2,470
Views
31
CrossRef citations to date
0
Altmetric
REVIEW

The song of the old mother: Reproductive senescence in female drosophila

, , , , , , & show all
Pages 127-139 | Received 18 Apr 2014, Accepted 04 Sep 2014, Published online: 18 Dec 2014

References

  • Finch CE. Longevity, Senescence, and the Genome. Chicago: University of Chicago Press Books, 1990, 938 p.
  • Grotewiel MS, Martin I, Bhandari P, Cook-Wiens E. Functional senescence in Drosophila melanogaster. Ageing Res Rev 2005; 4:372-97; PMID:16024299; http://dx.doi.org/10.1016/j.arr.2005.04.001
  • Nussey DH, Froy H, Lemaitre JF, Gaillard JM, Austad SN. Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology. Ageing Res Rev 2013; 12:214-25; PMID:22884974; http://dx.doi.org/10.1016/j.arr.2012.07.004
  • Female age-related fertility decline. Committee Opinion No. 589. Fertil Steril 2014; 101:633-4; PMID:24559617; http://dx.doi.org/10.1016/j.fernstert.2013.12.032
  • Schnakenberg SL, Siegal ML, Bloch Qazi MC. Oh, the places they’ll go: Female sperm storage and sperm precedence in Drosophila melanogaster. Spermatogenesis 2012; 2:224-35; PMID:23087839; http://dx.doi.org/10.4161/spmg.21655
  • Sirot LK, LaFlamme BA, Sitnik JL, Rubinstein CD, Avila FW, Chow CY, Wolfner MF. Molecular social interactions: Drosophila melanogaster seminal fluid proteins as a case study. Adv Genet 2009; 68:23-56; PMID:20109658; http://dx.doi.org/10.1016/S0065-2660(09)68002-0
  • Shaw P, Ocorr K, Bodmer R, Oldham S. Drosophila aging 2006/2007. Exp Gerontol 2008; 43:5-10; PMID:18061385; http://dx.doi.org/10.1016/j.exger.2007.10.008
  • Gromko MH, Pyle DW. Sperm competition, male fitness, and repeated mating by female Drosophila melanogaster. Evolution 1978; 32:588-93; http://dx.doi.org/10.2307/2407724
  • Letsinger JT, Gromko MH. The role of sperm numbers in sperm competition and female remating in Drosophila melanogaster. Genetica 1985; 66:195-202; http://dx.doi.org/10.1007/BF00128040
  • Clark AG, Begun DJ. Female genotypes affect sperm displacement in Drosophila. Genetics 1998; 149:1487-93; PMID:9649536
  • Manier MK, Belote JM, Berben KS, Novikov D, Stuart WT, Pitnick S. Resolving mechanisms of competitive fertilization success in Drosophila melanogaster. Science 2010; 328:354-7; PMID:20299550; http://dx.doi.org/10.1126/science.1187096
  • Bloch Qazi MC, Hogdal L. Hold on: females modulate sperm depletion from storage sites in the fly Drosophila melanogaster. J Insect Physiol 2010; 56:1332-40; PMID:20433844; http://dx.doi.org/10.1016/j.jinsphys.2010.04.014
  • Adams EM, Wolfner MF. Seminal proteins but not sperm induce morphological changes in the Drosophila melanogaster female reproductive tract during sperm storage. J Insect Physiol 2007; 53:319-31; PMID:17276455; http://dx.doi.org/10.1016/j.jinsphys.2006.12.003
  • David J, Cohet Y, Foluillet P. The variability between individuals as a measure of senescence: a study of the number of eggs laid and the percentage of hatched eggs in the case of Drosophila melanogaster. Exp Gerontol 1975; 10:17-25; PMID:805709; http://dx.doi.org/10.1016/0531-5565(75)90011-X
  • Klepsatel P, Galikova M, De Maio N, Ricci S, Schlotterer C, Flatt T. Reproductive and post-reproductive life history of wild-caught Drosophila melanogaster under laboratory conditions. J Evol Biol 2013; 26:1508-20; PMID:23675912; http://dx.doi.org/10.1111/jeb.12155
  • Tan CK, Pizzari T, Wigby S. Parental age, gametic age, and inbreeding interact to modulate offspring viability in Drosophila melanogaster. Evolution 2013; 67:3043-51; PMID:24094353
  • Leiblich A, Marsden L, Gandy C, Corrigan L, Jenkins R, Hamdy F, Wilson C. Bone morphogenetic protein- and mating-dependent secretory cell growth and migration in the Drosophila accessory gland. Proc Natl Acad Sci U S A 2012; 109:19292-7; PMID:23129615; http://dx.doi.org/10.1073/pnas.1214517109
  • Cheng J, Turkel N, Hemati N, Fuller MT, Hunt AJ, Yamashita YM. Centrosome misorientation reduces stem cell division during ageing. Nature 2008; 456:599-604; PMID:18923395; http://dx.doi.org/10.1038/nature07386
  • Stearns SC. Trade-offs in life-history evolution. Funct Ecol 1989; 3:259-68; http://dx.doi.org/10.2307/2389364
  • Greenspan RJ, Ferveur J-F. Courtship in Drosophila. Ann Rev Genet 2000; 34:205-32; PMID:11092827; http://dx.doi.org/10.1146/annurev.genet.34.1.205
  • Bastock R, St Johnston D. Drosophila oogenesis. Curr Biol 2008; 18:R1082-7; PMID:19081037; http://dx.doi.org/10.1016/j.cub.2008.09.011
  • Gates J. Drosophila egg chamber elongation: insights into how tissues and organs are shaped. Fly 2012; 6:213-27; PMID:22940759; http://dx.doi.org/10.4161/fly.21969
  • Pitnick S, Wolfner M, Suarez S. Ejaculate-female and sperm-female interactions. In: Birkhead TR, Hosken DJ, Pitnick S, eds. Sperm Biology: An Evolutionary Perspective. London: Academic Press, 2009:247-304.
