4,298
Views
49
CrossRef citations to date
0
Altmetric
REVIEWS

Emerging strategies for RNA interference (RNAi) applications in insects

, , &
Pages 8-19 | Received 15 Aug 2014, Accepted 14 Oct 2014, Published online: 31 Dec 2014

References

  • Ding SW. RNA-based antiviral immunity. Nat Rev Immunol 2010; 10:632-44; PMID:20706278; http://dx.doi.org/10.1038/nri2824
  • Ding SW, Lu R. Virus-derived siRNAs and piRNAs in immunity and pathogenesis. Curr Opin Virol 2011; 1:533-44; PMID:22180767; http://dx.doi.org/10.1016/j.coviro.2011.10.028
  • Pelechano V, Steinmetz LM. Gene regulation by antisense transcription. Nat Rev Genet 2013; 14:880-93; PMID:24217315; http://dx.doi.org/10.1038/nrg3594
  • Siomi MC, Sato K, Pezic D, Aravin AA. PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 2011; 12:246-58; PMID:21427766; http://dx.doi.org/10.1038/nrm3089
  • Siomi H, Siomi MC. On the road to reading the RNA-interference code. Nature 2009; 457:396-404; PMID:19158785; http://dx.doi.org/10.1038/nature07754
  • Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009; 10:126-39; PMID:19165215; http://dx.doi.org/10.1038/nrm2632
  • Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 2002; 21:4663-70; PMID:12198168; http://dx.doi.org/10.1093/emboj/cdf476
  • Mallory AC, Elmayan T, Vaucheret H. MicroRNA maturation and action–the expanding roles of ARGONAUTEs. Curr Opin Plant Biol 2008; 11:560-6; PMID:18691933; http://dx.doi.org/10.1016/j.pbi.2008.06.008
  • Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 2004; 10:185-91; PMID:14730017; http://dx.doi.org/10.1261/rna.5167604
  • Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science 2004; 303:95-8; PMID:14631048; http://dx.doi.org/10.1126/science.1090599
  • Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, Carthew RW. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 2004; 117:69-81; PMID:15066283; http://dx.doi.org/10.1016/S0092-8674(04)00261-2
  • Seitz H, Tushir JS, Zamore PD. A 5’-uridine amplifies miRNA/miRNA* asymmetry in Drosophila by promoting RNA-induced silencing complex formation. Silence 2011; 2:4; PMID:21649885; http://dx.doi.org/10.1186/1758-907X-2-4
  • Okamura K, Lai EC. Endogenous small interfering RNAs in animals. Nat Rev Mol Cell Biol 2008; 9:673-8; PMID:18719707; http://dx.doi.org/10.1038/nrm2479
  • Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ. Argonaute2 is the catalytic engine of mammalian RNAi. Science 2004; 305:1437-41; PMID:15284456; http://dx.doi.org/10.1126/science.1102513
  • Miyoshi T, Takeuchi A, Siomi H, Siomi MC. A direct role for Hsp90 in pre-RISC formation in Drosophila. Nat Struct Mol Biol 2010; 17:1024-6; PMID:20639883; http://dx.doi.org/10.1038/nsmb.1875
  • Chapman EJ, Carrington JC. Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 2007; 8:884-96; PMID:17943195; http://dx.doi.org/10.1038/nrg2179
  • Chung WJ, Okamura K, Martin R, Lai EC. Endogenous RNA interference provides a somatic defense against Drosophila transposons. Curr Biol 2008; 18:795-802; PMID:18501606; http://dx.doi.org/10.1016/j.cub.2008.05.006
  • Galiana-Arnoux D, Dostert C, Schneemann A, Hoffmann JA, Imler JL. Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila. Nat Immunol 2006; 7:590-7; PMID:16554838; http://dx.doi.org/10.1038/ni1335
  • van Rij RP, Saleh MC, Berry B, Foo C, Houk A, Antoniewski C, Andino R. The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. Genes Dev 2006; 20:2985-95; PMID:17079687; http://dx.doi.org/10.1101/gad.1482006
  • Marques JT, Wang JP, Wang X, de Oliveira KP, Gao C, Aguiar ER, Jafari N, Carthew RW. Functional specialization of the small interfering RNA pathway in response to virus infection. PLoS Pathog 2013; 9:e1003579; PMID:24009507; http://dx.doi.org/10.1371/journal.ppat.1003579
