1,040
Views
11
CrossRef citations to date
0
Altmetric
RESEARCH PAPERS

Improved adipose tissue metabolism after 5-year growth hormone replacement therapy in growth hormone deficient adults: The role of zinc-α2-glycoprotein

, , , , , , , , , , & show all
Pages 113-122 | Received 21 Jul 2014, Accepted 02 Oct 2014, Published online: 17 Dec 2014

References

  • Ukropec J, Penesova A, Skopkova M, Pura M, Vlcek M, Radikova Z, Imrich R, Ukropcová B, Tajtáková M, Koska J, et al. Adipokine protein expression pattern in growth hormone deficiency predisposes to the increased fat cell size and the whole body metabolic derangements. J Clin Endocrinol Metab 2008; 93:2255-62; PMID:18334583; http://dx.doi.org/10.1210/jc.2007-2188
  • Svensson J, Fowelin J, Landin K, Bengtsson BA, Johansson JO. Effects of seven years of GH-replacement therapy on insulin sensitivity in GH-deficient adults. J Clin Endocrinol Metab 2002; 87:2121-7; PMID:11994351; http://dx.doi.org/10.1210/jcem.87.5.8482
  • Moller N, Jorgensen JO. Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr Rev 2009; 30:152-77; PMID:19240267; http://dx.doi.org/10.1210/er.2008-0027
  • Widdowson WM, Gibney J. The effect of growth hormone (GH) replacement on muscle strength in patients with GH-deficiency: a meta-analysis. Clin Endocrinol (Oxf) 2010; 72:787-92; PMID:19769614; http://dx.doi.org/10.1111/j.1365-2265.2009.03716.x
  • Johannsson G, Marin P, Lonn L, Ottosson M, Stenlof K, Bjorntorp P, Sjöström L, Bengtsson BA. Growth hormone treatment of abdominally obese men reduces abdominal fat mass, improves glucose and lipoprotein metabolism, and reduces diastolic blood pressure. J Clin Endocrinol Metab 1997; 82:727-34; PMID:9062473
  • Mekala KC, Tritos NA. Effects of recombinant human growth hormone therapy in obesity in adults: a meta analysis. J Clin Endocrinol Metab 2009; 94:130-7; PMID:18940879; http://dx.doi.org/10.1210/jc.2008-1357
  • Garten A, Schuster S, Kiess W. The insulin-like growth factors in adipogenesis and obesity. Endocrinol Metab Clin North Am 2012; 41:283-95; v-vi; PMID:22682631; http://dx.doi.org/10.1016/j.ecl.2012.04.011
  • Arafat AM, Mohlig M, Weickert MO, Schofl C, Spranger J, Pfeiffer AF. Improved insulin sensitivity, preserved beta cell function and improved whole-body glucose metabolism after low-dose growth hormone replacement therapy in adults with severe growth hormone deficiency: a pilot study. Diabetologia 2010; 53:1304-13; PMID:20372873; http://dx.doi.org/10.1007/s00125-010-1738-4
  • Claessen KM, Appelman-Dijkstra NM, Adoptie DM, Roelfsema F, Smit JW, Biermasz NR, Pereira AM. Metabolic profile in growth hormone-deficient (GHD) adults after long-term recombinant human growth hormone (rhGH) therapy. J Clin Endocrinol Metab 2013; 98:352-61; PMID:23162104; http://dx.doi.org/10.1210/jc.2012-2940
  • Burger AG, Monson JP, Colao AM, Klibanski A. Cardiovascular risk in patients with growth hormone deficiency: effects of growth hormone substitution. Endocr Pract 2006; 12:682-9; PMID:17229667; http://dx.doi.org/10.4158/EP.12.6.682
  • Mohamed-Ali V, Goodrick S, Rawesh A, Katz DR, Miles JM, Yudkin JS, Klein S, Coppack SW. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab 1997; 82:4196-200; PMID:9398739
  • Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993; 259:87-91; PMID:7678183; http://dx.doi.org/10.1126/science.7678183
  • Ahima RS, Flier JS. Adipose tissue as an endocrine organ. Trends Endocrinol Metab 2000; 11:327-32; PMID:10996528; http://dx.doi.org/10.1016/S1043-2760(00)00301-5
  • Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 2006; 444:847-53; PMID:17167472; http://dx.doi.org/10.1038/nature05483