  • Bloch Qazi MC, Heifetz Y, Wolfner MF. The developments between gametogenesis and fertilization: ovulation and female sperm storage in Drosophila melanogaster. Dev Biol 2003; 256:195-211; PMID:12679097; http://dx.doi.org/10.1016/S0012-1606(02)00125-2
  • Tatar M. Reproductive aging in invertebrate genetic models. Ann N Y Acad Sci 2010; 1204:149-55; PMID:20738285; http://dx.doi.org/10.1111/j.1749-6632.2010.05522.x
  • Sgro CM, Partridge L. Evolutionary responses of the life history of wild-caught Drosophila melanogaster to two standard methods of laboratory culture. Am Nat 2000; 156:341-53; http://dx.doi.org/10.1086/303394
  • Fricke C, Green D, Mills WE, Chapman T. Age-dependent female responses to a male ejaculate signal alter demographic opportunities for selection. Proc Biol Sci 2013; 280:20130428; PMID:23843383; http://dx.doi.org/10.1098/rspb.2013.0428
  • Zhu CT, Ingelmo P, Rand DM. GxGxE for Lifespan in Drosophila: Mitochondrial, Nuclear, and Dietary Interactions that Modify Longevity. PLoS Genet 2014; 10:e1004354; PMID:24832080; http://dx.doi.org/10.1371/journal.pgen.1004354
  • Grandison RC, Wong R, Bass TM, Partridge L, Piper MD. Effect of a standardised dietary restriction protocol on multiple laboratory strains of Drosophila melanogaster. PLoS One 2009; 4:e4067; PMID:19119322; http://dx.doi.org/10.1371/journal.pone.0004067
  • Bross TG, Rogina B, Helfand SL. Behavioral, physical, and demographic changes in Drosophila populations through dietary restriction. Aging Cell 2005; 4:309-17; PMID:16300483; http://dx.doi.org/10.1111/j.1474-9726.2005.00181.x
  • Dick KB, Ross CR, Yampolsky LY. Genetic variation of dietary restriction and the effects of nutrient-free water and amino acid supplements on lifespan and fecundity of Drosophila. Genet Res (Camb) 2011; 93:265-73; PMID:21767463; http://dx.doi.org/10.1017/S001667231100019X
  • Chippindale A, Leroi A, Kim S, Rose M. Phenotypic plasticity and selection in Drosophila life-history evolution. I. Nutrition and the cost of reproduction. J Evolut Biol 1993; 6:171-93; http://dx.doi.org/10.1046/j.1420-9101.1993.6020171.x
  • Chapman T, Liddle LF, Kalb JM, Wolfner MF, Partridge L. Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature 1995; 373:241-4; PMID:7816137; http://dx.doi.org/10.1038/373241a0
  • Service PM. The effect of mating status on lifespan, egg laying, and starvation resistance in Drosophila melanogaster in relation to selection on longevity. J Insect Physiol 1989; 35:447-52; http://dx.doi.org/10.1016/0022-1910(89)90120-0
  • Manning A. The control of sexual receptivity in female Drosophila. Anim Behav 1967; 15:239-50; PMID:6030948; http://dx.doi.org/10.1016/0003-3472(67)90006-1
  • Cook R, Cook A. The attractiveness to males of female Drosophila melanogaster: effects of mating, age and diet. Anim Behav 1975; 23:521-6; PMID:808987; http://dx.doi.org/10.1016/0003-3472(75)90129-3
  • Neckameyer WS, Woodrome S, Holt B, Mayer A. Dopamine and senescence in Drosophila melanogaster. Neurobiol Aging 2000; 21:145-52; PMID:10794859; http://dx.doi.org/10.1016/S0197-4580(99)00109-8
  • Iliadi KG, Boulianne GL. Age-related behavioral changes in Drosophila. Ann N Y Acad Sci 2010; 1197:9-18; PMID:20536827; http://dx.doi.org/10.1111/j.1749-6632.2009.05372.x
  • Kuo TH, Yew JY, Fedina TY, Dreisewerd K, Dierick HA, Pletcher SD. Aging modulates cuticular hydrocarbons and sexual attractiveness in Drosophila melanogaster. J Exp Biol 2012; 215:814-21; PMID:22323204; http://dx.doi.org/10.1242/jeb.064980
  • Tompkins L, Gross AC, Hall JC, Gailey DA, Siegel RW. The role of female movement in the sexual behavior of Drosophila melanogaster. Behav Genet 1987; 12:295-307; http://dx.doi.org/10.1007/BF01067849
  • Le Bourg E. Patterns of movement and ageing in Drosophila melanogaster. Arch Gerontol Geriat 1983; 2:299-306; PMID:6422871; http://dx.doi.org/10.1016/0167-4943(83)90003-1
