10,044
Views
107
CrossRef citations to date
0
Altmetric
Reviews

Antigen-specific vaccines for cancer treatment

, , , &
Pages 3332-3346 | Received 24 Jun 2014, Accepted 23 Aug 2014, Published online: 31 Oct 2014

References

  • Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med 2004; 10:789-799; PMID:15286780; http://dx.doi.org/10.1038/nm1087/
  • Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C et al. Patterns of somatic mutation in human cancer genomes. Nature 2007; 446:153-158; PMID:17344846; http://dx.doi.org/10.1038/nature05610
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100:57-70; PMID:10647931; http://dx.doi.org/10.1016/S0092-8674(00)81683-9
  • Hanna MG, Jr. Peters LC. Specific immunotherapy of established visceral micrometastases by BCG-tumor cell vaccine alone or as an adjunct to surgery. Cancer 1978; 42:2613-2625; PMID:728864; http://dx.doi.org/10.1002/1097-0142(197812)42:6%3c2613::AID-CNCR2820420617%3e3.0.CO;2-K
  • Ruttinger D, van den Engel NK, Winter H, Schlemmer M, Pohla H, Grutzner S, Wagner B, Schendel DJ, Fox BA, Jauch KW et al. Adjuvant therapeutic vaccination in patients with non-small cell lung cancer made lymphopenic and reconstituted with autologous PBMC: first clinical experience and evidence of an immune response. J Transl Med 2007; 5:43-; PMID:17868452; http://dx.doi.org/10.1186/1479-5876-5-43
  • Nemunaitis J, Nemunaitis J. Granulocyte-macrophage colony-stimulating factor gene-transfected autologous tumor cell vaccine: focus[correction to fcous] on non-small-cell lung cancer. Clin Lung Cancer 2003; 5:148-157
  • Harris JE, Ryan L, Hoover HC, Jr., Stuart RK, Oken MM, Benson AB, III, Mansour E, Haller DG, Manola J, Hanna MG, Jr. Adjuvant active specific immunotherapy for stage II and III colon cancer with an autologous tumor cell vaccine: Eastern Cooperative Oncology Group Study E5283. J Clin Oncol 2000; 18:148-157; PMID:10623705; .
  • de WV, Turksma AW, Voorham QJ, Euler Z, Bril H, van den Eertwegh AJ, Bloemena E, Pinedo HM, Vermorken JB, van TH et al. Clinical effects of adjuvant active specific immunotherapy differ between patients with microsatellite-stable and microsatellite-instable colon cancer. Clin Cancer Res 2012; 18:882-889; PMID:22156611; http://dx.doi.org/10.1158/1078-0432.CCR-11-1716
  • Hanna MG, Jr., Hoover HC, Jr., Vermorken JB, Harris JE, Pinedo HM. Adjuvant active specific immunotherapy of stage II and stage III colon cancer with an autologous tumor cell vaccine: first randomized phase III trials show promise. Vaccine 2001; 19:2576-2582; PMID:11257395; http://dx.doi.org/10.1016/S0264-410X(00)00485-0
  • Baars A, Claessen AM, van den Eertwegh AJ, Gall HE, Stam AG, Meijer S, Giaccone G, Meijer CJ, Scheper RJ, Wagstaff J et al. Skin tests predict survival after autologous tumor cell vaccination in metastatic melanoma: experience in 81 patients. Ann Oncol 2000; 11:965-970; PMID:11038032; http://dx.doi.org/10.1023/A:1008363601515
  • Berd D, Sato T, Maguire HC, Jr., Kairys J, Mastrangelo MJ. Immunopharmacologic analysis of an autologous, hapten-modified human melanoma vaccine. J Clin Oncol 2004; 22:403-415; PMID:14691123; http://dx.doi.org/10.1200/JCO.2004.06.043
  • Mendez R, Ruiz-Cabello F, Rodriguez T, Del CA, Paschen A, Schadendorf D, Garrido F. Identification of different tumor escape mechanisms in several metastases from a melanoma patient undergoing immunotherapy. Cancer Immunol Immunother 2007; 56:88-94; PMID:16622680; http://dx.doi.org/10.1007/s00262-006-0166-2
  • Antonia SJ, Seigne J, Diaz J, Muro-Cacho C, Extermann M, Farmelo MJ, Friberg M, Alsarraj M, Mahany JJ, Pow-Sang J et al. Phase I trial of a B7-1 (CD80) gene modified autologous tumor cell vaccine in combination with systemic interleukin-2 in patients with metastatic renal cell carcinoma. J Urol 2002; 167:1995-2000; PMID:11956426; http://dx.doi.org/10.1016/S0022-5347(05)65071-9
  • Fishman M, Hunter TB, Soliman H, Thompson P, Dunn M, Smilee R, Farmelo MJ, Noyes DR, Mahany JJ, Lee JH et al. Phase II trial of B7-1 (CD-86) transduced, cultured autologous tumor cell vaccine plus subcutaneous interleukin-2 for treatment of stage IV renal cell carcinoma. J Immunother 2008; 31:72-80; PMID:18157014; http://dx.doi.org/10.1097/CJI.0b013e31815ba792
  • Berger M, Kreutz FT, Horst JL, Baldi AC, Koff WJ. Phase I study with an autologous tumor cell vaccine for locally advanced or metastatic prostate cancer. J Pharm Pharm Sci 2007; 10:144-152; PMID:17706173
  • Morton DL, Foshag LJ, Hoon DS, Nizze JA, Famatiga E, Wanek LA, Chang C, Davtyan DG, Gupta RK, Elashoff R et al. Prolongation of survival in metastatic melanoma after active specific immunotherapy with a new polyvalent melanoma vaccine. Ann Surg 1992; 216:463-482; PMID:1417196; http://dx.doi.org/10.1097/00000658-199210000-00010
  • Morton DL, Hsueh EC, Essner R, Foshag LJ, O'Day SJ, Bilchik A, Gupta RK, Hoon DS, Ravindranath M, Nizze JA et al. Prolonged survival of patients receiving active immunotherapy with Canvaxin therapeutic polyvalent vaccine after complete resection of melanoma metastatic to regional lymph nodes. Ann Surg 2002; 236:438-448; PMID:12368672; http://dx.doi.org/10.1097/00000658-200210000-00006
  • Hsueh EC, Essner R, Foshag LJ, Ollila DW, Gammon G, O'Day SJ, Boasberg PD, Stern SL, Ye X, Morton DL. Prolonged survival after complete resection of disseminated melanoma and active immunotherapy with a therapeutic cancer vaccine. J Clin Oncol 2002; 20:4549-4554; PMID:12454111; http://dx.doi.org/10.1200/JCO.2002.01.151
