722
Views
6
CrossRef citations to date
0
Altmetric
Review

Class C ABC transporters and Saccharomyces cerevisiae vacuole fusion

&
Article: e943588 | Received 05 May 2014, Accepted 18 Jun 2014, Published online: 30 Oct 2014

References

  • Jahn R, Sudhof TC. Membrane fusion and exocytosis. Annu Rev Biochem 1999; 68:863-911; PMID: 10872468; http://dx.doi.org/10.1146/annurev.biochem.68.1.863
  • Wickner W. Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a rab, all dancing in a ring on yeast vacuoles. Annu Rev Cell Dev Biol 2010; 26:115-36; PMID: 20521906; http://dx.doi.org/10.1146/annurev-cellbio-100109-104131
  • Jahn R, Scheller RH. SNAREs–engines for membrane fusion. Nat Rev Mol Cell Biol 2006; 7:631-43; PMID: 16912714; http://dx.doi.org/10.1038/nrm2002
  • Mayer A, Wickner W, Haas A. Sec18p (NSF)-driven release of Sec17p (alpha-SNAP) can precede docking and fusion of yeast vacuoles. Cell 1996; 85:83-94; PMID: 8620540; http://dx.doi.org/10.1016/S0092-8674(00)81084-3
  • Fasshauer D, Eliason WK, Brunger AT, Jahn R. Identification of a minimal core of the synaptic SNARE complex sufficient for reversible assembly and disassembly. Biochemistry 1998; 37:10354-62; PMID: 9671503; http://dx.doi.org/10.1021/bi980542h
  • Cheever ML, Sato TK, de Beer T, Kutateladze TG, Emr SD, Overduin M. Phox domain interaction with PtdIns(3)P targets the Vam7 t-SNARE to vacuole membranes. Nat Cell Biol 2001; 3:613-8; PMID: 11433291; http://dx.doi.org/10.1038/35083000
  • Haas A, Scheglmann D, Lazar T, Gallwitz D, Wickner W. The GTPase Ypt7p of Saccharomyces cerevisiae is required on both partner vacuoles for the homotypic fusion step of vacuole inheritance. Embo J 1995; 14:5258-70; PMID: 7489715
  • Mayer A, Wickner W. Docking of yeast vacuoles is catalyzed by the Ras-like GTPase Ypt7p after symmetric priming by Sec18p (NSF). J Cell Biol 1997; 136:307-17; PMID: 9015302; http://dx.doi.org/10.1083/jcb.136.2.307
  • Ungermann C, Sato K, Wickner W. Defining the functions of trans-SNARE pairs. Nature 1998; 396:543-8; PMID: 9859990; http://dx.doi.org/10.1038/25069
  • Merz AJ, Wickner W. Trans-SNARE interactions elicit Ca2+ efflux from the yeast vacuole lumen. J Cell Biol 2004; 164:195-206; PMID: 14734531; http://dx.doi.org/10.1083/jcb.200310105
  • Wang L, Seeley ES, Wickner W, Merz AJ. Vacuole fusion at a ring of vertex docking sites leaves membrane fragments within the organelle. Cell 2002; 108:357-69; PMID: 11853670; http://dx.doi.org/10.1016/S0092-8674(02)00632-3
  • Wang L, Merz AJ, Collins KM, Wickner W. Hierarchy of protein assembly at the vertex ring domain for yeast vacuole docking and fusion. J Cell Biol 2003; 160:365-74; PMID: 12566429; http://dx.doi.org/10.1083/jcb.200209095
  • Fratti RA, Jun Y, Merz AJ, Margolis N, Wickner W. Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles. J Cell Biol 2004; 167:1087-98; PMID: 15611334; http://dx.doi.org/10.1083/jcb.200409068
  • Reese C, Heise F, Mayer A. Trans-SNARE pairing can precede a hemifusion intermediate in intracellular membrane fusion. Nature 2005; 436:410-4; PMID: 15924133
  • Reese C, Mayer A. Transition from hemifusion to pore opening is rate limiting for vacuole membrane fusion. J Cell Biol 2005; 171:981-90; PMID: 16365164; http://dx.doi.org/10.1083/jcb.200510018