  • Gong FY, Zhang SJ, Deng JY, Zhu HJ, Pan H, Li NS, Shi YF. Zinc-alpha2-glycoprotein is involved in regulation of body weight through inhibition of lipogenic enzymes in adipose tissue. Int J Obes (Lond) 2009; 33:1023-30; PMID:19621019; http://dx.doi.org/10.1038/ijo.2009.141
  • Islam-Ali B, Khan S, Price SA, Tisdale MJ. Modulation of adipocyte G-protein expression in cancer cachexia by a lipid-mobilizing factor (LMF). Br J Cancer 2001; 85:758-63; PMID:11531264; http://dx.doi.org/10.1054/bjoc.2001.1992
  • Rolli V, Radosavljevic M, Astier V, Macquin C, Castan-Laurell I, Visentin V, Guigné C, Carpéné C, Valet P, Gilfillan S, et al. Lipolysis is altered in MHC class I zinc-alpha(2)-glycoprotein deficient mice. FEBS Lett 2007; 581:394-400; PMID:17234189; http://dx.doi.org/10.1016/j.febslet.2006.12.047
  • Russell ST, Tisdale MJ. Effect of a tumour-derived lipid-mobilising factor on glucose and lipid metabolism in vivo. Br J Cancer 2002; 87:580-4; PMID:12189560; http://dx.doi.org/10.1038/sj.bjc.6600493
  • Russell ST, Tisdale MJ. Studies on the antiobesity effect of zinc-alpha2-glycoprotein in the obob mouse. Int J Obes (Lond) 2011; 35:345-54; PMID:20697416; http://dx.doi.org/10.1038/ijo.2010.150
  • Russell ST, Tisdale MJ. Role of beta-adrenergic receptors in the anti-obesity and anti-diabetic effects of zinc-alpha2-glycoprotien (ZAG). Biochim Biophys Acta 2012; 1821:590-9; PMID:22227600; http://dx.doi.org/10.1016/j.bbalip.2011.12.003
  • Burgi W, Schmid K. Preparation and properties of Zn-alpha 2-glycoprotein of normal human plasma. J Biol Chem 1961; 236:1066-74; PMID:13689030
  • Diez-Itza I, Sanchez LM, Allende MT, Vizoso F, Ruibal A, Lopez-Otin C. Zn-alpha 2-glycoprotein levels in breast cancer cytosols and correlation with clinical, histological and biochemical parameters. Eur J Cancer 1993; 29A:1256-60; PMID:8343263; http://dx.doi.org/10.1016/0959-8049(93)90068-Q
  • Tada T, Ohkubo I, Niwa M, Sasaki M, Tateyama H, Eimoto T. Immunohistochemical localization of Zn-alpha 2-glycoprotein in normal human tissues. J Histochem Cytochem 1991; 39:1221-6; PMID:1918940; http://dx.doi.org/10.1177/39.9.1918940
  • Todorov PT, McDevitt TM, Meyer DJ, Ueyama H, Ohkubo I, Tisdale MJ. Purification and characterization of a tumor lipid-mobilizing factor. Cancer Res 1998; 58:2353-8; PMID:9622074
  • Bao Y, Bing C, Hunter L, Jenkins JR, Wabitsch M, Trayhurn P. Zinc-alpha2-glycoprotein, a lipid mobilizing factor, is expressed and secreted by human (SGBS) adipocytes. FEBS Lett 2005; 579:41-7; PMID:15620688; http://dx.doi.org/10.1016/j.febslet.2004.11.042
  • Mracek T, Ding Q, Tzanavari T, Kos K, Pinkney J, Wilding J, Trayhurn P, Bing C. The adipokine zinc-alpha2-glycoprotein (ZAG) is downregulated with fat mass expansion in obesity. Clin Endocrinol (Oxf) 2010; 72:334-41; PMID:19549246; http://dx.doi.org/10.1111/j.1365-2265.2009.03658.x
  • Mracek T, Stephens NA, Gao D, Bao Y, Ross JA, Ryden M, Arner P, Trayhurn P, Fearon KC, Bing C. Enhanced ZAG production by subcutaneous adipose tissue is linked to weight loss in gastrointestinal cancer patients. Br J Cancer 2011; 104:441-7; PMID:21245862; http://dx.doi.org/10.1038/sj.bjc.6606083
  • Hirai K, Hussey HJ, Barber MD, Price SA, Tisdale MJ. Biological evaluation of a lipid-mobilizing factor isolated from the urine of cancer patients. Cancer Res 1998; 58:2359-65; PMID:9622075
  • Agha A, Monson JP. Modulation of glucocorticoid metabolism by the growth hormone - IGF-1 axis. Clin Endocrinol (Oxf) 2007; 66:459-65; PMID:17371460
  • Paulsen SK, Pedersen SB, Jorgensen JO, Fisker S, Christiansen JS, Flyvbjerg A, Richelsen B. Growth hormone (GH) substitution in GH-deficient patients inhibits 11beta-hydroxysteroid dehydrogenase type 1 messenger ribonucleic acid expression in adipose tissue. J Clin Endocrinol Metab 2006; 91:1093-8; PMID:16368752; http://dx.doi.org/10.1210/jc.2005-1694