  • Sondak VK, Sabel MS, Mule JJ. Allogeneic and autologous melanoma vaccines: where have we been and where are we going? Clin Cancer Res 2006; 12:2337s-2341s; PMID:16609055; http://dx.doi.org/10.1158/1078-0432.CCR-05-2555
  • Ward S, Casey D, Labarthe MC, Whelan M, Dalgleish A, Pandha H, Todryk S. Immunotherapeutic potential of whole tumour cells. Cancer Immunol Immunother 2002; 51:351-357; PMID:12192534; http://dx.doi.org/10.1007/s00262-002-0286-2
  • Chiang CL, Benencia F, Coukos G. Whole tumor antigen vaccines. Semin Immunol 2010;; PMID:20356763
  • Emens LA. GM-CSF-secreting vaccines for solid tumors. Curr Opin Investig Drugs 2009; 10:1315-1324; PMID:19943203
  • Dranoff G. GM-CSF-based cancer vaccines. Immunol Rev 2002; 188:147-154; PMID:12445288; http://dx.doi.org/10.1034/j.1600-065X.2002.18813.x
  • Jinushi M, Hodi FS, Dranoff G. Enhancing the clinical activity of granulocyte-macrophage colony-stimulating factor-secreting tumor cell vaccines. Immunol Rev 2008; 222:287-298; PMID:18364009; http://dx.doi.org/10.1111/j.1600-065X.2008.00618.x
  • Simons JW, Carducci MA, Mikhak B, Lim M, Biedrzycki B, Borellini F, Clift SM, Hege KM, Ando DG, Piantadosi S et al. Phase I/II trial of an allogeneic cellular immunotherapy in hormone-naive prostate cancer. Clin Cancer Res 2006; 12:3394-3401; PMID:16740763; http://dx.doi.org/10.1158/1078-0432.CCR-06-0145
  • Small EJ, Sacks N, Nemunaitis J, Urba WJ, Dula E, Centeno AS, Nelson WG, Ando D, Howard C, Borellini F et al. Granulocyte macrophage colony-stimulating factor–secreting allogeneic cellular immunotherapy for hormone-refractory prostate cancer. Clin Cancer Res 2007; 13:3883-3891; PMID:17606721; http://dx.doi.org/10.1158/1078-0432.CCR-06-2937
  • Emens LA, Asquith JM, Leatherman JM, Kobrin BJ, Petrik S, Laiko M, Levi J, Daphtary MM, Biedrzycki B, Wolff AC et al. Timed sequential treatment with cyclophosphamide, doxorubicin, and an allogeneic granulocyte-macrophage colony-stimulating factor-secreting breast tumor vaccine: a chemotherapy dose-ranging factorial study of safety and immune activation. J Clin Oncol 2009; 27:5911-5918; PMID:19805669; http://dx.doi.org/10.1200/JCO.2009.23.3494
  • Lutz E, Yeo CJ, Lillemoe KD, Biedrzycki B, Kobrin B, Herman J, Sugar E, Piantadosi S, Cameron JL, Solt S et al. A lethally irradiated allogeneic granulocyte-macrophage colony stimulating factor-secreting tumor vaccine for pancreatic adenocarcinoma. A Phase II trial of safety, efficacy, and immune activation. Ann Surg 2011; 253:328-335; PMID:21217520; http://dx.doi.org/10.1097/SLA.0b013e3181fd271c
  • Clive KS, Tyler JA, Clifton GT, Holmes JP, Mittendorf EA, Ponniah S, Peoples GE. Use of GM-CSF as an adjuvant with cancer vaccines: beneficial or detrimental? Expert Rev Vaccines 2010; 9:519-525; PMID:20450326; http://dx.doi.org/10.1586/erv.10.40
  • Parmiani G, Castelli C, Pilla L, Santinami M, Colombo MP, Rivoltini L. Opposite immune functions of GM-CSF administered as vaccine adjuvant in cancer patients. Ann Oncol 2007; 18:226-232; PMID:17116643; http://dx.doi.org/10.1093/annonc/mdl158
  • Nemunaitis J, Dillman RO, Schwarzenberger PO, Senzer N, Cunningham C, Cutler J, Tong A, Kumar P, Pappen B, Hamilton C et al. Phase II study of belagenpumatucel-L, a transforming growth factor β-2 antisense gene-modified allogeneic tumor cell vaccine in non-small-cell lung cancer. J Clin Oncol 2006; 24:4721-4730; PMID:16966690; http://dx.doi.org/10.1200/JCO.2005.05.5335
  • Nemunaitis J, Nemunaitis M, Senzer N, Snitz P, Bedell C, Kumar P, Pappen B, Maples PB, Shawler D, Fakhrai H. Phase II trial of Belagenpumatucel-L, a TGF-beta2 antisense gene modified allogeneic tumor vaccine in advanced non small cell lung cancer (NSCLC) patients. Cancer Gene Ther 2009; 16:620-624; PMID:19287371; http://dx.doi.org/10.1038/cgt.2009.15
  • Ranieri E, Kierstead LS, Zarour H, Kirkwood JM, Lotze MT, Whiteside T, Storkus WJ. Dendritic cell/peptide cancer vaccines: clinical responsiveness and epitope spreading. Immunol Invest 2000; 29:121-125; PMID:10854179; http://dx.doi.org/10.3109/08820130009062294
  • Butterfield LH, Ribas A, Dissette VB, Amarnani SN, Vu HT, Oseguera D, Wang HJ, Elashoff RM, McBride WH, Mukherji B et al. Determinant spreading associated with clinical response in dendritic cell-based immunotherapy for malignant melanoma. Clin Cancer Res 2003; 9:998-1008; PMID:12631598
  • van der BP, Traversari C, Chomez P, Lurquin C, De PE, Van den EB, Knuth A, Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991; 254:1643-1647; PMID:1840703; http://dx.doi.org/10.1126/science.1840703
  • Buonaguro L, Petrizzo A, Tornesello ML, Buonaguro FM. Translating tumor antigens into cancer vaccines. Clin Vaccine Immunol 2011; 18:23-34; PMID:21048000; http://dx.doi.org/10.1128/CVI.00286-10
  • De Smet C, Lurquin C, van der BP, De PE, Brasseur F, Boon T. Sequence and expression pattern of the human MAGE2 gene. Immunogenetics 1994; 39:121-129; PMID:8276455; http://dx.doi.org/10.1007/BF00188615
  • De Smet C, Lurquin C, Lethe B, Martelange V, Boon T. DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol Cell Biol 1999; 19:7327-7335; PMID:10523621
  • Chaux P, Luiten R, Demotte N, Vantomme V, Stroobant V, Traversari C, Russo V, Schultz E, Cornelis GR, Boon T et al. Identification of five MAGE-A1 epitopes recognized by cytolytic T lymphocytes obtained by in vitro stimulation with dendritic cells transduced with MAGE-A1. J Immunol 1999; 163:2928-2936; PMID:10453041; .