  • Diao J, Grob P, Cipriano DJ, Kyoung M, Zhang Y, Shah S, Nguyen A, Padolina M, Srivastava A, Vrljic M, et al. Synaptic proteins promote calcium-triggered fast transition from point contact to full fusion. Elife 2012; 1:e00109; PMID: 23240085
  • Karunakaran S, Fratti R. The lipid composition and physical properties of the yeast vacuole affect the hemifusion-fusion transition. Traffic 2013; 14:650-62; PMID: 23438067
  • Das S, Rand RP. Diacylglycerol causes major structural transitions in phospholipid bilayer membranes. Biochem Biophys Res Commun 1984; 124:491-6; PMID: 6541910
  • Seddon JM. An inverse face-centered cubic phase formed by diacylglycerol-phosphatidylcholine mixtures. Biochemistry 1990; 29:7997-8002; PMID: 2261457
  • Mima J, Hickey CM, Xu H, Jun Y, Wickner W. Reconstituted membrane fusion requires regulatory lipids, SNAREs and synergistic SNARE chaperones. Embo J 2008; 27:2031-42; PMID: 18650938
  • Mima J, Wickner W. Complex lipid requirements for SNARE-and SNARE chaperone dependent membrane fusion. J Biol Chem 2009; 284:27114-22; PMID: 19654322
  • Cabrera M, Ostrowicz CW, Mari M, LaGrassa TJ, Reggiori F, Ungermann C. Vps41 phosphorylation and the Rab Ypt7 control the targeting of the HOPS complex to endosome-vacuole fusion sites. Mol Biol Cell 2009; 20:1937-48; PMID: 19193765
  • Brett CL, Plemel RL, Lobingier BT, Vignali M, Fields S, Merz AJ. Efficient termination of vacuolar Rab GTPase signaling requires coordinated action by a GAP and a protein kinase. J Cell Biol 2008; 182:1141-51; PMID: 18809726
  • Lawrence G, Brown CC, Flood BA, Karunakaran S, Cabrera M, Nordmann M, Ungermann C, Fratti RA. Dynamic association of the PI3P-interacting Mon1-Ccz1 GEF with vacuoles is controlled through its phosphorylation by the type-1 casein kinase Yck3. Mol Biol Cell 2014; 25:1608-19
  • Sasser T, Qiu QS, Karunakaran S, Padolina M, Reyes A, Flood B, Smith S, Gonzales C, Fratti RA. Yeast lipin 1 orthologue pah1p regulates vacuole homeostasis and membrane fusion. J Biol Chem 2012; 287:2221-36; PMID: 22121197
  • Schu PV, Takegawa K, Fry MJ, Stack JH, Waterfield MD, Emr SD. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 1993; 260:88-91; PMID: 8385367
  • Qiu QS, Fratti RA. The Na+/H+ exchanger Nhx1p regulates the initiation of Saccharomyces cerevisiae vacuole fusion. J Cell Sci 2010; 123:3266-75; PMID: 20826459
  • Jun Y, Fratti RA, Wickner W. Diacylglycerol and its formation by phospholipase C regulate Rab- and SNARE-dependent yeast vacuole fusion. J Biol Chem 2004; 279:53186-95; PMID: 15485855
  • Eitzen G, Thorngren N, Wickner W. Rho1p and Cdc42p act after Ypt7p to regulate vacuole docking. Embo J 2001; 20:5650-6; PMID: 11598008
  • Eitzen G, Wang L, Thorngren N, Wickner W. Vacuole-bound actin regulates homotypic membrane fusion. J Cell Biol 2002; 158:669-79; PMID: 12177043
  • Karunakaran S, Sasser T, Rajalekshmi S, Fratti RA. SNAREs, HOPS, and regulatory lipids control the dynamics of vacuolar actin during homotypic fusion. J Cell Sci 2012; 14:650-62
  • Paumi CM, Menendez J, Arnoldo A, Engels K, Iyer KR Thaminy S, Georgiev O, Barral Y, Michaelis S, Stagljar I. Mapping protein-protein interactions for the yeast ABC transporter Ycf1p by integrated split-ubiquitin membrane yeast two-hybrid analysis. Mol Cell 2007; 26:15-25; PMID: 17434123; http://dx.doi.org/10.1016/j.molcel.2007.03.011