  • Cook-Wiens E, Grotewiel MS. Dissociation between functional senescence and oxidative stress resistance in Drosophila. Exp Gerontol 2002; 37:1347-57; PMID:12559404; http://dx.doi.org/10.1016/S0531-5565(02)00096-7
  • Gargano JW, Martin I, Bhandari P, Grotewiel MS. Rapid iterative negative geotaxis (RING): a new method for assessing age-related locomotor decline in Drosophila. Exp Gerontol 2005; 40:386-95; PMID:15919590; http://dx.doi.org/10.1016/j.exger.2005.02.005
  • Ferveur JF. Cuticular hydrocarbons: their evolution and roles in Drosophila pheromonal communication. Behav Genet 2005; 35:279-95; PMID:15864443; http://dx.doi.org/10.1007/s10519-005-3220-5
  • Everaerts C, Farine JP, Cobb M, Ferveur JF. Drosophila cuticular hydrocarbons revisited: mating status alters cuticular profiles. PLoS One 2010; 5:e9607; PMID:20231905; http://dx.doi.org/10.1371/journal.pone.0009607
  • Lüpold S, Manier MK, Ala-Honkola O, Belote JM, Pitnick S. Male Drosophila melanogaster adjust ejaculate size based on female mating status, fecundity, and age. Behav Ecol 2011; 22:184-91; http://dx.doi.org/10.1093/beheco/arq193
  • Schnebel EM, Grossfield J. A comparison of life span characteristics in Drosophila. Exp Gerontol 1983; 18:325-37; PMID:6667724; http://dx.doi.org/10.1016/0531-5565(83)90011-6
  • Somashekar K, Krishna MS, Hegde SN, Jayaram SC. Effects of age on female reproductive success in Drosophila bipectinata. J Insect Sci 2011; 11:1-16; PMID:21521145; http://dx.doi.org/10.1673/031.011.13201
  • Prathibha M, Krishna MS. Greater mating success of middle-aged females of Drosophila ananassae. Zool Stud 2010; 49:806-15
  • Koref-Santibanez S. Effects of age and experience on mating activity in the sibling species Drosophila pavani and Drosophila guacha. Behav Genet 2001; 31:287-97; PMID:11699601; http://dx.doi.org/10.1023/A :1012279325621
  • Wolfner MF. Battle and ballet: molecular interactions between the sexes in Drosophila. J Hered 2009; 100:399-410; PMID:19349638; http://dx.doi.org/10.1093/jhered/esp013
  • Avila FW, Sirot LK, LaFlamme BA, Rubinstein CD, Wolfner MF. Insect seminal fluid proteins: identification and function. Annu Rev Entomol 2011; 56:21-40; PMID:20868282; http://dx.doi.org/10.1146/annurev-ento-120709-144823
  • Wigby S, Sirot LK, Linklater JR, Buehner N, Calboli FC, Bretman A, Wolfner MF, Chapman T. Seminal fluid protein allocation and male reproductive success. Curr Biol 2009; 19:751-7; PMID:19361995; http://dx.doi.org/10.1016/j.cub.2009.03.036
  • Sirot LK, Wolfner MF, Wigby S. Protein-specific manipulation of ejaculate composition in response to female mating status in Drosophila melanogaster. Proc Natl Acad Sci U S A 2011; 108:9922-6; PMID:21628597; http://dx.doi.org/10.1073/pnas.1100905108
  • Radhakrishnan P, Fedorka KM. Influence of female age, sperm senescence and multiple mating on sperm viability in female Drosophila melanogaster. J Insect Physiol 2011; 57:778-83; PMID:21419131; http://dx.doi.org/10.1016/j.jinsphys.2011.02.017
  • Mack PD, Priest NK, Promislow DE. Female age and sperm competition: last-male precedence declines as female age increases. Proc Biol Sci 2003; 270:159-65; PMID:12590754; http://dx.doi.org/10.1098/rspb.2002.2214
  • Anderson WW, Watanabe TK. A demographic approach to selection. Proc Natl Acad Sci U S A 1997; 94:7742-7; PMID:9223258; http://dx.doi.org/10.1073/pnas.94.15.7742
  • Waskar M, Li Y, Tower J. Stem cell aging in the Drosophila ovary. Age (Dordr) 2005; 27:201-12; PMID:23598653; http://dx.doi.org/10.1007/s11357-005-2914-1
  • Zhao R, Xuan Y, Li X, Xi R. Age-related changes of germline stem cell activity, niche signaling activity and egg production in Drosophila. Aging Cell 2008; 7:344-54; PMID:18267001; http://dx.doi.org/10.1111/j.1474-9726.2008.00379.x
  • Rauser CL, Tierney JJ, Gunion SM, Covarrubias GM, Mueller LD, Rose MR. Evolution of late-life fecundity in Drosophila melanogaster. J Evol Biol 2006; 19:289-301; PMID:16405599; http://dx.doi.org/10.1111/j.1420-9101.2005.00966.x