  • Traversari C, van der BP, Luescher IF, Lurquin C, Chomez P, Van PA, De PE, mar-Costesec A, Boon T. A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J Exp Med 1992; 176:1453-1457; PMID:1402688; http://dx.doi.org/10.1084/jem.176.5.1453
  • Jager E, Chen YT, Drijfhout JW, Karbach J, Ringhoffer M, Jager D, Arand M, Wada H, Noguchi Y, Stockert E et al. Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes. J Exp Med 1998; 187:265-270; PMID:9432985; http://dx.doi.org/10.1084/jem.187.2.265
  • Ayyoub M, Stevanovic S, Sahin U, Guillaume P, Servis C, Rimoldi D, Valmori D, Romero P, Cerottini JC, Rammensee HG et al. Proteasome-assisted identification of a SSX-2-derived epitope recognized by tumor-reactive CTL infiltrating metastatic melanoma. J Immunol 2002; 168:1717-1722; PMID:11823502; http://dx.doi.org/10.4049/jimmunol.168.4.1717
  • Bakker AB, Schreurs MW, de Boer AJ, Kawakami Y, Rosenberg SA, Adema GJ, Figdor CG. Melanocyte lineage-specific antigen gp100 is recognized by melanoma-derived tumor-infiltrating lymphocytes. J Exp Med 1994; 179:1005-1009; PMID:8113668; http://dx.doi.org/10.1084/jem.179.3.1005
  • Kawakami Y, Robbins PF, Wang X, Tupesis JP, Parkhurst MR, Kang X, Sakaguchi K, Appella E, Rosenberg SA. Identification of new melanoma epitopes on melanosomal proteins recognized by tumor infiltrating T lymphocytes restricted by HLA-A1, -A2, and -A3 alleles. J Immunol 1998; 161:6985-6992; PMID:9862734
  • Kawakami Y, Eliyahu S, Jennings C, Sakaguchi K, Kang X, Southwood S, Robbins PF, Sette A, Appella E, Rosenberg SA. Recognition of multiple epitopes in the human melanoma antigen gp100 by tumor-infiltrating T lymphocytes associated with in vivo tumor regression. J Immunol 1995; 154:3961-3968; PMID:7706734
  • Kawakami Y, Eliyahu S, Sakaguchi K, Robbins PF, Rivoltini L, Yannelli JR, Appella E, Rosenberg SA. Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J Exp Med 1994; 180:347-352; PMID:7516411; http://dx.doi.org/10.1084/jem.180.1.347
  • Parkhurst MR, Fitzgerald EB, Southwood S, Sette A, Rosenberg SA, Kawakami Y. Identification of a shared HLA-A*0201-restricted T-cell epitope from the melanoma antigen tyrosinase-related protein 2 (TRP2). Cancer Res 1998; 58:4895-4901; PMID:9809996
  • Wang RF, Appella E, Kawakami Y, Kang X, Rosenberg SA. Identification of TRP-2 as a human tumor antigen recognized by cytotoxic T lymphocytes. J Exp Med 1996; 184:2207-2216; PMID:8976176; http://dx.doi.org/10.1084/jem.184.6.2207
  • Corman JM, Sercarz EE, Nanda NK. Recognition of prostate-specific antigenic peptide determinants by human CD4 and CD8 T cells. Clin Exp Immunol 1998; 114:166-172; PMID:9822272; http://dx.doi.org/10.1046/j.1365-2249.1998.00678.x
  • Correale P, Walmsley K, Nieroda C, Zaremba S, Zhu M, Schlom J, Tsang KY. In vitro generation of human cytotoxic T lymphocytes specific for peptides derived from prostate-specific antigen. J Natl Cancer Inst 1997; 89:293-300; PMID:9048833; http://dx.doi.org/10.1093/jnci/89.4.293
  • Jaramillo A, Majumder K, Manna PP, Fleming TP, Doherty G, Dipersio JF, Mohanakumar T. Identification of HLA-A3-restricted CD8+ T cell epitopes derived from mammaglobin-A, a tumor-associated antigen of human breast cancer. Int J Cancer 2002; 102:499-506; PMID:12432553; http://dx.doi.org/10.1002/ijc.10736
  • Schmollinger JC, Vonderheide RH, Hoar KM, Maecker B, Schultze JL, Hodi FS, Soiffer RJ, Jung K, Kuroda MJ, Letvin NL et al. Melanoma inhibitor of apoptosis protein (ML-IAP) is a target for immune-mediated tumor destruction. Proc Natl Acad Sci U S A 2003; 100:3398-3403; PMID:12626761; http://dx.doi.org/10.1073/pnas.0530311100
  • Schmidt SM, Schag K, Muller MR, Weck MM, Appel S, Kanz L, Grunebach F, Brossart P. Survivin is a shared tumor-associated antigen expressed in a broad variety of malignancies and recognized by specific cytotoxic T cells. Blood 2003; 102:571-576; PMID:12576330; http://dx.doi.org/10.1182/blood-2002-08-2554
  • Vonderheide RH, Hahn WC, Schultze JL, Nadler LM. The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity 1999; 10:673-679; PMID:10403642; http://dx.doi.org/10.1016/S1074-7613(00)80066-7
  • Vonderheide RH, Anderson KS, Hahn WC, Butler MO, Schultze JL, Nadler LM. Characterization of HLA-A3-restricted cytotoxic T lymphocytes reactive against the widely expressed tumor antigen telomerase. Clin Cancer Res 2001; 7:3343-3348; PMID:11705846
  • Minev B, Hipp J, Firat H, Schmidt JD, Langlade-Demoyen P, Zanetti M. Cytotoxic T cell immunity against telomerase reverse transcriptase in humans. Proc Natl Acad Sci U S A 2000; 97:4796-4801; PMID:10759561; http://dx.doi.org/10.1073/pnas.070560797
  • Umano Y, Tsunoda T, Tanaka H, Matsuda K, Yamaue H, Tanimura H. Generation of cytotoxic T cell responses to an HLA-A24 restricted epitope peptide derived from wild-type p53. Br J Cancer 2001; 84:1052-1057; PMID:11308253; http://dx.doi.org/10.1054/bjoc.2000.1715
  • Azuma K, Shichijo S, Maeda Y, Nakatsura T, Nonaka Y, Fujii T, Koike K, Itoh K. Mutated p53 gene encodes a nonmutated epitope recognized by HLA-B*4601-restricted and tumor cell-reactive CTLs at tumor site. Cancer Res 2003; 63:854-858; PMID:12591737
  • Muller S, Alving K, Peter-Katalinic J, Zachara N, Gooley AA, Hanisch FG. High density O-glycosylation on tandem repeat peptide from secretory MUC1 of T47D breast cancer cells. J Biol Chem 1999; 274:18165-18172; PMID:10373415; http://dx.doi.org/10.1074/jbc.274.26.18165
  • Ragupathi G. Carbohydrate antigens as targets for active specific immunotherapy. Cancer Immunol Immunother 1996; 43:152-157; PMID:9001568; http://dx.doi.org/10.1007/s002620050316
  • Dennis JW, Granovsky M, Warren CE. Glycoprotein glycosylation and cancer progression. Biochim Biophys Acta 1999; 1473:21-34; PMID:10580127; http://dx.doi.org/10.1016/S0304-4165(99)00167-1
  • Hakomori S. Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anti-cancer vaccines. Adv Exp Med Biol 2001; 491:369-402; PMID:14533809; http://dx.doi.org/10.1007/978-1-4615-1267-7_24
  • Parmiani G, De FA, Novellino L, Castelli C. Unique human tumor antigens: immunobiology and use in clinical trials. J Immunol 2007; 178:1975-1979; PMID:17277099; http://dx.doi.org/10.4049/jimmunol.178.4.1975
  • Heemskerk B, Kvistborg P, Schumacher TN. The cancer antigenome. EMBO J 2013; 32:194-203; PMID:23258224; http://dx.doi.org/10.1038/emboj.2012.333
  • Stratton MR. Exploring the genomes of cancer cells: progress and promise. Science 2011; 331:1553-1558
