Cell Rep 2013; 5(6):1679-89; PMID:24360956; http://dx.doi.org/10.1016/j.celrep.2013.11.034
  • Yang F, Sun L, Li Q, Han X, Lei L, Zhang H, Shang Y. SET8 promotes epithelial-mesenchymal transition and confers TWIST dual transcriptional activities. EMBO J 2012; 31(1):110-23; PMID:21983900; http://dx.doi.org/10.1038/emboj.2011.364
  • Stadler SC, Vincent CT, Fedorov VD, Patsialou A, Cherrington BD, Wakshlag JJ, Mohanan S, Zee BM, Zhang X, Garcia BA, et al. Dysregulation of PAD4-mediated citrullination of nuclear GSK3b activates TGF-b signaling and induces epithelial-to-mesenchymal transition in breast cancer cells. Proc Natl Acad Sci U S A 2013; 110(29):11851-6; PMID:23818587; http://dx.doi.org/10.1073/pnas.1308362110
  • Dumont N, Wilson MB, Crawford YG, Reynolds PA, Sigaroudinia M, Tlsty TD. Sustained induction of epithelial to mesenchymal transition activates DNA methylation of genes silenced in basal-like breast cancers. Proc Natl Acad Sci U S A 2008; 105(39):14867-72; PMID:18806226; http://dx.doi.org/10.1073/pnas.0807146105
  • Lombaerts M, van Wezel T, Philippo K, Dierssen JW, Zimmerman RM, Oosting J, van Eijk R, Eilers PH, van de Water B, Cornelisse CJ, et al. E-cadherin transcriptional downregulation by promoter methylation but not mutation is related to epithelial-to-mesenchymal transition in breast cancer cell lines. Br J Cancer 2006; 94(5):661-71; PMID:16495925
  • Papageorgis P, Lambert AW, Ozturk S, Gao F, Pan H, Manne U, Alekseyev YO, Thiagalingam A, Abdolmaleky HM, Lenburg M, et al. Smad signaling is required to maintain epigenetic silencing during breast cancer progression. Cancer Res 2010; 70(3):968-78; PMID:20086175; http://dx.doi.org/10.1158/0008-5472.CAN-09-1872
  • Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 2009; 11(3):228-34; PMID:19255566; http://dx.doi.org/10.1038/ncb0309-228
  • Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10(5):593-601; PMID:18376396; http://dx.doi.org/10.1038/ncb1722
  • Korpal M, Lee ES, Hu G, Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 2008; 283(22):14910-4; PMID:18411277; http://dx.doi.org/10.1074/jbc.C800074200
  • Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, Goodall GJ. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 2008; 68(19):7846-54; PMID:18829540; http://dx.doi.org/10.1158/0008-5472.CAN-08-1942
  • Gregory PA, Bracken CP, Smith E, Bert AG, Wright JA, Roslan S, Morris M, Wyatt L, Farshid G, Lim YY, et al. An autocrine TGF-bZEBmiR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Mol Biol Cell 2011; 22(10):1686-98; PMID:21411626; http://dx.doi.org/10.1091/mbc.E11-02-0103
  • Samavarchi-Tehrani P, Golipour A, David L, Sung HK, Beyer TA, Datti A, Woltjen K, Nagy A, Wrana JL. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 2010; 7(1):64-77; PMID:20621051; http://dx.doi.org/10.1016/j.stem.2010.04.015
  • Siemens H, Jackstadt R, Hunten S, Kaller M, Menssen A, Gotz U, Hermeking H. miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle 2011; 10(24):4256-71; PMID:22134354; http://dx.doi.org/10.4161/cc.10.24.18552
  • Kong W, Yang H, He L, Zhao JJ, Coppola D, Dalton WS, Cheng JQ. MicroRNA-155 is regulated by the transforming growth factor bSmad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 2008; 28(22):6773-84; PMID:18794355; http://dx.doi.org/10.1128/MCB.00941-08