  • Bronkhorst AW, van Rij RP. The long and short of antiviral defense: small RNA-based immunity in insects. Curr Opin Virol 2014; 7C:19-28; http://dx.doi.org/10.1016/j.coviro.2014.03.010
  • Leger P, Lara E, Jagla B, Sismeiro O, Mansuroglu Z, Coppee JY, Bonnefoy E, Bouloy M. Dicer-2- and Piwi-mediated RNA interference in Rift Valley fever virus-infected mosquito cells. J Virol 2013; 87:1631-48; PMID:23175368; http://dx.doi.org/10.1128/JVI.02795-12
  • Nandety RS, Fofanov VY, Koshinsky H, Stenger DC, Falk BW. Small RNA populations for two unrelated viruses exhibit different biases in strand polarity and proximity to terminal sequences in the insect host Homalodisca vitripennis. Virology 2013; 442:12-9; PMID:23642540; http://dx.doi.org/10.1016/j.virol.2013.04.005
  • Wu Q, Luo Y, Lu R, Lau N, Lai EC, Li WX, Ding SW. Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs. Proc Natl Acad Sci U S A 2010; 107:1606-11; PMID:20080648; http://dx.doi.org/10.1073/pnas.0911353107
  • Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, Siomi H, Siomi MC. A slicer-mediated mechanism for repeat-associated siRNA 5’ end formation in Drosophila. Science 2007; 315:1587-90; PMID:17322028; http://dx.doi.org/10.1126/science.1140494
  • Saito K, Nishida KM, Mori T, Kawamura Y, Miyoshi K, Nagami T, Siomi H, Siomi MC. Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev 2006; 20:2214-22; PMID:16882972; http://dx.doi.org/10.1101/gad.1454806
  • Meister G. Argonaute proteins: functional insights and emerging roles. Nat Rev Genet 2013; 14:447-59; PMID:23732335; http://dx.doi.org/10.1038/nrg3462
  • Jiang J, Ge X, Li Z, Wang Y, Song Q, Stanley DW, Tan A, Huang Y. MicroRNA-281 regulates the expression of ecdysone receptor (EcR) isoform B in the silkworm, Bombyx mori. Insect Biochem Mol Biol 2013; 43:692-700; PMID:23707601; http://dx.doi.org/10.1016/j.ibmb.2013.05.002
  • Chen J, Liang Z, Liang Y, Pang R, Zhang W. Conserved microRNAs miR-8-5p and miR-2a-3p modulate chitin biosynthesis in response to 20-hydroxyecdysone signaling in the brown planthopper, Nilaparvata lugens. Insect Biochem Mol Biol 2013; 43:839-48; PMID:23796434; http://dx.doi.org/10.1016/j.ibmb.2013.06.002
  • Kingsolver MB, Huang Z, Hardy RW. Insect antiviral innate immunity: pathways, effectors, and connections. J Mol Biol 2013; 425:4921-36; PMID:24120681; http://dx.doi.org/10.1016/j.jmb.2013.10.006
  • Bronkhorst AW, Miesen P, van Rij RP. Small RNAs tackle large viruses: RNA interference-based antiviral defense against DNA viruses in insects. Fly (Austin) 2013; 7
  • Bronkhorst AW, van Cleef KW, Vodovar N, Ince IA, Blanc H, Vlak JM, Saleh MC, van Rij RP. The DNA virus Invertebrate iridescent virus 6 is a target of the Drosophila RNAi machinery. Proc Natl Acad Sci U S A 2012; 109:E3604-13; PMID:23151511; http://dx.doi.org/10.1073/pnas.1207213109
  • Jayachandran B, Hussain M, Asgari S. RNA interference as a cellular defense mechanism against the DNA virus baculovirus. J Virol 2012; 86:13729-34; PMID:23055564; http://dx.doi.org/10.1128/JVI.02041-12
  • Kemp C, Mueller S, Goto A, Barbier V, Paro S, Bonnay F, Dostert C, Troxler L, Hetru C, Meignin C, et al. Broad RNA interference-mediated antiviral immunity and virus-specific inducible responses in Drosophila. J Immunol 2013; 190:650-8; PMID:23255357; http://dx.doi.org/10.4049/jimmunol.1102486
  • Parameswaran P, Sklan E, Wilkins C, Burgon T, Samuel MA, Lu R, Ansel KM, Heissmeyer V, Einav S, Jackson W, et al. Six RNA viruses and forty-one hosts: viral small RNAs and modulation of small RNA repertoires in vertebrate and invertebrate systems. PLoS Pathog 2010; 6:e1000764; PMID:20169186; http://dx.doi.org/10.1371/journal.ppat.1000764