  • Rauser CL, Abdel-Aal Y, Shieh JA, Suen CW, Mueller LD, Rose MR. Lifelong heterogeneity in fecundity is insufficient to explain late-life fecundity plateaus in Drosophila melanogaster. Exp Gerontol 2005; 40:660-70; PMID:16085380; http://dx.doi.org/10.1016/j.exger.2005.06.006
  • Pan L, Chen S, Weng C, Call G, Zhu D, Tang H, Zhang N, Xie T. Stem cell aging is controlled both intrinsically and extrinsically in the Drosophila ovary. Cell Stem Cell 2007; 1:458-69; PMID:18371381; http://dx.doi.org/10.1016/j.stem.2007.09.010
  • Cummings MR, King RC. The cytology of the vitellogenic stages of oogenesis in Drosophila melanogaster I general staging characteristics. J Morphol 1969; 128:427-41; http://dx.doi.org/10.1002/jmor.1051280404
  • Spradling AC. Developmental genetics of oogenesis. In: Bate M, Martinez Arias A, eds. The Development of Drosophila melanogaster. New York: Cold Spring Harbor Laboratory Press, 1993:1-70.
  • Carlson KA, Harshman LG. Extended longevity lines of Drosophila melanogaster: characterization of oocyte stages and ovariole numbers as a function of age and diet. J Gerontol A Biol Sci Med Sci 1999; 54:B432-40; PMID:10568526; http://dx.doi.org/10.1093/gerona/54.10.B432
  • Xie T, Spradling AC. A niche maintaining germ line stem cells in the Drosophila ovary. Science 2000; 290:328-30; PMID:11030649; http://dx.doi.org/10.1126/science.290.5490.328
  • Kelly TJ. Endocrinology of vitellogenesis in Drosophila melanogaster. In: Davey KG, Peter RE, Tobe EE, eds. Perspectives in Comparative Endocrinology. Ottawa: Natl. Res. Council of Canada, 1994:282-90.
  • Carney GE, Bender M. The Drosophila ecdysone receptor (EcR) gene is required maternally for normal oogenesis. Genetics 2000; 154:1203-11; PMID:10757764
  • Buszczak M, Freeman MR, Carlson JR, Bender M, Cooley L, Segraves WA. Ecdysone response genes govern egg chamber development during mid-oogenesis in Drosophila. Development 1999; 126:4581-9; PMID:10498692
  • Yamamoto R, Bai H, Dolezal AG, Amdam G, Tatar M. Juvenile hormone regulation of Drosophila aging. BMC Biol 2013; 11:85; PMID:23866071; http://dx.doi.org/10.1186/1741-7007-11-85
  • Simon AF, Shih C, Mack A, Benzer S. Steroid control of longevity in Drosophila melanogaster. Science 2003; 299:1407-10; PMID:12610309; http://dx.doi.org/10.1126/science.1080539
  • Kubli E. Sex-peptides: seminal peptides of the Drosophila male. Cell Mol Life Sci 2003; 60:1689-704; PMID:14504657; http://dx.doi.org/10.1007/s00018-003-3052
  • Barnes AI, Wigby S, Boone JM, Partridge L, Chapman T. Feeding, fecundity and lifespan in female Drosophila melanogaster. Proc Biol Sci 2008; 275:1675-83; PMID:18430646; http://dx.doi.org/10.1098/rspb.2008.0139
  • Parsons PA. maternal age and developmental variability. J Exp Biol 1962; 39:251-60; PMID:14484099
  • Azevedo RB, French V, Partridge L. Life-history consequences of egg size in Drosophila melanogaster. Am Nat 1997; 150:250-82; PMID:18811284; http://dx.doi.org/10.1086/286065
  • Leamy LJ, Klingenberg C. The genetics and evolution of fluctuating asymmetry. Ann Rev Ecol, Evol Syst 2005; 36:1-21; http://dx.doi.org/10.1146/annurev.ecolsys.36.102003.152640
  • Fredriksson A, Johansson Krogh E, Hernebring M, Pettersson E, Javadi A, Almstedt A, Nyström T. Effects of aging and reproduction on protein quality control in soma and gametes of Drosophila melanogaster. Aging Cell 2012; 11:634-43; PMID:22507075; http://dx.doi.org/10.1111/j.1474-9726.2012.00823.x
  • Kann LM, Rosenblum EB, Rand DM. Aging, mating, and the evolution of mtDNA heteroplasmy in Drosophila melanogaster. Proc Natl Acad Sci U S A 1998; 95:2372-7; PMID:9482892; http://dx.doi.org/10.1073/pnas.95.5.2372
  • Aigaki T, Ohba S. Individual analysis of age-associated changes in reproductive activity and lifespan of Drosophila virilis. Exp Gerontol 1984; 19:13-23; PMID:6723815; http://dx.doi.org/10.1016/0531-5565(84)90027-5