  • Castle JC, Kreiter S, Diekmann J, Lower M, van de RN, de GJ, Selmi A, Diken M, Boegel S, Paret C et al. Exploiting the mutanome for tumor vaccination. Cancer Res 2012; 72:1081-1091; PMID:22237626; http://dx.doi.org/10.1158/0008-5472.CAN-11-3722
  • Jones S, Wang TL, Shih I, Mao TL, Nakayama K, Roden R, Glas R, Slamon D, Diaz LA, Jr., Vogelstein B et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 2010; 330:228-231; PMID:20826764; http://dx.doi.org/10.1126/science.1196333
  • Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P, Davies H, Jones D, Lin ML, Teague J et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 2011; 469:539-542; PMID:21248752; http://dx.doi.org/10.1038/nature09639
  • Parsons DW, Li M, Zhang X, Jones S, Leary RJ, Lin JC, Boca SM, Carter H, Samayoa J, Bettegowda C et al. The genetic landscape of the childhood cancer medulloblastoma. Science 2011; 331:435-439; PMID:21163964; http://dx.doi.org/10.1126/science.1198056
  • Lee W, Jiang Z, Liu J, Haverty PM, Guan Y, Stinson J, Yue P, Zhang Y, Pant KP, Bhatt D et al. The mutation spectrum revealed by paired genome sequences from a lung cancer patient. Nature 2010; 465:473-477; PMID:20505728; http://dx.doi.org/10.1038/nature09004
  • Timmermann B, Kerick M, Roehr C, Fischer A, Isau M, Boerno ST, Wunderlich A, Barmeyer C, Seemann P, Koenig J et al. Somatic mutation profiles of MSI and MSS colorectal cancer identified by whole exome next generation sequencing and bioinformatics analysis. PLoS ONE 2010; 5:e15661-; PMID:21203531
  • Wei X, Walia V, Lin JC, Teer JK, Prickett TD, Gartner J, Davis S, Stemke-Hale K, Davies MA, Gershenwald JE et al. Exome sequencing identifies GRIN2A as frequently mutated in melanoma. Nat Genet 2011; 43:442-446; PMID:21499247; http://dx.doi.org/10.1038/ng.810
  • Cerami E, Demir E, Schultz N, Taylor BS, Sander C. Automated network analysis identifies core pathways in glioblastoma. PLoS One 2010; 5:e8918-; PMID:20169195; http://dx.doi.org/10.1371/journal.pone.0008918
  • Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J et al. The genomic landscapes of human breast and colorectal cancers. Science 2007; 318:1108-1113; PMID:17932254; http://dx.doi.org/10.1126/science.1145720
  • Junnila S, Kokkola A, Karjalainen-Lindsberg ML, Puolakkainen P, Monni O. Genome-wide gene copy number and expression analysis of primary gastric tumors and gastric cancer cell lines. BMC Cancer 2010; 10:73-; PMID:20187983; http://dx.doi.org/10.1186/1471-2407-10-73
  • Radtke I, Mullighan CG, Ishii M, Su X, Cheng J, Ma J, Ganti R, Cai Z, Goorha S, Pounds SB et al. Genomic analysis reveals few genetic alterations in pediatric acute myeloid leukemia. Proc Natl Acad Sci U S A 2009; 106:12944-12949; PMID:19651601; http://dx.doi.org/10.1073/pnas.0903142106
  • Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008; 321:1801-1806; PMID:18772397; http://dx.doi.org/10.1126/science.1164368
  • Fox EJ, Salk JJ, Loeb LA. Cancer genome sequencing–an interim analysis. Cancer Res 2009; 69:4948-4950; PMID:19509220; http://dx.doi.org/10.1158/0008-5472.CAN-09-1231
  • Bendandi M. Idiotype vaccines for lymphoma: proof-of-principles and clinical trial failures. Nat Rev Cancer 2009; 9:675-681; PMID:19701243; http://dx.doi.org/10.1038/nrc2717
  • Stevenson GT, Elliott EV, Stevenson FK. Idiotypic determinants on the surface immunoglobulin of neoplastic lymphocytes: a therapeutic target. Fed Proc 1977; 36:2268-2271; PMID:69552
  • Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 1999; 50:213-219; PMID:10602881; http://dx.doi.org/10.1007/s002510050595
  • Singh H, Raghava GP. ProPred: prediction of HLA-DR binding sites. Bioinformatics 2001; 17:1236-1237; PMID:11751237; http://dx.doi.org/10.1093/bioinformatics/17.12.1236
  • Reche PA, Glutting JP, Reinherz EL. Prediction of MHC class I binding peptides using profile motifs. Hum Immunol 2002; 63:701-709; PMID:12175724; http://dx.doi.org/10.1016/S0198-8859(02)00432-9
  • Guan P, Hattotuwagama CK, Doytchinova IA, Flower DR. MHCPred 2.0: an updated quantitative T-cell epitope prediction server. Appl Bioinformatics 2006; 5:55-61; PMID:16539539; http://dx.doi.org/10.2165/00822942-200605010-00008
  • Bachinsky MM, Guillen DE, Patel SR, Singleton J, Chen C, Soltis DA, Tussey LG. Mapping and binding analysis of peptides derived from the tumor-associated antigen survivin for eight HLA alleles. Cancer Immun 2005; 5:6-; PMID:15779886
  • Singh-Jasuja H, Emmerich NP, Rammensee HG. The Tubingen approach: identification, selection, and validation of tumor-associated HLA peptides for cancer therapy. Cancer Immunol Immunother 2004; 53:187-195; PMID:14758508; http://dx.doi.org/10.1007/s00262-003-0480-x
  • Dutoit V, Herold-Mende C, Hilf N, Schoor O, Beckhove P, Bucher J, Dorsch K, Flohr S, Fritsche J, Lewandrowski P et al. Exploiting the glioblastoma peptidome to discover novel tumour-associated antigens for immunotherapy. Brain 2012; 135:1042-1054; PMID:22418738; http://dx.doi.org/10.1093/brain/aws042
  • Rammensee HG, Singh-Jasuja H. HLA ligandome tumor antigen discovery for personalized vaccine approach. Expert Rev Vaccines 2013; 12:1211-1217; PMID:24090147; http://dx.doi.org/10.1586/14760584.2013.836911
  • Overwijk WW, Wang E, Marincola FM, Rammensee HG, Restifo NP. Mining the mutanome: developing highly personalized Immunotherapies based on mutational analysis of tumors. J Immunother Cancer 2013; 1:11-; PMID:24829748; http://dx.doi.org/10.1186/2051-1426-1-11
  • Parmiani G, Castelli C, Dalerba P, Mortarini R, Rivoltini L, Marincola FM, Anichini A. Cancer immunotherapy with peptide-based vaccines: what have we achieved? Where are we going? J Natl Cancer Inst 2002; 94:805-818; PMID:12048268; http://dx.doi.org/10.1093/jnci/94.11.805
  • Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med 2004; 10:909-915; PMID:15340416; http://dx.doi.org/10.1038/nm1100
  • Rosenberg SA, Sherry RM, Morton KE, Scharfman WJ, Yang JC, Topalian SL, Royal RE, Kammula U, Restifo NP, Hughes MS et al. Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma. J Immunol 2005; 175:6169-6176; PMID:16237114; http://dx.doi.org/10.4049/jimmunol.175.9.6169
  • Chaudhuri D, Suriano R, Mittelman A, Tiwari RK. Targeting the immune system in cancer. Curr Pharm Biotechnol 2009; 10:166-184; PMID:19199949; http://dx.doi.org/10.2174/138920109787315114
  • Perez SA, von HE, Kallinteris NL, Gritzapis AD, Peoples GE, Papamichail M, Baxevanis CN. A new era in anticancer peptide vaccines. Cancer 2010; 116:2071-2080; PMID:20187092; .