  • Higgins CF. ABC transporters: from microorganisms to man. Annu Rev Cell Biol 1992; 8:67-113; PMID: 1282354; http://dx.doi.org/10.1146/annurev.cb.08.110192.000435
  • Higgins CF. The ABC of channel regulation. Cell 1995; 82:693-6; PMID: 7671298; http://dx.doi.org/10.1016/0092-8674(95)90465-4
  • Dean M, Allikmets R. Evolution of ATP-binding cassette transporter genes. Curr Opin Genet Dev 1995; 5:779-85; PMID: 8745077; http://dx.doi.org/10.1016/0959-437X(95)80011-S
  • Kuchler K, Thorner J. Functional expression of human mdr1 in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1992; 89:2302-6; PMID: 1347948; http://dx.doi.org/10.1073/pnas.89.6.2302
  • Blight MA, Menichi B, Holland IB. Evidence for post-transcriptional regulation of the synthesis of the Escherichia coli HlyB haemolysin translocator and production of polyclonal anti-HlyB antibody. Mol Gen Genet 1995; 247:73-85; PMID: 7536296; http://dx.doi.org/10.1007/BF00425823
  • van Veen HW, Higgins CF, Konings WN. Multidrug transport by ATP binding cassette transporters: a proposed two-cylinder engine mechanism. Res Microbiol 2001; 152:365-74; PMID: 11421284; http://dx.doi.org/10.1016/S0923-2508(01)01208-6
  • Ames GF, Lever J. Components of histidine transport: histidine-binding proteins and hisP protein. Proc Natl Acad Sci U S A 1970; 66:1096-103; PMID: 4920090; http://dx.doi.org/10.1073/pnas.66.4.1096
  • Bavoil P, Hofnung M, Nikaido H. Identification of a cytoplasmic membrane-associated component of the maltose transport system of Escherichia coli. J Biol Chem 1980; 255:8366-9; PMID: 6997295
  • Paumi CM, Chuk M, Snider J, Stagljar I, Michaelis S. ABC transporters in Saccharomyces cerevisiae and their interactors: new technology advances the biology of the ABCC (MRP) subfamily. Microbiol Mol Biol Rev 2009; 73:577-93; PMID: 19946134; http://dx.doi.org/10.1128/MMBR.00020-09
  • Higgins CF. ABC transporters: physiology, structure and mechanism–an overview. Res Microbiol 2001; 152:205-10; PMID: 11421269; http://dx.doi.org/10.1016/S0923-2508(01)01193-7
  • Dean M, Allikmets R. Complete characterization of the human ABC gene family. J Bioenerg Biomembr 2001; 33:475-9; PMID: 11804189; http://dx.doi.org/10.1023/A:1012823120935
  • Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 2001; 11:1156-66; PMID: 11435397; http://dx.doi.org/10.1101/gr.GR-1649R
  • Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 1993; 62:385-427; PMID: 8102521; http://dx.doi.org/10.1146/annurev.bi.62.070193.002125
  • Lankat-Buttgereit B, Tampe R. The transporter associated with antigen processing: function and implications in human diseases. Physiol Rev 2002; 82:187-204; PMID: 11773612
  • Decottignies A, Goffeau A. Complete inventory of the yeast ABC proteins. Nat Genet 1997; 15:137-45; PMID: 9020838; http://dx.doi.org/10.1038/ng0297-137
  • Taglicht D, Michaelis S. Saccharomyces cerevisiae ABC proteins and their relevance to human health and disease. Methods Enzymol 1998; 292:130-62; PMID: 9711551; http://dx.doi.org/10.1016/S0076-6879(98)92012-2
  • Katzmann DJ, Epping EA, Moye-Rowley WS. Mutational disruption of plasma membrane trafficking of Saccharomyces cerevisiae Yor1p, a homologue of mammalian multidrug resistance protein. Mol Cell Biol 1999; 19:2998-3009; PMID: 10082567
  • Szczypka MS, Wemmie JA, Moye-Rowley WS, Thiele DJ. A yeast metal resistance protein similar to human cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance-associated protein. J Biol Chem 1994; 269:22853-7; PMID: 7521334