  • Pitnick S, Markow TA, Spicer GS. Delayed male maturity is a cost of producing large sperm in Drosophila. Proc Natl Acad Sci U S A 1995; 92:10614-8; PMID:7479851; http://dx.doi.org/10.1073/pnas.92.23.10614
  • Kern S, Ackermann M, Stearns SC, Kawecki TJ. Decline in offspring viability as a manifestation of aging in Drosophila melianogaster. Evolution 2001; 55:1822-31; PMID:11681737; http://dx.doi.org/10.1111/j.0014-3820.2001.tb00831.x
  • Marinkovic D, Bajraktari I. Parental age dependent changes as a source of genetic variation in Drosophila melanogaster. Genetica 1988; 77:113-21; PMID:3145904; http://dx.doi.org/10.1007/BF00057761
  • Priest NK, Mackowiak B, Promislow DE. The role of parental age effects on the evolution of aging. Evolution 2002; 56:927-35; PMID:12093028; http://dx.doi.org/10.1111/j.0014-3820.2002.tb01405.x
  • O’Brian D. Effects of parental age on the life cycle of Drosophila melanogaster. Ann Entomol Soc Am 1961; 54:412-6.
  • Haque R, Salam MA, Haque S. The effect of parental age on progeny longevity in Drosophila melanogaster. Pakistan J Zool 1988; 20:55-63.
  • Hercus MJ, Hoffmann AA. Maternal and grandmaternal age influence offspring fitness in Drosophila. Proc Biol Sci 2000; 267:2105-10; PMID:11416916; http://dx.doi.org/10.1098/rspb.2000.1256
  • Promislow DE, Jung CF, Arnold ML. Age-specific fitness components in hybrid females of Drosophila pseudoobscura and D. persimilis. J Hered 2001; 92:30-7; PMID:11336226; http://dx.doi.org/10.1093/jhered/92.1.30
  • Ehrman E, Daniels SB, Perelle I. Maternal age and patterns of eclosion in the Drosophila paulistorum superspecies. Am Midl Nat 1983; 109:202-5.
  • Rogilds A, Andersen DH, Pertoldi C, Dimitrov K, Loeschcke V. Maternal and grandmaternal age effects on developmental instability and wing size in parthenogenetic Drosophila mercatorum. Biogerontology 2005; 6:61-9; PMID:15834664; http://dx.doi.org/10.1007/s10522-004-7385-8
  • Medawar PB. An Unsolved Problem of Biology. London, UK: H.K. Lewis and Company, 1952, 24 p.
  • Hamilton WD. The moulding of senescence by natural selection. J Theor Biol 1966; 12:12-45; PMID:6015424; http://dx.doi.org/10.1016/0022-5193(66)90184-6
  • Williams GC. Pleiotropy, natural selection and the evolution od senescence. Evolution 1957; 11:398-411; http://dx.doi.org/10.2307/2406060
  • Flatt T. Survival costs of reproduction in Drosophila. Exp Gerontol 2011; 46:369-75; PMID:20970491; http://dx.doi.org/10.1016/j.exger.2010.10.008
  • Partridge L, Fowler K, Trevitt S, Sharp W. An examination of the effects of males on the survival and egg production rates of female Drosophila melanogaster. J Insect Physiol 1986; 32:925-9; http://dx.doi.org/10.1016/0022-1910(86)90140-X
  • Leips J, Gilligan P, Mackay TF. Quantitative trait loci with age-specific effects on fecundity in Drosophila melanogaster. Genetics 2006; 172:1595-605; PMID:16272414; http://dx.doi.org/10.1534/genetics.105.048520
  • Doroszuk A, Jonker MJ, Pul N, Breit TM, Zwaan BJ. Transcriptome analysis of a long-lived natural Drosophila variant: a prominent role of stress- and reproduction-genes in lifespan extension. BMC Genomics 2012; 13:167; PMID:22559237; http://dx.doi.org/10.1186/1471-2164-13-167
  • Partridge L, Prowse N, Pignatelli P. Another set of responses and correlated responses to selection on age at reproduction in Drosophila melanogaster. Proc Biol Sci 1999; 266:255-61; PMID:10081162; http://dx.doi.org/10.1098/rspb.1999.0630
  • Rose MR, Charlesworth B. Genetics of life history in Drosophila melanogaster. II. Exploratory selection experiments. Genetics 1981; 97:187-96; PMID:6790341
  • Stearns SC, Ackermann M, Doebeli M, Kaiser M. Experimental evolution of aging, growth, and reproduction in fruitflies. Proc Natl Acad Sci U S A 2000; 97:3309-13; PMID:10716732; http://dx.doi.org/10.1073/pnas.97.7.3309