  • Donaire L, Wang Y, Gonzalez-Ibeas D, Mayer KF, Aranda MA, Llave C. Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology 2009; 392:203-14; PMID:19665162; http://dx.doi.org/10.1016/j.virol.2009.07.005
  • Liu S, Vijayendran D, Bonning BC. Next generation sequencing technologies for insect virus discovery. Viruses 2011; 3:1849-69; PMID:22069519; http://dx.doi.org/10.3390/v3101849
  • Timmons L, Fire A. Specific interference by ingested dsRNA. Nature 1998; 395:854; PMID:9804418; http://dx.doi.org/10.1038/27579
  • Timmons L, Court DL, Fire A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 2001; 263:103-12; PMID:11223248; http://dx.doi.org/10.1016/S0378-1119(00)00579-5
  • Surakasi VP, Mohamed AA, Kim Y. RNA interference of beta1 integrin subunit impairs development and immune responses of the beet armyworm, Spodoptera exigua. J Insect Physiol 2011; 57:1537-44; PMID:21856307; http://dx.doi.org/10.1016/j.jinsphys.2011.08.006
  • Clemens JC, Worby CA, Simonson-Leff N, Muda M, Maehama T, Hemmings BA, Dixon JE. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc Natl Acad Sci U S A 2000; 97:6499-503; PMID:10823906; http://dx.doi.org/10.1073/pnas.110149597
  • Kennerdell JR, Carthew RW. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 1998; 95:1017-26; PMID:9875855; http://dx.doi.org/10.1016/S0092-8674(00)81725-0
  • Rosa C, Kamita SG, Dequine H, Wuriyanghan H, Lindbo JA, Falk BW. RNAi effects on actin mRNAs in Homalodisca vitripennis cells. J RNAi Gene Silencing 2010; 6:361-6; PMID:20628496
  • Wuriyanghan H, Rosa C, Falk BW. Oral delivery of double-stranded RNAs and siRNAs induces RNAi effects in the potato/tomato psyllid, Bactericerca cockerelli. PloS One 2011; 6:e27736; PMID:22110747; http://dx.doi.org/10.1371/journal.pone.0027736
  • Mussig L, Richlitzki A, Rossler R, Eisenhardt D, Menzel R, Leboulle G. Acute disruption of the NMDA receptor subunit NR1 in the honeybee brain selectively impairs memory formation. J Neurosci 2010; 30:7817-25; PMID:20534830; http://dx.doi.org/10.1523/JNEUROSCI.5543-09.2010
  • Aravin AA, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D, Snyder B, Gaasterland T, Meyer J, Tuschl T. The small RNA profile during Drosophila melanogaster development. Dev Cell 2003; 5:337-50; PMID:12919683; http://dx.doi.org/10.1016/S1534-5807(03)00228-4
  • Behura SK, Whitfield CW. Correlated expression patterns of microRNA genes with age-dependent behavioural changes in honeybee. Insect Mol Biol 2010; 19:431-9; PMID:20491979
  • Rao Z, He W, Liu L, Zheng S, Huang L, Feng Q. Identification, expression and target gene analyses of Micrornas in Spodoptera litura. PloS One 2012; 7:e37730; PMID:22662202; http://dx.doi.org/10.1371/journal.pone.0037730
  • Skalsky RL, Vanlandingham DL, Scholle F, Higgs S, Cullen BR. Identification of microRNAs expressed in two mosquito vectors, Aedes albopictus and Culex quinquefasciatus. BMC genomics 2010; 11:119; PMID:20167119; http://dx.doi.org/10.1186/1471-2164-11-119
  • Khan AM, Ashfaq M, Kiss Z, Khan AA, Mansoor S, Falk BW. Use of recombinant tobacco mosaic virus to achieve RNA interference in plants against the citrus mealybug, Planococcus citri (Hemiptera: Pseudococcidae). PloS One 2013; 8:e73657; PMID:24040013; http://dx.doi.org/10.1371/journal.pone.0073657
  • Wuriyanghan H, Falk BW. RNA Interference towards the Potato Psyllid, Is Induced in Plants Infected with Recombinant Tobacco mosaic virus (TMV). PloS One 2013; 8:e66050; PMID:23824081; http://dx.doi.org/10.1371/journal.pone.0066050
  • Abdel-Latief M, Hoffmann KH. Functional activity of allatotropin and allatostatin in the pupal stage of a holometablous insect, Tribolium castaneum (Coleoptera, Tenebrionidae). Peptides 2014; 53:172-84; PMID:24140809; http://dx.doi.org/10.1016/j.peptides.2013.10.007