  • Cui Z, Hirata D, Tsuchiya E, Osada H, Miyakawa T. The multidrug resistance-associated protein (MRP) subfamily (Yrs1/Yor1) of Saccharomyces cerevisiae is important for the tolerance to a broad range of organic anions. J Biol Chem 1996; 271:14712-6; PMID: 8663018; http://dx.doi.org/10.1074/jbc.271.25.14712
  • Li ZS, Szczypka M, Lu YP, Thiele DJ, Rea PA. The yeast cadmium factor protein (YCF1) is a vacuolar glutathione S-conjugate pump. J Biol Chem 1996; 271:6509-17; PMID: 8626454; http://dx.doi.org/10.1074/jbc.271.11.6509
  • Decottignies A, Grant AM, Nichols JW, de Wet H, McIntosh DB, Goffeau A. ATPase and multidrug transport activities of the overexpressed yeast ABC protein Yor1p. J Biol Chem 1998; 273:12612-22; PMID: 9575223; http://dx.doi.org/10.1074/jbc.273.20.12612
  • Li ZS, Szczypka M, Lu YP, Thiele DJ, Rea PA. The yeast cadmium factor protein (YCF1) is a vacuolar glutathione S-conjugate pump. J Biol Chem 1996; 271:6509-17; PMID: 8626454; http://dx.doi.org/10.1074/jbc.271.11.6509
  • Petrovic S, Pascolo L, Gallo R, Cupelli F, Ostrow JD, Goffeau A, Tiribelli C, Bruschi CV. The products of YCF1 and YLL015w (BPT1) cooperate for the ATP-dependent vacuolar transport of unconjugated bilirubin in Saccharomyces cerevisiae. Yeast 2000; 16:561-71; PMID: 10790694; http://dx.doi.org/10.1002/(SICI)1097-0061(200004)16:6%3c561::AID-YEA551%3e3.0.CO;2-L
  • Ortiz DF, St Pierre MV, Abdulmessih A, Arias IM. A yeast ATP-binding cassette-type protein mediating ATP-dependent bile acid transport. J Biol Chem 1997; 272:15358-65; PMID: 9182565; http://dx.doi.org/10.1074/jbc.272.24.15358
  • Gulshan K, Moye-Rowley WS. Vacuolar import of phosphatidylcholine requires the ATP-binding cassette transporter Ybt1. Traffic 2011; 12:1257-68; PMID: 21649806; http://dx.doi.org/10.1111/j.1600-0854.2011.01228.x
  • Sasser TL, Padolina M, Fratti RA. The yeast nacuolar ABC transporter Ybt1p regulates membrane fusion through Ca2+ transport modulation. Biochem J 2012; 448:365-72; PMID: 22970809; http://dx.doi.org/10.1042/BJ20120847
  • LaGrassa TJ, Ungermann C. The vacuolar kinase Yck3 maintains organelle fragmentation by regulating the HOPS tethering complex. J Cell Biol 2005; 168:401-14; PMID: 15684030; http://dx.doi.org/10.1083/jcb.200407141
  • Brett CL, Merz AJ. Osmotic regulation of Rab-mediated organelle docking. Curr Biol 2008; 18:1072-7; PMID: 18619842; http://dx.doi.org/10.1016/j.cub.2008.06.050
  • Ungermann C, Wickner W, Xu Z. Vacuole acidification is required for trans-SNARE pairing, LMA1 release, and homotypic fusion. Proc Natl Acad Sci U S A 1999; 96:11194; PMID: 10500153; http://dx.doi.org/10.1073/pnas.96.20.11194
  • Starai VJ, Jun Y, Wickner W. Excess vacuolar SNAREs drive lysis and Rab bypass fusion. Proc Natl Acad Sci U S A 2007; 104:13551-8; PMID: 17699614; http://dx.doi.org/10.1073/pnas.0704741104
  • Cunningham KW. Acidic calcium stores of Saccharomyces cerevisiae. Cell Calcium 2011; 50:129-38; PMID: 21377728; http://dx.doi.org/10.1016/j.ceca.2011.01.010
  • Dong XP, Shen D, Wang X, Dawson T, Li X, Zhang Q, Cheng X, Zhang Y, Weisman LS, Delling M, Xu H. PI(3,5)P(2) controls membrane trafficking by direct activation of mucolipin Ca(2+) release channels in the endolysosome. Nat Commun 2010; 1:38; PMID: 20802798; http://dx.doi.org/10.1038/ncomms1037