  • Guo C, Manjili MH, Subjeck JR, Sarkar D, Fisher PB, Wang XY. Therapeutic cancer vaccines: past, present, and future. Adv Cancer Res 2013; 119:421-475; PMID:23870514; http://dx.doi.org/10.1016/B978-0-12-407190-2.00007-1
  • Small EJ, Schellhammer PF, Higano CS, Redfern CH, Nemunaitis JJ, Valone FH, Verjee SS, Jones LA, Hershberg RM. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol 2006; 24:3089-3094; PMID:16809734; http://dx.doi.org/10.1200/JCO.2005.04.5252
  • Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010; 363:411-422; PMID:20818862; http://dx.doi.org/10.1056/NEJMoa1001294
  • Slingluff CL, Jr., Petroni GR, Yamshchikov GV, Hibbitts S, Grosh WW, Chianese-Bullock KA, Bissonette EA, Barnd DL, Deacon DH, Patterson JW et al. Immunologic and clinical outcomes of vaccination with a multiepitope melanoma peptide vaccine plus low-dose interleukin-2 administered either concurrently or on a delayed schedule. J Clin Oncol 2004; 22:4474-4485; PMID:15542798; http://dx.doi.org/10.1200/JCO.2004.10.212
  • Slingluff CL, Jr., Petroni GR, Chianese-Bullock KA, Smolkin ME, Hibbitts S, Murphy C, Johansen N, Grosh WW, Yamshchikov GV, Neese PY et al. Immunologic and clinical outcomes of a randomized phase II trial of two multipeptide vaccines for melanoma in the adjuvant setting. Clin Cancer Res 2007; 13:6386-6395; PMID:17975151; http://dx.doi.org/10.1158/1078-0432.CCR-07-0486
  • Slingluff CL, Jr., Petroni GR, Chianese-Bullock KA, Smolkin ME, Ross MI, Haas NB, von MM, Grosh WW. Randomized multicenter trial of the effects of melanoma-associated helper peptides and cyclophosphamide on the immunogenicity of a multipeptide melanoma vaccine. J Clin Oncol 2011; 29:2924-2932; PMID:21690475; http://dx.doi.org/10.1200/JCO.2010.33.8053
  • Antony PA, Piccirillo CA, Akpinarli A, Finkelstein SE, Speiss PJ, Surman DR, Palmer DC, Chan CC, Klebanoff CA, Overwijk WW et al. CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol 2005; 174:2591-2601; PMID:15728465; http://dx.doi.org/10.4049/jimmunol.174.5.2591
  • Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H. The central role of CD4(+) T cells in the antitumor immune response. J Exp Med 1998; 188:2357-2368; PMID:9858522; http://dx.doi.org/10.1084/jem.188.12.2357
  • Pardoll DM, Topalian SL. The role of CD4+ T cell responses in antitumor immunity. Curr Opin Immunol 1998; 10:588-594; PMID:9794842; http://dx.doi.org/10.1016/S0952-7915(98)80228-8
  • Calderwood SK, Theriault JR, Gong J. Message in a bottle: role of the 70-kDa heat shock protein family in anti-tumor immunity. Eur J Immunol 2005; 35:2518-2527; PMID:16144035; http://dx.doi.org/10.1002/eji.200535002
  • Murshid A, Gong J, Calderwood SK. Heat-shock proteins in cancer vaccines: agents of antigen cross-presentation. Expert Rev Vaccines 2008; 7:1019-1030; PMID:18767951; http://dx.doi.org/10.1586/14760584.7.7.1019
  • Srivastava P. Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 2002; 20:395-425; PMID:11861608; http://dx.doi.org/10.1146/annurev.immunol.20.100301.064801
  • Wang XY, Subjeck JR. High molecular weight stress proteins: Identification, cloning and utilisation in cancer immunotherapy. Int J Hyperthermia 2013; 29:364-375; PMID:23829534; http://dx.doi.org/10.3109/02656736.2013.803607
  • Wang XY, Sun X, Chen X, Facciponte J, Repasky EA, Kane J, Subjeck JR. Superior antitumor response induced by large stress protein chaperoned protein antigen compared with peptide antigen. J Immunol 2010; 184:6309-6319; PMID:20439916; http://dx.doi.org/10.4049/jimmunol.0903891
  • Testori A, Richards J, Whitman E, Mann GB, Lutzky J, Camacho L, Parmiani G, Tosti G, Kirkwood JM, Hoos A et al. Phase III comparison of vitespen, an autologous tumor-derived heat shock protein gp96 peptide complex vaccine, with physician's choice of treatment for stage IV melanoma: the C-100-21 Study Group. J Clin Oncol 2008; 26:955-962; PMID:18281670; http://dx.doi.org/10.1200/JCO.2007.11.9941
  • Buhrman JD, Slansky JE. Improving T cell responses to modified peptides in tumor vaccines. Immunol Res 2013; 55:34-47; PMID:22936035; http://dx.doi.org/10.1007/s12026-012-8348-9
  • Borbulevych OY, Baxter TK, Yu Z, Restifo NP, Baker BM. Increased immunogenicity of an anchor-modified tumor-associated antigen is due to the enhanced stability of the peptide/MHC complex: implications for vaccine design. J Immunol 2005; 174:4812-4820; PMID:15814707; http://dx.doi.org/10.4049/jimmunol.174.8.4812
  • Hou Y, Kavanagh B, Fong L. Distinct CD8+ T cell repertoires primed with agonist and native peptides derived from a tumor-associated antigen. J Immunol 2008; 180:1526-1534; PMID:18209048; http://dx.doi.org/10.4049/jimmunol.180.3.1526
  • Pierce BG, Hellman LM, Hossain M, Singh NK, Vander Kooi CW, Weng Z, Baker BM. Computational design of the affinity and specificity of a therapeutic T cell receptor. PLoS Comput Biol 2014; 10:e1003478; PMID:24550723; http://dx.doi.org/10.1371/journal.pcbi.1003478
  • Oh S, Terabe M, Pendleton CD, Bhattacharyya A, Bera TK, Epel M, Reiter Y, Phillips J, Linehan WM, Kasten-Sportes C et al. Human CTLs to wild-type and enhanced epitopes of a novel prostate and breast tumor-associated protein, TARP, lyse human breast cancer cells. Cancer Res 2004; 64:2610-2618; PMID:15059918; http://dx.doi.org/10.1158/0008-5472.CAN-03-2183
  • Berzofsky JA, Wood LV, Terabe M. Cancer vaccines: 21st century approaches to harnessing an ancient modality to fight cancer. Expert Rev Vaccines 2013; 12:1115-1118; PMID:24124874; http://dx.doi.org/10.1586/14760584.2013.836906
  • Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, Restifo NP, Dudley ME, Schwarz SL, Spiess PJ et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 1998; 4:321-327; PMID:9500606; http://dx.doi.org/10.1038/nm0398-321
  • Melief CJ, van der Burg SH. Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat Rev Cancer 2008; 8:351-360; PMID:18418403; http://dx.doi.org/10.1038/nrc2373
  • Bijker MS, van den Eeden SJ, Franken KL, Melief CJ, van der Burg SH, Offringa R. Superior induction of anti-tumor CTL immunity by extended peptide vaccines involves prolonged, DC-focused antigen presentation. Eur J Immunol 2008; 38:1033-1042; PMID:18350546; http://dx.doi.org/10.1002/eji.200737995
  • Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 1998; 393:478-480; PMID:9624004; http://dx.doi.org/10.1038/30996
  • Schoenberger SP, Toes RE, van d V, Offringa R, Melief CJ. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 1998; 393:480-483; PMID:9624005; http://dx.doi.org/10.1038/31002
  • Toes RE, Offringa R, Blom RJ, Melief CJ, Kast WM. Peptide vaccination can lead to enhanced tumor growth through specific T-cell tolerance induction. Proc Natl Acad Sci U S A 1996; 93:7855-7860; PMID:8755566; http://dx.doi.org/10.1073/pnas.93.15.7855
  • Toes RE, Blom RJ, Offringa R, Kast WM, Melief CJ. Enhanced tumor outgrowth after peptide vaccination. Functional deletion of tumor-specific CTL induced by peptide vaccination can lead to the inability to reject tumors. J Immunol 1996; 156:3911-3918; PMID:8621930; .
  • Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM, Vloon AP, Drijfhout JW, Wafelman AR, Oostendorp J, Fleuren GJ et al. Phase I immunotherapeutic trial with long peptides spanning the E6 and E7 sequences of high-risk human papillomavirus 16 in end-stage cervical cancer patients shows low toxicity and robust immunogenicity. Clin Cancer Res 2008; 14:169-177; PMID:18172268; http://dx.doi.org/10.1158/1078-0432.CCR-07-1881
  • Welters MJ, Kenter GG, Piersma SJ, Vloon AP, Lowik MJ, Berends-van der Meer DM, Drijfhout JW, Valentijn AR, Wafelman AR, Oostendorp J et al. Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptides vaccine. Clin Cancer Res 2008; 14:178-187; PMID:18172269; http://dx.doi.org/10.1158/1078-0432.CCR-07-1880
  • Zeng G, Li Y, El-Gamil M, Sidney J, Sette A, Wang RF, Rosenberg SA, Robbins PF. Generation of NY-ESO-1-specific CD4+ and CD8+ T cells by a single peptide with dual MHC class I and class II specificities: a new strategy for vaccine design. Cancer Res 2002; 62:3630-3635; PMID:12097265; .
  • Disis ML, Gooley TA, Rinn K, Davis D, Piepkorn M, Cheever MA, Knutson KL, Schiffman K. Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J Clin Oncol 2002; 20:2624-2632; PMID:12039923; http://dx.doi.org/10.1200/JCO.2002.06.171
  • Knutson KL, Schiffman K, Disis ML. Immunization with a HER-2/neu helper peptide vaccine generates HER-2/neu CD8 T-cell immunity in cancer patients. J Clin Invest 2001; 107:477-484; PMID:11181647; http://dx.doi.org/10.1172/JCI11752
  • Tomita Y, Yuno A, Tsukamoto H, Senju S, Yoshimura S, Osawa R, Kuroda Y, Hirayama M, Irie A, Hamada A et al. Identification of CDCA1-derived long peptides bearing both CD4+ and CD8+ T-cell epitopes: CDCA1-specific CD4+ T-cell immunity in cancer patients. Int J Cancer 2014; 134:352-366; PMID:24734272; http://dx.doi.org/10.1002/ijc.28376
  • Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12:252-264; PMID:22437870; http://dx.doi.org/10.1038/nrc3239
  • Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363:711-723; PMID:20525992; http://dx.doi.org/10.1056/NEJMoa1003466
  • Palucka K, Ueno H, Fay J, Banchereau J. Dendritic cells and immunity against cancer. J Intern Med 2011; 269:64-73; PMID:21158979; http://dx.doi.org/10.1111/j.1365-2796.2010.02317.x
  • Bracci L, Capone I, Moschella F, Proietti E, Belardelli F. Exploiting dendritic cells in the development of cancer vaccines. Expert Rev Vaccines 2013; 12:1195-1210; PMID:24090117; http://dx.doi.org/10.1586/14760584.2013.836905
  • Cools N, Petrizzo A, Smits E, Buonaguro FM, Tornesello ML, Berneman Z, Buonaguro L. Dendritic cells in the pathogenesis and treatment of human diseases: a Janus Bifrons? Immunotherapy 2011; 3:1203-1222; PMID:21995572; http://dx.doi.org/10.2217/imt.11.110
  • Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392:245-252; PMID:9521319; http://dx.doi.org/10.1038/32588
  • Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18:767-811; PMID:10837075; http://dx.doi.org/10.1146/annurev.immunol.18.1.767
  • Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S, Muramatsu S, Steinman RM. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 1992; 176:1693-1702; PMID:1460426; http://dx.doi.org/10.1084/jem.176.6.1693
  • Banchereau J, Palucka AK. Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 2005; 5:296-306; PMID:15803149; http://dx.doi.org/10.1038/nri1592
  • Berard F, Blanco P, Davoust J, Neidhart-Berard EM, Nouri-Shirazi M, Taquet N, Rimoldi D, Cerottini JC, Banchereau J, Palucka AK. Cross-priming of naive CD8 T cells against melanoma antigens using dendritic cells loaded with killed allogeneic melanoma cells. J Exp Med 2000; 192:1535-1544; PMID:11104796; http://dx.doi.org/10.1084/jem.192.11.1535
  • Geiger JD, Hutchinson RJ, Hohenkirk LF, McKenna EA, Yanik GA, Levine JE, Chang AE, Braun TM, Mule JJ. Vaccination of pediatric solid tumor patients with tumor lysate-pulsed dendritic cells can expand specific T cells and mediate tumor regression. Cancer Res 2001; 61:8513-8519; PMID:11731436
  • Palucka AK, Ueno H, Connolly J, Kerneis-Norvell F, Blanck JP, Johnston DA, Fay J, Banchereau J. Dendritic cells loaded with killed allogeneic melanoma cells can induce objective clinical responses and MART-1 specific CD8+ T-cell immunity. J Immunother 2006; 29:545-557; PMID:16971810; http://dx.doi.org/10.1097/01.cji.0000211309.90621.8b
  • Salcedo M, Bercovici N, Taylor R, Vereecken P, Massicard S, Duriau D, Vernel-Pauillac F, Boyer A, Baron-Bodo V, Mallard E et al. Vaccination of melanoma patients using dendritic cells loaded with an allogeneic tumor cell lysate. Cancer Immunol Immunother 2006; 55:819-829; PMID:16187085; http://dx.doi.org/10.1007/s00262-005-0078-6
  • Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N, Rolland A, Taquet S, Coquery S, Wittkowski KM, Bhardwaj N et al. Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res 2001; 61:6451-6458; PMID:11522640
  • Murphy G, Tjoa B, Ragde H, Kenny G, Boynton A. Phase I clinical trial: T-cell therapy for prostate cancer using autologous dendritic cells pulsed with HLA-A0201-specific peptides from prostate-specific membrane antigen. Prostate 1996; 29:371-380; PMID:8977634; http://dx.doi.org/10.1002/(SICI)1097-0045(199612)29:6%3c371::AID-PROS5%3e3.0.CO;2-B
  • Schuler-Thurner B, Schultz ES, Berger TG, Weinlich G, Ebner S, Woerl P, Bender A, Feuerstein B, Fritsch PO, Romani N et al. Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J Exp Med 2002; 195:1279-1288; PMID:12021308; http://dx.doi.org/10.1084/jem.20012100
  • Lesterhuis WJ, Schreibelt G, Scharenborg NM, Brouwer HM, Gerritsen MJ, Croockewit S, Coulie PG, Torensma R, Adema GJ, Figdor CG et al. Wild-type and modified gp100 peptide-pulsed dendritic cell vaccination of advanced melanoma patients can lead to long-term clinical responses independent of the peptide used. Cancer Immunol Immunother 2011; 60:249-260; PMID:21069321; http://dx.doi.org/10.1007/s00262-010-0942-x
  • Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 1998; 4:328-332; PMID:9500607; http://dx.doi.org/10.1038/nm0398-328
  • Romano E, Rossi M, Ratzinger G, de Cos MA, Chung DJ, Panageas KS, Wolchok JD, Houghton AN, Chapman PB, Heller G et al. Peptide-loaded Langerhans cells, despite increased IL15 secretion and T-cell activation in vitro, elicit antitumor T-cell responses comparable to peptide-loaded monocyte-derived dendritic cells in vivo. Clin Cancer Res 2011; 17:1984-1997; PMID:21355077; http://dx.doi.org/10.1158/1078-0432.CCR-10-3421
  • Holtl L, Rieser C, Papesh C, Ramoner R, Herold M, Klocker H, Radmayr C, Stenzl A, Bartsch G, Thurnher M. Cellular and humoral immune responses in patients with metastatic renal cell carcinoma after vaccination with antigen pulsed dendritic cells. J Urol 1999; 161:777-782; PMID:10022683; http://dx.doi.org/10.1016/S0022-5347(01)61767-1
  • Okada H, Kalinski P, Ueda R, Hoji A, Kohanbash G, Donegan TE, Mintz AH, Engh JA, Bartlett DL, Brown CK et al. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {α}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol 2011; 29:330-336; PMID:21149657; http://dx.doi.org/10.1200/JCO.2010.30.7744
  • Yu JS, Wheeler CJ, Zeltzer PM, Ying H, Finger DN, Lee PK, Yong WH, Incardona F, Thompson RC, Riedinger MS et al. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res 2001; 61:842-847; PMID:11221866
  • Longo DL. New therapies for castration-resistant prostate cancer. N Engl J Med 2010; 363:479-481; PMID:20818868; http://dx.doi.org/10.1056/NEJMe1006300
  • Bonehill A, Van Nuffel AM, Corthals J, Tuyaerts S, Heirman C, Francois V, Colau D, van der BP, Neyns B, Thielemans K. Single-step antigen loading and activation of dendritic cells by mRNA electroporation for the purpose of therapeutic vaccination in melanoma patients. Clin Cancer Res 2009; 15:3366-3375; PMID:19417017; http://dx.doi.org/10.1158/1078-0432.CCR-08-2982
  • Knippertz I, Hesse A, Schunder T, Kampgen E, Brenner MK, Schuler G, Steinkasserer A, Nettelbeck DM. Generation of human dendritic cells that simultaneously secrete IL-12 and have migratory capacity by adenoviral gene transfer of hCD40L in combination with IFN-gamma. J Immunother 2009; 32:524-538; PMID:19609245; http://dx.doi.org/10.1097/CJI.0b013e3181a28422
  • Bonehill A, Tuyaerts S, Van Nuffel AM, Heirman C, Bos TJ, Fostier K, Neyns B, Thielemans K. Enhancing the T-cell stimulatory capacity of human dendritic cells by co-electroporation with CD40L, CD70 and constitutively active TLR4 encoding mRNA. Mol Ther 2008; 16:1170-1180; PMID:18431362; http://dx.doi.org/10.1038/mt.2008.77
  • Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D, Zhang A, Dahm P, Chao N, Gilboa E et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 2005; 115:3623-3633; PMID:16308572; http://dx.doi.org/10.1172/JCI25947
  • Grunebach F, Kayser K, Weck MM, Muller MR, Appel S, Brossart P. Cotransfection of dendritic cells with RNA coding for HER-2/neu and 4-1BBL increases the induction of tumor antigen specific cytotoxic T lymphocytes. Cancer Gene Ther 2005; 12:749-756; PMID:15877082; http://dx.doi.org/10.1038/sj.cgt.7700842
  • Iinuma H, Okinaga K, Fukushima R, Inaba T, Iwasaki K, Okinaga A, Takahashi I, Kaneko M. Superior protective and therapeutic effects of IL-12 and IL-18 gene-transduced dendritic neuroblastoma fusion cells on liver metastasis of murine neuroblastoma. J Immunol 2006; 176:3461-3469; PMID:16517714; http://dx.doi.org/10.4049/jimmunol.176.6.3461
  • Kang TH, Bae HC, Kim SH, Seo SH, Son SW, Choi EY, Seong SY, Kim TW. Modification of dendritic cells with interferon-gamma-inducible protein-10 gene to enhance vaccine potency. J Gene Med 2009; 11:889-898; PMID:19618483; http://dx.doi.org/10.1002/jgm.1371
  • Minkis K, Kavanagh DG, Alter G, Bogunovic D, O'Neill D, Adams S, Pavlick A, Walker BD, Brockman MA, Gandhi RT et al. Type 2 Bias of T cells expanded from the blood of melanoma patients switched to type 1 by IL-12p70 mRNA-transfected dendritic cells. Cancer Res 2008; 68:9441-9450; PMID:19010919; http://dx.doi.org/10.1158/0008-5472.CAN-08-0900
  • Breckpot K, erts-Toegaert C, Heirman C, Peeters U, Beyaert R, Aerts JL, Thielemans K. Attenuated expression of A20 markedly increases the efficacy of double-stranded RNA-activated dendritic cells as an anti-cancer vaccine. J Immunol 2009; 182:860-870; PMID:19124729; http://dx.doi.org/10.4049/jimmunol.182.2.860
  • Guo C, Yi H, Yu X, Zuo D, Qian J, Yang G, Foster BA, Subjeck JR, Sun X, Mikkelsen RB et al. In situ vaccination with CD204 gene-silenced dendritic cell, not unmodified dendritic cell, enhances radiation therapy of prostate cancer. Mol Cancer Ther 2012; 11:2331-2341; PMID:22896667; http://dx.doi.org/10.1158/1535-7163.MCT-12-0164
  • Guo C, Yi H, Yu X, Hu F, Zuo D, Subjeck JR, Wang XY. Absence of scavenger receptor A promotes dendritic cell-mediated cross-presentation of cell-associated antigen and antitumor immune response. Immunol Cell Biol 2012; 90:101-108; PMID:21383767; http://dx.doi.org/10.1038/icb.2011.10
  • Yi H, Guo C, Yu X, Gao P, Qian J, Zuo D, Manjili MH, Fisher PB, Subjeck JR, Wang XY. Targeting the immunoregulator SRA/CD204 potentiates specific dendritic cell vaccine-induced T-cell response and antitumor immunity. Cancer Res 2011; 71:6611-6620; PMID:21914786; http://dx.doi.org/10.1158/0008-5472.CAN-11-1801
  • Aurisicchio L, Ciliberto G. Genetic cancer vaccines: current status and perspectives. Expert Opin Biol Ther 2012; 12:1043-1058; PMID:22577875; http://dx.doi.org/10.1517/14712598.2012.689279
  • Walsh SR, Dolin R. Vaccinia viruses: vaccines against smallpox and vectors against infectious diseases and tumors. Expert Rev Vaccines 2011; 10:1221-1240; PMID:21854314; http://dx.doi.org/10.1586/erv.11.79