  • Engstrom G, Liljedahl LE, Rasmuson M, Bjorklund T. Expression of genetic and environmental variation during ageing : 1. Estimation of variance components for number of adult offspring in Drosophila melanogaster. Theor Appl Genet 1989; 77:119-22; PMID:24232483; http://dx.doi.org/10.1007/BF00292325
  • Tatar M, Promislow DE, Khazaeli AA, Curtsinger JW. Age-specific patterns of genetic variance in Drosophila melanogaster. II. Fecundity and its genetic covariance with age-specific mortality. Genetics 1996; 143:849-58; PMID:8725233
  • Rose MR, Drapeau MD, Yazdi PG, Shah KH, Moise DB, Thakar RR, Rauser CL, Mueller LD. Evolution of late-life mortality in Drosophila melanogaster. Evolution 2002; 56:1982-91; PMID:12449485; http://dx.doi.org/10.1111/j.0014-3820.2002.tb00124.x
  • Charlesworth B. Optimization models, quantitative genetics, and mutation. Evolution 1990; 44:520-38; http://dx.doi.org/10.2307/2409433
  • Partridge L, Barton NH. Optimality, mutation and the evolution of ageing. Nature 1993; 362:305-11; PMID:8455716; http://dx.doi.org/10.1038/362305a0
  • Partridge L, Fowler K. Direct and correlated responses to selection on age at reproduction in Drosophila melanogaster. Evolution 1992; 46:76-91; http://dx.doi.org/10.2307/2409806
  • Wit J, Sarup P, Lupsa N, Malte H, Frydenberg J, Loeschcke V. Longevity for free? Increased reproduction with limited trade-offs in Drosophila melanogaster selected for increased life span. Exp Gerontol 2013; 48:349-57; PMID:23353929; http://dx.doi.org/10.1016/j.exger.2013.01.008
  • Promislow DE, Tatar M. Mutation and senescence: where genetics and demography meet. Genetica 1998; 102-103:299-314; PMID:9720285
  • Linnen C, Tatar M D. P. Cultural artifacts: a comparison of senescence in natural, laboratory-adapted and artificially selected lines of Drosophila melanogaster. Evol Ecol Res 2001; 3:877-88
  • Clare MJ, Luckinbill LS. The effects of gene-environment interaction on the expression of longevity. Heredity (Edinb) 1985; 55 (Pt 1):19-26; PMID:3930428; http://dx.doi.org/10.1038/hdy.1985.67
  • Doronkin S, Reiter LT. Drosophila orthologues to human disease genes: an update on progress. Prog Nucleic Acid Res Mol Biol 2008; 82:1-32; PMID:18929137; http://dx.doi.org/10.1016/S0079-6603(08)00001-9
  • Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge L. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 2001; 292:104-6; PMID:11292874; http://dx.doi.org/10.1126/science.1057991
  • Helfand SL, Rogina B. Genetics of aging in the fruit fly, Drosophila melanogaster. Annu Rev Genet 2003; 37:329-48; PMID:14616064; http://dx.doi.org/10.1146/annurev.genet.37.040103.095211
  • Leroi AM, Bartke A, De Benedictis G, Franceschi C, Gartner A, Gonos ES, Fedei ME, Kivisild T, Lee S, Kartaf-Ozer N, et al. What evidence is there for the existence of individual genes with antagonistic pleiotropic effects? Mech Ageing Dev 2005; 126:421-9; PMID:15664630; http://dx.doi.org/10.1016/j.mad.2004.07.012
  • Van Voorhies WA, Curtsinger JW, Rose MR. Do longevity mutants always show trade-offs? Exp Gerontol 2006; 41:1055-8; PMID:16790333; http://dx.doi.org/10.1016/j.exger.2006.05.006
  • Toivonen JM, Gems D, Partridge L. Longevity of indy mutant Drosophila not attributable to indy mutation. Proc Natl Acad Sci U S A 2009; 106:E53; author reply E4; PMID:19435842; http://dx.doi.org/10.1073/pnas.0902462106
  • Gimenez LE, Ghildyal P, Fischer KE, Hu H, Ja WW, Eaton BA, Wu Y, Austad SN, Ranjan R. Modulation of methuselah expression targeted to Drosophila insulin-producing cells extends life and enhances oxidative stress resistance. Aging Cell 2013; 12:121-9; PMID:23121290; http://dx.doi.org/10.1111/acel.12027
  • Spencer CC, Howell CE, Wright AR, Promislow DE. Testing an 'aging gene' in long-lived drosophila strains: increased longevity depends on sex and genetic background. Aging Cell 2003; 2:123-30; PMID:12882325; http://dx.doi.org/10.1046/j.1474-9728.2003.00044.x