  • Johansson J, Berg T, Kurzejamska E, Pang MF, Tabor V, Jansson M, Roswall P, Pietras K, Sund M, Religa P, et al. MiR-155-mediated loss of CEBPb shifts the TGF-b response from growth inhibition to epithelial-mesenchymal transition, invasion and metastasis in breast cancer. Oncogene 2013; 32(50):5614-24; PMID:23955085; http://dx.doi.org/10.1038/onc.2013.322
  • Li CH, Chen Y. Targeting long non-coding RNAs in cancers: progress and prospects. Int J Biochem Cell Biol 2013; 45(8):1895-910; PMID:23748105; http://dx.doi.org/10.1016/j.biocel.2013.05.030
  • Padua Alves C, Fonseca AS, Muys BR, de Barros ELBR, Burger MC, de Souza JE, Valente V, Zago MA, Silva WA Jr. Brief report: The lincRNA Hotair is required for epithelial-to-mesenchymal transition and stemness maintenance of cancer cell lines. Stem Cells 2013; 31(12):2827-32; PMID:24022994; http://dx.doi.org/10.1002/stem.1547
  • Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010; 464(7291):1071-6; PMID:20393566; http://dx.doi.org/10.1038/nature08975
  • Matouk IJ, Raveh E, Abu-lail R, Mezan S, Gilon M, Gershtain E, Birman T, Gallula J, Schneider T, Barkali M, et al. Oncofetal H19 RNA promotes tumor metastasis. Biochim Biophys Acta 2014; 1843(7):1414-26
  • Fan Y, Shen B, Tan M, Mu X, Qin Y, Zhang F, Liu Y. TGF-b-Induced Upregulation of malat1 promotes bladder cancer metastasis by associating with suz12. Clin Cancer Res 2014; 20(6):1531-41; PMID:24449823; http://dx.doi.org/10.1158/1078-0432.CCR-13-1455
  • Li R, Liang J, Ni S, Zhou T, Qing X, Li H, He W, Chen J, Li F, Zhuang Q, et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 2010; 7(1):51-63; PMID:20621050; http://dx.doi.org/10.1016/j.stem.2010.04.014
  • Liu X, Sun H, Qi J, Wang L, He S, Liu J, Feng C, Chen C, Li W, Guo Y, et al. Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT-MET mechanism for optimal reprogramming. Nat Cell Biol 2013; 15(7):829-38; PMID:23708003; http://dx.doi.org/10.1038/ncb2765
  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003; 100(7):3983-8; PMID:12629218; http://dx.doi.org/10.1073/pnas.0530291100
  • Yamanaka S, Blau HM. Nuclear reprogramming to a pluripotent state by three approaches. Nature 2010; 465(7299):704-12; PMID:20535199; http://dx.doi.org/10.1038/nature09229
  • Hollier BG, Tinnirello AA, Werden SJ, Evans KW, Taube JH, Sarkar TR, Sphyris N, Shariati M, Kumar SV, Battula VL, et al. FOXC2 expression links epithelial-mesenchymal transition and stem cell properties in breast cancer. Cancer Res 2013; 73(6):1981-92; PMID:23378344; http://dx.doi.org/10.1158/0008-5472.CAN-12-2962
  • Smith CL, Baek ST, Sung CY, Tallquist MD. Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling. Circ Res 2011; 108(12):e15-26; PMID:21512159; http://dx.doi.org/10.1161/CIRCRESAHA.110.235531
  • Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, Inui M, Montagner M, Parenti AR, Poletti A (), et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 2011; 147(4):759-72; PMID:22078877; http://dx.doi.org/10.1016/j.cell.2011.09.048
  • Morel AP, Hinkal GW, Thomas C, Fauvet F, Courtois-Cox S, Wierinckx A, Devouassoux-Shisheboran M, Treilleux I, Tissier A, Gras B, et al. EMT inducers catalyze malignant transformation of mammary epithelial cells and drive tumorigenesis towards claudin-low tumors in transgenic mice. PLoS Genet 2012; 8(5):e1002723; PMID:22654675; http://dx.doi.org/10.1371/journal.pgen.1002723
  • Frisch SM, Schaller M, Cieply B. Mechanisms that link the oncogenic epithelial-mesenchymal transition to suppression of anoikis. J Cell Sci 2013; 126(Pt 1):21-9; PMID:23516327; http://dx.doi.org/10.1242/jcs.120907