  • Xiang R, Luo Y, Niethammer AG, Reisfeld RA. Oral DNA vaccines target the tumor vasculature and microenvironment and suppress tumor growth and metastasis. Immunol Rev 2008; 222:117-128; PMID:18363997; http://dx.doi.org/10.1111/j.1600-065X.2008.00613.x
  • Liu MA, Ulmer JB. Human clinical trials of plasmid DNA vaccines. Adv Genet 2005; 55:25-40; PMID:16291211; http://dx.doi.org/10.1016/S0065-2660(05)55002-8
  • Rice J, Ottensmeier CH, Stevenson FK. DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 2008; 8:108-120; PMID:18219306; http://dx.doi.org/10.1038/nrc2326
  • Ribas A, Weber JS, Chmielowski B, Comin-Anduix B, Lu D, Douek M, Ragavendra N, Raman S, Seja E, Rosario D et al. Intra-lymph node prime-boost vaccination against Melan A and tyrosinase for the treatment of metastatic melanoma: results of a phase 1 clinical trial. Clin Cancer Res 2011; 17:2987-2996; PMID:21385924; http://dx.doi.org/10.1158/1078-0432.CCR-10-3272
  • Weber JS, Vogelzang NJ, Ernstoff MS, Goodman OB, Cranmer LD, Marshall JL, Miles S, Rosario D, Diamond DC, Qiu Z et al. A phase 1 study of a vaccine targeting preferentially expressed antigen in melanoma and prostate-specific membrane antigen in patients with advanced solid tumors. J Immunother 2011; 34:556-567; PMID:21760528; http://dx.doi.org/10.1097/CJI.0b013e3182280db1
  • Sardesai NY, Weiner DB. Electroporation delivery of DNA vaccines: prospects for success. Curr Opin Immunol 2011; 23:421-429; PMID:21530212; http://dx.doi.org/10.1016/j.coi.2011.03.008
  • Aurisicchio L, Mancini R, Ciliberto G. Cancer vaccination by electro-gene-transfer. Expert Rev Vaccines 2013; 12:1127-1137; PMID:24066796; http://dx.doi.org/10.1586/14760584.2013.836903
  • Kreiter S, Selmi A, Diken M, Koslowski M, Britten CM, Huber C, Tureci O, Sahin U. Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res 2010; 70:9031-9040; PMID:21045153; http://dx.doi.org/10.1158/0008-5472.CAN-10-0699
  • Ying H, Zaks TZ, Wang RF, Irvine KR, Kammula US, Marincola FM, Leitner WW, Restifo NP. Cancer therapy using a self-replicating RNA vaccine. Nat Med 1999; 5:823-827; PMID:10395329; http://dx.doi.org/10.1038/10548
  • Zhou WZ, Hoon DS, Huang SK, Fujii S, Hashimoto K, Morishita R, Kaneda Y. RNA melanoma vaccine: induction of antitumor immunity by human glycoprotein 100 mRNA immunization. Hum Gene Ther 1999; 10:2719-2724; PMID:10566900; http://dx.doi.org/10.1089/10430349950016762
  • Weide B, Carralot JP, Reese A, Scheel B, Eigentler TK, Hoerr I, Rammensee HG, Garbe C, Pascolo S. Results of the first phase I/II clinical vaccination trial with direct injection of mRNA. J Immunother 2008; 31:180-188; PMID:18481387; http://dx.doi.org/10.1097/CJI.0b013e31815ce501
  • Weide B, Pascolo S, Scheel B, Derhovanessian E, Pflugfelder A, Eigentler TK, Pawelec G, Hoerr I, Rammensee HG, Garbe C. Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. J Immunother 2009; 32:498-507; PMID:19609242; http://dx.doi.org/10.1097/CJI.0b013e3181a00068
  • Rittig SM, Haentschel M, Weimer KJ, Heine A, Muller MR, Brugger W, Horger MS, Maksimovic O, Stenzl A, Hoerr I et al. Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induce clinical benefit in vaccinated patients. Mol Ther 2011; 19:990-999; PMID:21189474; http://dx.doi.org/10.1038/mt.2010.289
  • Fotin-Mleczek M, Zanzinger K, Heidenreich R, Lorenz C, Thess A, Duchardt KM, Kallen KJ. Highly potent mRNA based cancer vaccines represent an attractive platform for combination therapies supporting an improved therapeutic effect. J Gene Med 2012; 14:428-439; PMID:22262664; http://dx.doi.org/10.1002/jgm.2605
  • Marshall JL, Hoyer RJ, Toomey MA, Faraguna K, Chang P, Richmond E, Pedicano JE, Gehan E, Peck RA, Arlen P et al. Phase I study in advanced cancer patients of a diversified prime-and-boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anti-carcinoembryonic antigen immune responses. J Clin Oncol 2000; 18:3964-3973; PMID:11099326
  • Marshall JL, Hawkins MJ, Tsang KY, Richmond E, Pedicano JE, Zhu MZ, Schlom J. Phase I study in cancer patients of a replication-defective avipox recombinant vaccine that expresses human carcinoembryonic antigen. J Clin Oncol 1999; 17:332-337; PMID:10458251
  • Hodge JW, Chakraborty M, Kudo-Saito C, Garnett CT, Schlom J. Multiple costimulatory modalities enhance CTL avidity. J Immunol 2005; 174:5994-6004; PMID:15879092; http://dx.doi.org/10.4049/jimmunol.174.10.5994
  • Kantoff PW, Schuetz TJ, Blumenstein BA, Glode LM, Bilhartz DL, Wyand M, Manson K, Panicali DL, Laus R, Schlom J et al. Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol 2010; 28:1099-1105; PMID:20100959; http://dx.doi.org/10.1200/JCO.2009.25.0597
  • Gulley JL, Arlen PM, Madan RA, Tsang KY, Pazdur MP, Skarupa L, Jones JL, Poole DJ, Higgins JP, Hodge JW et al. Immunologic and prognostic factors associated with overall survival employing a poxviral-based PSA vaccine in metastatic castrate-resistant prostate cancer. Cancer Immunol Immunother 2010; 59:663-674; PMID:19890632; http://dx.doi.org/10.1007/s00262-009-0782-8
  • Oudard S, Rixe O, Beuselinck B, Linassier C, Banu E, Machiels JP, Baudard M, Ringeisen F, Velu T, Lefrere-Belda MA et al. A phase II study of the cancer vaccine TG4010 alone and in combination with cytokines in patients with metastatic renal clear-cell carcinoma: clinical and immunological findings. Cancer Immunol Immunother 2011; 60:261-271; PMID:21069322; http://dx.doi.org/10.1007/s00262-010-0935-9
  • Quoix E, Ramlau R, Westeel V, Papai Z, Madroszyk A, Riviere A, Koralewski P, Breton JL, Stoelben E, Braun D et al. Therapeutic vaccination with TG4010 and first-line chemotherapy in advanced non-small-cell lung cancer: a controlled phase 2B trial. Lancet Oncol 2011; 12:1125-1133; PMID:22019520; http://dx.doi.org/10.1016/S1470-2045(11)70259-5
  • http:// www.prnewswire.com /news-releases /therion -reports-results-of-phase-3-panvac-vf-trial-and-annou-nces-plans-for-company-sale-56997582.html

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.