  • Tarassov K, Messier V, Landry CR, Radinovic S, Serna Molina MM, Shames I, Malitskaya Y, Vogel J, Bussey H, Michnick SW. An in vivo map of the yeast protein interactome. Science 2008; 320:1465-70; PMID: 18467557; http://dx.doi.org/10.1126/science.1153878
  • Takita Y, Engstrom L, Ungermann C, Cunningham KW. Inhibition of the Ca(2+)-ATPase Pmc1p by the v-SNARE protein Nyv1p. J Biol Chem 2001; 276:6200-6; PMID: 11080502; http://dx.doi.org/10.1074/jbc.M009191200
  • Bouillet LE, Cardoso AS, Perovano E, Pereira RR, Ribeiro EM, Tropia MJ, Fietto LG, Tisi R, Martegani E, Castro IM, et al. The involvement of calcium carriers and of the vacuole in the glucose-induced calcium signaling and activation of the plasma membrane H(+)-ATPase in Saccharomyces cerevisiae cells. Cell Calcium 2012; 51:72-81; PMID: 22153127; http://dx.doi.org/10.1016/j.ceca.2011.10.008
  • Denis V, Cyert MS. Internal Ca(2+) release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue. J Cell Biol 2002; 156:29-34; PMID: 11781332; http://dx.doi.org/10.1083/jcb.200111004
  • Su Z, Anishkin A, Kung C, Saimi Y. The core domain as the force sensor of the yeast mechanosensitive TRP channel. J Gen Physiol 2011; 138:627-40; PMID: 22124118; http://dx.doi.org/10.1085/jgp.201110693
  • Boettcher JM, Davis-Harrison RL, Clay MC, Nieuwkoop AJ, Ohkubo YZ, Tajkhorshid E, Morrissey JH, Rienstra CM. Atomic view of calcium-induced clustering of phosphatidylserine in mixed lipid bilayers. Biochemistry 2011; 50:2264-73; PMID: 21294564; http://dx.doi.org/10.1021/bi1013694
  • Ellenbroek WG, Wang YH, Christian DA, Discher DE, Janmey PA, Liu AJ. Divalent cation-dependent formation of electrostatic PIP2 clusters in lipid monolayers. Biophys J 2011; 101:2178-84; PMID: 22067156; http://dx.doi.org/10.1016/j.bpj.2011.09.039
  • Zilly FE, Halemani ND, Walrafen D, Spitta L, Schreiber A, Jahn R, Lang T. Ca2+ induces clustering of membrane proteins in the plasma membrane via electrostatic interactions. EMBO J 2011; 30:1209-20; PMID: 21364530; http://dx.doi.org/10.1038/emboj.2011.53
  • Gueldry O, Lazard M, Delort F, Dauplais M, Grigoras I, Blanquet S, Plateau P. Ycf1p-dependent Hg(II) detoxification in Saccharomyces cerevisiae. Eur J Biochem 2003; 270:2486-96; PMID: 12755704; http://dx.doi.org/10.1046/j.1432-1033.2003.03620.x
  • Gary JD, Wurmser AE, Bonangelino CJ, Weisman LS, Emr SD. Fab1p is essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis. J Cell Biol 1998; 143:65-79; PMID: 9763421; http://dx.doi.org/10.1083/jcb.143.1.65
  • Kutateladze TG. Translation of the phosphoinositide code by PI effectors. Nat Chem Biol 2010; 6:507-13; PMID: 20559318; http://dx.doi.org/10.1038/nchembio.390
  • Stroupe C, Collins KM, Fratti RA, Wickner W. Purification of active HOPS complex reveals its affinities for phosphoinositides and the SNARE Vam7p. Embo J 2006; 25:1579-89; PMID: 16601699; http://dx.doi.org/10.1038/sj.emboj.7601051
  • Cabrera M, Nordmann M, Perz A, Schmedt D, Gerondopoulos A, Barr F, Piehler J, Engelbrecht-Vandre S, Ungermann C. The Mon1-Ccz1 GEF activates the Rab7 GTPase Ypt7 via a longin fold-Rab interface and association with PI-3-P-positive membranes. J Cell Sci 2014; 127:1043-51
  • Yamamoto A, DeWald DB, Boronenkov IV, Anderson RA, Emr SD, Koshland D. Novel PI(4)P 5-kinase homologue, Fab1p, essential for normal vacuole function and morphology in yeast. Mol Biol Cell 1995; 6:525-39; PMID: 7663021; http://dx.doi.org/10.1091/mbc.6.5.525