  • Bonnet F, Vanderschueren-Lodeweyckx M, Eeckels R, Malvaux P. Subcutaneous adipose tissue and lipids in blood in growth hormone deficiency before and after treatment with human growth hormone. Pediatr Res 1974; 8:800-5; PMID:4370413; http://dx.doi.org/10.1203/00006450-197409000-00005
  • Balaz M, Ukropcova B, Kurdiova T, Gajdosechova L, Vlcek M, Janakova Z, Fedeles J, Pura M, Gasperikova D, Smith SR, et al. Growth hormone regulates zinc-alpha2-glycoprotein, adipokine linked to insulin sensitivity. Obesity (Silver Spring) 2014; PMID:25098857; http://dx.doi.org/10.1002/oby.20856
  • Moller N, Jorgensen JO, Schmitz O, Moller J, Christiansen J, Alberti KG, Orskov H. Effects of a growth hormone pulse on total and forearm substrate fluxes in humans. Am J Physiol 1990; 258:E86-91; PMID:2405702
  • Rabinowitz D, Klassen GA, Zierler KL. Effect of human growth hormone on muscle and adipose tissue metabolism in the forearm of man. J Clin Invest 1965; 44:51-61; PMID:14254256; http://dx.doi.org/10.1172/JCI105126
  • Marcus C, Bolme P, Micha-Johansson G, Margery V, Bronnegard M. Growth hormone increases the lipolytic sensitivity for catecholamines in adipocytes from healthy adults. Life Sci 1994; 54:1335-41; PMID:8190005; http://dx.doi.org/10.1016/0024-3205(94)00512-5
  • Ottosson M, Lonnroth P, Bjorntorp P, Eden S. Effects of cortisol and growth hormone on lipolysis in human adipose tissue. J Clin Endocrinol Metab 2000; 85:799-803; PMID:10690893
  • Russell ST, Tisdale MJ. Studies on the anti-obesity activity of zinc-alpha2-glycoprotein in the rat. Int J Obes (Lond) 2011; 35:658-65; PMID:20856251; http://dx.doi.org/10.1038/ijo.2010.193
  • Russell ST, Tisdale MJ. Role of beta-adrenergic receptors in the oral activity of zinc-alpha2-glycoprotein (ZAG). Endocrinology 2012; 153:4696-704; PMID:22903615; http://dx.doi.org/10.1210/en.2012-1260
  • Tominaga S, Morikawa M, Osumi T. Growth hormone has dual stage-specific effects on the differentiation of 3T3-L1 preadipocytes. J Biochem 2002; 132:881-9; PMID:12473190; http://dx.doi.org/10.1093/oxfordjournals.jbchem.a003301
  • Morikawa M, Green H, Lewis UJ. Activity of human growth hormone and related polypeptides on the adipose conversion of 3T3 cells. Mol Cell Biol 1984; 4:228-31; PMID:6700589
  • Balaz M, Vician M, Janakova Z, Kurdiova T, Surova M, Imrich R, Majercikova Z, Penesova A, Vlcek M, Kiss A, et al. Subcutaneous adipose tissue zinc-alpha2-glycoprotein is associated with adipose tissue and whole-body insulin sensitivity. Obesity (Silver Spring) 2014; 22:1821-9; PMID:24753506; http://dx.doi.org/10.1093/10.1002/oby.20764
  • Kurdiova T, Balaz M, Vician M, Maderova D, Vlcek M, Valkovic L, Srbecky M, Imrich R, Kyselovicova O, Belan V, et al. Are skeletal muscle & adipose tissue Fndc5 gene expression and irisin release affected by obesity, diabetes and exercise? In vivo & in vitro studies. J Physiol 2013; 592:1091-107; PMID:24297848; http://dx.doi.org/10.1113/jphysiol.2013.264655
  • Meissburger B, Stachorski L, Roder E, Rudofsky G, Wolfrum C. Tissue inhibitor of matrix metalloproteinase 1 (TIMP1) controls adipogenesis in obesity in mice and in humans. Diabetologia 2011; 54:1468-79; PMID:21437772; http://dx.doi.org/10.1007/s00125-011-2093-9
  • Malisova L, Kovacova Z, Koc M, Kracmerova J, Stich V, Rossmeislova L. Ursodeoxycholic Acid but not tauroursodeoxycholic Acid inhibits proliferation and differentiation of human subcutaneous adipocytes. PLoS One 2013; 8:e82086; PMID:24312631; http://dx.doi.org/10.1371/journal.pone.0082086

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.