  • Mockett RJ, Sohal RS. Temperature-dependent trade-offs between longevity and fertility in the Drosophila mutant, methuselah. Exp Gerontol 2006; 41:566-73; PMID:16677788; http://dx.doi.org/10.1016/j.exger.2006.03.015
  • Marden JH, Rogina B, Montooth KL, Helfand SL. Conditional tradeoffs between aging and organismal performance of Indy long-lived mutant flies. Proc Natl Acad Sci U S A 2003; 100:3369-73; PMID:12626742; http://dx.doi.org/10.1073/pnas.0634985100
  • Toivonen JM, Walker GA, Martinez-Diaz P, Bjedov I, Driege Y, Jacobs HT, Gems D, Partridge L. No influence of Indy on lifespan in Drosophila after correction for genetic and cytoplasmic background effects. PLoS Genet 2007; 3:e95; PMID:17571923; http://dx.doi.org/10.1371/journal.pgen.0030095
  • Lindquist S, Craig EA. The heat-shock proteins. Ann Rev Genet 1988; 22:631-77; PMID:2853609; http://dx.doi.org/10.1146/annurev.ge.22.120188.003215
  • Lindquist S. The heat-shock response. Annu Rev Biochem 1986; 55:1151-91; PMID:2427013; http://dx.doi.org/10.1146/annurev.bi.55.070186.005443
  • Mirault ME, Southgate R, Delwart E. Regulation of heat-shock genes: a DNA sequence upstream of Drosophila hsp70 genes is essential for their induction in monkey cells. EMBO J 1982; 1:1279-85; PMID:6821333
  • Tatar M, Khazaeli AA, Curtsinger JW. Chaperoning extended life. Nature 1997; 390:30; PMID:9363888; http://dx.doi.org/10.1038/36237
  • Silbermann R, Tatar M. Reproductive costs of heat shock protein in transgenic Drosophila melanogaster. Evolution 2000; 54:2038-45; PMID:11209780; http://dx.doi.org/10.1111/j.0014-3820.2000.tb01247.x
  • Sarup P, Sorensen P, Loeschcke V. The long-term effects of a life-prolonging heat treatment on the Drosophila melanogaster transcriptome suggest that heat shock proteins extend lifespan. Exp Gerontol 2014; 50:34-9; PMID:24316037; http://dx.doi.org/10.1016/j.exger.2013.11.017
  • Landis GN, Abdueva D, Skvortsov D, Yang J, Rabin BE, Carrick J, Tavaré S, Tower J. Similar gene expression patterns characterize aging and oxidative stress in Drosophila melanogaster. Proc Natl Acad Sci U S A 2004; 101:7663-8; PMID:15136717; http://dx.doi.org/10.1073/pnas.0307605101
  • Lin YJ, Seroude L, Benzer S. Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 1998; 282:943-6; PMID:9794765; http://dx.doi.org/10.1126/science.282.5390.943
  • Song W, Ranjan R, Dawson-Scully K, Bronk P, Marin L, Seroude L, Lin YJ, Nie Z, Atwood HL, Benzer S, et al. Presynaptic regulation of neurotransmission in Drosophila by the g protein-coupled receptor methuselah. Neuron 2002; 36:105-19; PMID:12367510; http://dx.doi.org/10.1016/S0896-6273(02)00932-7
  • Petrosyan A, Hsieh IH, Saberi K. Age-dependent stability of sensorimotor functions in the life-extended Drosophila mutant methuselah. Behav Genet 2007; 37:585-94; PMID:17534708; http://dx.doi.org/10.1007/s10519-007-9159-y
  • Wallenfang MR, Nayak R, DiNardo S. Dynamics of the male germline stem cell population during aging of Drosophila melanogaster. Aging Cell 2006; 5:297-304; PMID:16800845; http://dx.doi.org/10.1111/j.1474-9726.2006.00221.x
  • Markovich D, Murer H. The SLC13 gene family of sodium sulphate/carboxylate cotransporters. Pflugers Arch 2004; 447:594-602; PMID:12915942; http://dx.doi.org/10.1007/s00424-003-1128-6
  • Rogina B, Reenan RA, Nilsen SP, Helfand SL. Extended life-span conferred by cotransporter gene mutations in Drosophila. Science 2000; 290:2137-40; PMID:11118146; http://dx.doi.org/10.1126/science.290.5499.2137
  • Pajor AM. Molecular properties of the SLC13 family of dicarboxylate and sulfate transporters. Pflugers Arch 2006; 451:597-605; PMID:16211368; http://dx.doi.org/10.1007/s00424-005-1487-2
  • Chapman T, Partridge L. Female fitness in Drosophila melanogaster: an interaction between the effect of nutrition and of encounter rate with males. Proc Biol Sci 1996; 263:755-9; PMID:8763795; http://dx.doi.org/10.1098/rspb.1996.0113