  • Odorizzi G, Babst M, Emr SD. Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell 1998; 95:847-58; PMID: 9865702; http://dx.doi.org/10.1016/S0092-8674(00)81707-9
  • Parrish WR, Stefan CJ, Emr SD. Essential role for the myotubularin-related phosphatase Ymr1p and the synaptojanin-like phosphatases Sjl2p and Sjl3p in regulation of phosphatidylinositol 3-phosphate in yeast. Mol Biol Cell 2004; 15:3567-79; PMID: 15169871; http://dx.doi.org/10.1091/mbc.E04-03-0209
  • Taylor GS, Maehama T, Dixon JE. Inaugural article: myotubularin, a protein tyrosine phosphatase mutated in myotubular myopathy, dephosphorylates the lipid second messenger, phosphatidylinositol 3-phosphate. Proc Natl Acad Sci U S A 2000; 97:8910-5; PMID: 10900271; http://dx.doi.org/10.1073/pnas.160255697
  • Gary JD, Sato TK, Stefan CJ, Bonangelino CJ, Weisman LS, Emr SD. Regulation of fab1 phosphatidylinositol 3-phosphate 5-kinase pathway by vac7 protein and fig4, a polyphosphoinositide phosphatase family member. Mol Biol Cell 2002; 13:1238-51; PMID: 11950935; http://dx.doi.org/10.1091/mbc.01-10-0498
  • Sasser TL, Lawrence G, Karunakaran S, Brown C, Fratti RA. The yeast ABC transporter Ycf1p enhances the recruitment of the soluble SNARE Vam7p to vacuoles for efficient membrane fusion. J Biol Chem 2013; 288:18300-10; PMID: 23658021; http://dx.doi.org/10.1074/jbc.M112.441089
  • Kusumi A, Suzuki K, Koyasako K. Mobility and cytoskeletal interactions of cell adhesion receptors. Curr Opin Cell Biol 1999; 11:582-90; PMID: 10508652; http://dx.doi.org/10.1016/S0955-0674(99)00020-4
  • Tamkun MM, O'Connell K M, Rolig AS. A cytoskeletal-based perimeter fence selectively corrals a sub-population of cell surface Kv2.1 channels. J Cell Sci 2007; 120:2413-23; PMID: 17606996; http://dx.doi.org/10.1242/jcs.007351
  • Marelli M, Smith JJ, Jung S, Yi E, Nesvizhskii AI, Christmas RH, Saleem RA, Tam YY, Fagarasanu A, Goodlett DR, Aebersold R, et al. Quantitative mass spectrometry reveals a role for the GTPase Rho1p in actin organization on the peroxisome membrane. J Cell Biol 2004; 167:1099-112; PMID: 15596542; http://dx.doi.org/10.1083/jcb.200404119
  • Tolliday N, VerPlank L, Li R. Rho1 directs formin-mediated actin ring assembly during budding yeast cytokinesis. Curr Biol 2002; 12:1864-70; PMID: 12419188; http://dx.doi.org/10.1016/S0960-9822(02)01238-1
  • Lee ME, Singh K, Snider J, Shenoy A, Paumi CM, Stagljar I, Park HO. The Rho1 GTPase acts together with a vacuolar glutathione S-conjugate transporter to protect yeast cells from oxidative stress. Genetics 2011; 188:859-70; PMID: 21625004; http://dx.doi.org/10.1534/genetics.111.130724
  • Schmelzle T, Helliwell SB, Hall MN. Yeast protein kinases and the RHO1 exchange factor TUS1 are novel components of the cell integrity pathway in yeast. Mol Cell Biol 2002; 22:1329-39; PMID: 11839800; http://dx.doi.org/10.1128/MCB.22.5.1329-1339.2002
  • Thorngren N, Collins KM, Fratti RA, Wickner W, Merz AJ. A soluble SNARE drives rapid docking, bypassing ATP and Sec17/18p for vacuole fusion. Embo J 2004; 23:2765-76; PMID: 15241469; http://dx.doi.org/10.1038/sj.emboj.7600286