  • Xing F, Okuda H, Watabe M, Kobayashi A, Pai SK, Liu W, Pandey PR, Fukuda K, Hirota S, Sugai T, et al. Hypoxia-induced Jagged2 promotes breast cancer metastasis and self-renewal of cancer stem-like cells. Oncogene 2011; 30(39):4075-86; PMID:21499308; http://dx.doi.org/10.1038/onc.2011.122
  • Louie E, Nik S, Chen JS, Schmidt M, Song B, Pacson C, Chen XF, Park S, Ju J, Chen EI. Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation. Breast Cancer Res 2010; 12(6):R94; PMID:21067584; http://dx.doi.org/10.1186/bcr2773
  • Lock FE, McDonald PC, Lou Y, Serrano I, Chafe SC, Ostlund C, Aparicio S, Winum JY, Supuran CT, Dedhar S. Targeting carbonic anhydrase IX depletes breast cancer stem cells within the hypoxic niche. Oncogene 2013; 32(44):5210-9; PMID:23208505; http://dx.doi.org/10.1038/onc.2012.550
  • Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, Isakoff SJ, Ciciliano JC, Wells MN, Shah AM, et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 2013; 339(6119):580-4; PMID:23372014; http://dx.doi.org/10.1126/science.1228522
  • Assoian RK, Komoriya A, Meyers CA, Miller DM, Sporn MB. Transforming growth factor-b in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem 1983; 258(11):7155-60; PMID:6602130
  • Lip GY, Chin BS, Blann AD. Cancer and the prothrombotic state. Lancet Oncol 2002; 3(1):27-34; PMID:11908507; http://dx.doi.org/10.1016/S1470-2045(01)00619-2
  • Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 2011; 20(5):576-90; PMID:22094253; http://dx.doi.org/10.1016/j.ccr.2011.09.009
  • Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer 2011; 11(2):123-34; PMID:21258396; http://dx.doi.org/10.1038/nrc3004
  • Algra AM, Rothwell PM. Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol 2012; 13(5):518-27; PMID:22440112; http://dx.doi.org/10.1016/S1470-2045(12)70112-2
  • Rothwell PM, Wilson M, Price JF, Belch JF, Meade TW, Mehta Z. Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet 2012; 379(9826):1591-601; PMID:22440947; http://dx.doi.org/10.1016/S0140-6736(12)60209-8
  • Kondo M, Cubillo E, Tobiume K, Shirakihara T, Fukuda N, Suzuki H, Shimizu K, Takehara K, Cano A, Saitoh M, et al. A role for Id in the regulation of TGF-b-induced epithelial-mesenchymal transdifferentiation. Cell Death Differ 2004; 11(10):1092-101; PMID:15181457; http://dx.doi.org/10.1038/sj.cdd.4401467
  • Kowanetz M, Valcourt U, Bergstrom R, Heldin CH, Moustakas A. Id2 and Id3 define the potency of cell proliferation and differentiation responses to transforming growth factor b and bone morphogenetic protein. Mol Cell Biol 2004; 24(10):4241-54; PMID:15121845; http://dx.doi.org/10.1128/MCB.24.10.4241-4254.2004
  • Buijs JT, Henriquez NV, van Overveld PG, van der Horst G, ten Dijke P, van der Pluijm G. TGF-b and BMP7 interactions in tumour progression and bone metastasis. Clin Exp Metastasis 2007; 24(8):609-17; PMID:18008174; http://dx.doi.org/10.1007/s10585-007-9118-2
  • Stankic M, Pavlovic S, Chin Y, Brogi E, Padua D, Norton L, Massagué J, Benezra R. TGF-b-Id1 signaling opposes twist1 and promotes metastatic colonization via a mesenchymal-to-epithelial transition. Cell Rep 2013; 5(5):1228-42; PMID:24332369; http://dx.doi.org/10.1016/j.celrep.2013.11.014
  • Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 2012; 22(6):725-36; PMID:23201165; http://dx.doi.org/10.1016/j.ccr.2012.09.022
  • Akhurst RJ, Hata A. Targeting the TGFb signalling pathway in disease. Nat Rev Drug Discov 2012; 11(10):790-811; PMID:23000686; http://dx.doi.org/10.1038/nrd3810

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.