1,350
Views
15
CrossRef citations to date
0
Altmetric
EXTRA VIEWS

Abberant protein synthesis in G2019S LRRK2 Drosophila Parkinson disease-related phenotypes

, , , &
Pages 165-169 | Received 30 Jul 2014, Accepted 23 Sep 2014, Published online: 18 Dec 2014

References

  • Cookson M R. The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson disease. Nat Rev Neurosci 2010; 11:791-7.; PMID:21088684; http://dx.doi.org/10.1038/nrn2935
  • Anand V S, Reichling L J, Lipinski K, Stochaj W, Duan W, Kelleher K, Pungaliya P, Brown E L, Reinhart P H, Somberg R, et al. Investigation of leucine-rich repeat kinase 2 : enzymological properties and novel assays. The FEBS journal 2009; 276;466-78; PMID:19076219; http://dx.doi.org/10.1111/j.1742-4658.2008.06789.x
  • Covy J P, Giasson, B I. Identification of compounds that inhibit the kinase activity of leucine-rich repeat kinase 2. Biochem Biophysical Res Commun 2009; 378:473-7; PMID:19027715; http://dx.doi.org/10.1016/j.bbrc.2008.11.048
  • Greggio E, Jain S, Kingsbury A, Bandopadhyay R, Lewis P, Kaganovich A, van der Brug M P, Beilina A, Blackinton J, Thomas K J, et al. Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol Dis 2006; 23:329-41; PMID:16750377
  • Lee BD, Shin J H, VanKampen J, Petrucelli L, West A B, Ko H S, Lee Y I, Maguire-Zeiss K A, Bowers W J, Federoff H J, et al. Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson disease. Nat Med 2010; 16:998-1000; PMID:20729864; http://dx.doi.org/10.1038/nm.2199
  • Liu Z, Hamamichi S, Lee B D, Yang D, Ray A, Caldwell G A, Caldwell K A, Dawson T M, Smith W W, Dawson V L. Inhibitors of LRRK2 kinase attenuate neurodegeneration and Parkinson-like phenotypes in Caenorhabditis elegans and Drosophila Parkinson disease models. Hum Mol Genet 2011; 20:3933-42; PMID:21768216; http://dx.doi.org/10.1093/hmg/ddr312
  • Luzon-Toro B, Rubio de la Torre E, Delgado A, Perez-Tur J, Hilfiker S. Mechanistic insight into the dominant mode of the Parkinson disease-associated G2019S LRRK2 mutation. Hum Mol Genet 2007; 16:2031-9; PMID:17584768; http://dx.doi.org/10.1093/hmg/ddm151
  • Smith W W, Pei Z, Jiang H, Dawson V L, Dawson T M, Ross C A. Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat Neurosci 2006; 9:1231-3; PMID:16980962; http://dx.doi.org/10.1038/nn1776
  • West A B, Moore D J, Choi C, Andrabi S A, Li X, Dikeman D, Biskup S, Zhang Z, Lim K L, Dawson V L, et al. Parkinson disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum Mol Genet 2007; 16:223-2; PMID:17200152; http://dx.doi.org/10.1093/hmg/ddl471
  • Matta S, Van Kolen K, da Cunha R, van den Bogaart G, Mandemakers W, Miskiewicz K, De Bock, P J, Morais V A, Vilain S, Haddad D, et al. LRRK2 controls an EndoA phosphorylation cycle in synaptic endocytosis. Neuron 2012; 75:1008-21; PMID:22998870; http://dx.doi.org/10.1016/j.neuron.2012.08.022
  • Parisiadou L, Xie C, Cho H J, Lin X, Gu X L, Long C X, Lobbestael E, Baekelandt V, Taymans J M, Sun L, et al. Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis. J Neurosci 2009; 29:13971-80; PMID:19890007; http://dx.doi.org/10.1523/JNEUROSCI.3799-09.2009
  • Imai, Y., Gehrke, S., Wang, H.Q., Takahashi, R., Hasegawa, K., Oota, E., and Lu, B. Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J 2008; 27:2432-43.; PMID:18701920; http://dx.doi.org/10.1038/emboj.2008.163
  • Martin I, Kim J W, Lee B D, Kang H C, Xu J C, Jia H, Stankowski J, Kim M S, Zhong J, Kumar M, et al. Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson disease. Cell 2014; 157:472-85; PMID:24725412; http://dx.doi.org/10.1016/j.cell.2014.01.064
  • Liu Z, Wang X, Yu Y, Li X, Wang T, Jiang H, Ren Q, Jiao Y, Sawa A, Moran T, et al. A Drosophila model for LRRK2-linked parkinsonism. Proc Natl Acad Sci U S A 2008; 105:2693-8; PMID:18258746; http://dx.doi.org/10.1073/pnas.0708452105
  • Friggi-Grelin F, Coulom H, Meller M, Gomez D, Hirsh J, Birman S. Targeted gene expression in drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase. J Neurobiol 2003; 54:618-27; PMID:12555273
  • Riemensperger T, Isabel G, Coulom H, Neuser K, Seugnet L, Kume K, Iche-Torres M, Cassar M, Strauss R, Preat T, et al. Behavioral consequences of dopamine deficiency in the Drosophila central nervous system. Proc Natl Acad Sci U S A 2011; 108:834-9; PMID:21187381; http://dx.doi.org/10.1073/pnas.1010930108
  • Hershey J W, Sonenberg N, Mathews M B. Principles of translational control: an overview. Cold Spring Harb Perspect Biol 2012; 4; PMID:23209153; http://dx.doi.org/10.1101/cshperspect.a011528
  • Jackson R J, Hellen, C U, Pestova T V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 2010; 11:113-27; PMID:20094052; http://dx.doi.org/10.1038/nrm2838
  • Hoeffer C A, Cowansage K K, Arnold E C, Banko J L, Moerke N J, Rodriguez R, Schmidt E K, Klosi E, Chorev M, Lloyd R E, et al. Inhibition of the interactions between eukaryotic initiation factors 4E and 4G impairs long-term associative memory consolidation but not reconsolidation. Proc Natl Acad Sci U S A 2011; 108:3383-8; PMID:21289279; http://dx.doi.org/10.1073/pnas.1013063108
  • Roux P P, Topisirovic I. Regulation of mRNA translation by signaling pathways. Cold Spring Harb Perspects Biol 2012; 4:1-23; PMID:22888049; http://dx.doi.org/10.1101/cshperspect.a012252
  • Kumar A, Greggio E, Beilina A, Kaganovich A, Chan D, Taymans J M, Wolozin B, Cookson M R . The Parkinson disease associated LRRK2 exhibits weaker in vitro phosphorylation of 4E-BP compared to autophosphorylation. PloS one 2010; 5:e8730; PMID:20090955; http://dx.doi.org/10.1371/journal.pone.0008730
  • Trancikova A, Mamais A, Webber P J, Stafa K, Tsika E, Glauser L, West A B, Bandopadhyay R, Moore D J. Phosphorylation of 4E-BP1 in the mammalian brain is not altered by LRRK2 expression or pathogenic mutations. PloS one 2012; 7, e47784; PMID:23082216; http://dx.doi.org/10.1371/journal.pone.0047784

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.