  • Fratti RA, Collins KM, Hickey CM, Wickner W. Stringent 3Q: 1R composition of the SNARE 0-layer can be bypassed for fusion by compensatory SNARE mutation or by lipid bilayer modification. J Biol Chem 2007; 282:14861-7; PMID: 17400548; http://dx.doi.org/10.1074/jbc.M700971200
  • Daleke DL. Regulation of transbilayer plasma membrane phospholipid asymmetry. J Lipid Res 2003; 44:233-42; PMID: 12576505; http://dx.doi.org/10.1194/jlr.R200019-JLR200
  • Andersen OS, Koeppe RE, 2nd. Bilayer thickness and membrane protein function: an energetic perspective. Annu Rev Biophys Biomol Struct 2007; 36:107-30; PMID: 17263662; http://dx.doi.org/10.1146/annurev.biophys.36.040306.132643
  • Papadopulos A, Vehring S, Lopez-Montero I, Kutschenko L, Stockl M, Devaux PF, Kozlov M, Pomorski T, Herrmann A. Flippase activity detected with unlabeled lipids by shape changes of giant unilamellar vesicles. J Biol Chem 2007; 282:15559-68; PMID: 17369612; http://dx.doi.org/10.1074/jbc.M604740200
  • Rauch C, Farge E. Endocytosis switch controlled by transmembrane osmotic pressure and phospholipid number asymmetry. Biophys J 2000; 78:3036-47; PMID: 10827982; http://dx.doi.org/10.1016/S0006-3495(00)76842-1
  • van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 2008; 9:112-24; PMID: 18216768; http://dx.doi.org/10.1038/nrm2330
  • Bretscher MS. Asymmetrical lipid bilayer structure for biological membranes. Nat New Biol 1972; 236:11-2; PMID: 4502419; http://dx.doi.org/10.1038/newbio236011a0
  • Op den Kamp JA. Lipid asymmetry in membranes. Annu Rev Biochem 1979; 48:47-71; PMID: 382989; http://dx.doi.org/10.1146/annurev.bi.48.070179.000403
  • Kornberg RD, McConnell HM. Inside-outside transitions of phospholipids in vesicle membranes. Biochemistry 1971; 10:1111-20; PMID: 4324203; http://dx.doi.org/10.1021/bi00783a003
  • Huang Z, Chang X, Riordan JR, Huang Y. Fluorescent modified phosphatidylcholine floppase activity of reconstituted multidrug resistance-associated protein MRP1. Biochim Biophys Acta 2004; 1660:155-63; PMID: 14757231; http://dx.doi.org/10.1016/j.bbamem.2003.11.010
  • Smriti, Nemergut EC, Daleke DL. ATP-dependent transport of phosphatidylserine analogues in human erythrocytes. Biochemistry 2007; 46:2249-59; PMID: 17269657; http://dx.doi.org/10.1021/bi061333x
  • Sharma KG, Kaur R, Bachhawat AK. The glutathione-mediated detoxification pathway in yeast: an analysis using the red pigment that accumulates in certain adenine biosynthetic mutants of yeasts reveals the involvement of novel genes. Arch Microbiol 2003; 180:108-17; PMID: 12819858; http://dx.doi.org/10.1007/s00203-003-0566-z
  • Klein M, Mamnun YM, Eggmann T, Schuller C, Wolfger H, Martinoia E, Kuchler K. The ATP-binding cassette (ABC) transporter Bpt1p mediates vacuolar sequestration of glutathione conjugates in yeast. FEBS Lett 2002; 520:63-7; PMID: 12044871; http://dx.doi.org/10.1016/S0014-5793(02)02767-9
  • Wawrzycka D, Sobczak I, Bartosz G, Bocer T, Ulaszewski S, Goffeau A. Vmr 1p is a novel vacuolar multidrug resistance ABC transporter in Saccharomyces cerevisiae. FEMS Yeast Res 2010; 10:828-38; PMID: 20846144; http://dx.doi.org/10.1111/j.1567-1364.2010.00673.x
  • Mason DL, Mallampalli MP, Huyer G, Michaelis S. A region within a lumenal loop of Saccharomyces cerevisiae Ycf1p directs proteolytic processing and substrate specificity. Eukaryot Cell 2003; 2:588-98; PMID: 12796304; http://dx.doi.org/10.1128/EC.2.3.588-598.2003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.