  • Wang PY, Neretti N, Whitaker R, Hosier S, Chang C, Lu D, Rogina B, Helfand SL. Long-lived Indy and calorie restriction interact to extend life span. Proc Natl Acad Sci U S A 2009; 106:9262-7; PMID:19470468; http://dx.doi.org/10.1073/pnas.0904115106
  • Zhu CT, Chang C, Reenan RA, Helfand SL. Indy gene variation in natural populations confers fitness advantage and life span extension through transposon insertion. Aging (Albany NY) 2014; 6:58-69; PMID:24519859
  • Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 2001; 292:107-10; PMID:11292875; http://dx.doi.org/10.1126/science.1057987
  • Toivonen JM, Partridge L. Endocrine regulation of aging and reproduction in Drosophila. Mol Cell Endocrinol 2009; 299:39-50; PMID:18682271; http://dx.doi.org/10.1016/j.mce.2008.07.005
  • Tu MP, Yin CM, Tatar M. Impaired ovarian ecdysone synthesis of Drosophila melanogaster insulin receptor mutants. Aging Cell 2002; 1:158-60; PMID:12882346; http://dx.doi.org/10.1046/j.1474-9728.2002.00016.x
  • Bohni R, Riesgo-Escovar J, Oldham S, Brogiolo W, Stocker H, Andruss BF, Beckingham K, Hafen E. Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell 1999; 97:865-75; PMID:10399915; http://dx.doi.org/10.1016/S0092-8674(00)80799-0
  • Drummond-Barbosa D, Spradling AC. Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev Biol 2001; 231:265-78; PMID:11180967; http://dx.doi.org/10.1006/dbio.2000.0135
  • Richard DS, Rybczynski R, Wilson TG, Wang Y, Wayne ML, Zhou Y, Partridge L, Harshman LG. Insulin signaling is necessary for vitellogenesis in Drosophila melanogaster independent of the roles of juvenile hormone and ecdysteroids: female sterility of the chico1 insulin signaling mutation is autonomous to the ovary. J Insect Physiol 2005; 51:455-64; PMID:15890189; http://dx.doi.org/10.1016/j.jinsphys.2004.12.013
  • Tu MP, Yin CM, Tatar M. Mutations in insulin signaling pathway alter juvenile hormone synthesis in Drosophila melanogaster. Gen Comp Endocrinol 2005; 142:347-56; PMID:15935161; http://dx.doi.org/10.1016/j.ygcen.2005.02.009
  • Yenush L, Fernandez R, Myers MG, Jr., Grammer TC, Sun XJ, Blenis J, Pierce JH, Schlessinger J, White MF. The Drosophila insulin receptor activates multiple signaling pathways but requires insulin receptor substrate proteins for DNA synthesis. Mol Cell Biol 1996; 16:2509-17; PMID:8628319
  • Taguchi A, White MF. Insulin-like signaling, nutrient homeostasis, and life span. Annu Rev Physiol 2008; 70:191-212; PMID:17988211; http://dx.doi.org/10.1146/annurev.physiol.70.113006.100533
  • Broughton SJ, Piper MD, Ikeya T, Bass TM, Jacobson J, Driege Y, Martinez P, Hafen E, Withers DJ, Leevers SJ, et al. Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Natl Acad Sci U S A 2005; 102:3105-10; PMID:15708981; http://dx.doi.org/10.1073/pnas.0405775102
  • Wigby S, Slack C, Gronke S, Martinez P, Calboli FC, Chapman T, Partridge L. Insulin signalling regulates remating in female Drosophila. Proc Biol Sci 2011; 278:424-31; PMID:20739318; http://dx.doi.org/10.1098/rspb.2010.1390
  • Li Y, Tower J. Adult-specific over-expression of the Drosophila genes magu and hebe increases life span and modulates late-age female fecundity. Mol Genet Genomics 2009; 281:147-62; PMID:19011900; http://dx.doi.org/10.1007/s00438-008-0400-z
  • Rocnik EF, Liu P, Sato K, Walsh K, Vaziri C. The novel SPARC family member SMOC-2 potentiates angiogenic growth factor activity. J Biol Chem 2006; 281:22855-64; PMID:16774925; http://dx.doi.org/10.1074/jbc.M513463200
  • Zheng Q, Wang Y, Vargas E, DiNardo S. magu is required for germline stem cell self-renewal through BMP signaling in the Drosophila testis. Dev Biol 2011; 357:202-10; PMID:21723859; http://dx.doi.org/10.1016/j.ydbio.2011.06.022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.