  • Xu J, Sheng Z, Palli SR. Juvenile hormone and insulin regulate trehalose homeostasis in the red flour beetle, Tribolium castaneum. PLoS Genet 2013; 9:e1003535; PMID:23754959; http://dx.doi.org/10.1371/journal.pgen.1003535
  • Minakuchi C, Namiki T, Yoshiyama M, Shinoda T. RNAi-mediated knockdown of juvenile hormone acid O-methyltransferase gene causes precocious metamorphosis in the red flour beetle Tribolium castaneum. FEBS J 2008; 275:2919-31; PMID:18435763; http://dx.doi.org/10.1111/j.1742-4658.2008.06428.x
  • Luan JB, Ghanim M, Liu SS, Czosnek H. Silencing the ecdysone synthesis and signaling pathway genes disrupts nymphal development in the whitefly. Insect Biochem Mol Biol 2013; 43:740-6; PMID:23748027; http://dx.doi.org/10.1016/j.ibmb.2013.05.012
  • Gong ZJ, Wu YQ, Miao J, Duan Y, Jiang YL, Li T. Global Transcriptome Analysis of Orange Wheat Blossom Midge, Sitodiplosis mosellana (Gehin) (Diptera: Cecidomyiidae) to Identify Candidate Transcripts Regulating Diapause. PloS One 2013; 8:e71564
  • Pauchet Y, Wilkinson P, Vogel H, Nelson DR, Reynolds SE, Heckel DG, ffrench-Constant RH. Pyrosequencing the Manduca sexta larval midgut transcriptome: messages for digestion, detoxification and defence. Insect Mol Biol 2010; 19:61-75; PMID:19909380; http://dx.doi.org/10.1111/j.1365-2583.2009.00936.x
  • Liu S, Chougule NP, Vijayendran D, Bonning BC. Deep sequencing of the transcriptomes of soybean aphid and associated endosymbionts. PloS One 2012; 7:e45161; PMID:22984624; http://dx.doi.org/10.1371/journal.pone.0045161
  • Wang XW, Luan JB, Li JM, Bao YY, Zhang CX, Liu SS. De novo characterization of a whitefly transcriptome and analysis of its gene expression during development. BMC Genomics 2010; 11:400; PMID:20573269; http://dx.doi.org/10.1186/1471-2164-11-400
  • Peng X, Zha W, He R, Lu T, Zhu L, Han B, He G. Pyrosequencing the midgut transcriptome of the brown planthopper, Nilaparvata lugens. Insect Mol Biol 2011; 20:745-62; PMID:21919985; http://dx.doi.org/10.1111/j.1365-2583.2011.01104.x
  • Hull JJ, Geib SM, Fabrick JA, Brent CS. Sequencing and de novo assembly of the western tarnished plant bug (Lygus hesperus) transcriptome. PloS One 2013; 8:e55105; PMID:23357950; http://dx.doi.org/10.1371/journal.pone.0055105
  • Nandety RS, Kamita SG, Hammock BD, Falk BW. Sequencing and De Novo Assembly of the Transcriptome of the Glassy-Winged Sharpshooter (Homalodisca vitripennis). PloS One 2013; 8:e81681; PMID:24339955; http://dx.doi.org/10.1371/journal.pone.0081681
  • Ioannidis P, Lu Y, Kumar N, Creasy T, Daugherty S, Chibucos MC, Orvis J, Shetty A, Ott S, Flowers M, et al. Rapid transcriptome sequencing of an invasive pest, the brown marmorated stink bug Halyomorpha halys. BMC Genomics 2014; 15:738; PMID:25168586; http://dx.doi.org/10.1186/1471-2164-15-738
  • Araujo RN, Santos A, Pinto FS, Gontijo NF, Lehane MJ, Pereira MH. RNA interference of the salivary gland nitrophorin 2 in the triatomine bug Rhodnius prolixus (Hemiptera: Reduviidae) by dsRNA ingestion or injection. Insect Biochem Mol Biol 2006; 36:683-93; PMID:16935217; http://dx.doi.org/10.1016/j.ibmb.2006.05.012
  • Liu S, Ding Z, Zhang C, Yang B, Liu Z. Gene knockdown by intro-thoracic injection of double-stranded RNA in the brown planthopper, Nilaparvata lugens. Insect Biochem Mol Biol 2010; 40:666-71; PMID:20599616; http://dx.doi.org/10.1016/j.ibmb.2010.06.007
  • Bischoff V, Vignal C, Duvic B, Boneca IG, Hoffmann JA, Royet J. Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2. PLoS Pathog 2006; 2:e14; PMID:16518472; http://dx.doi.org/10.1371/journal.ppat.0020014
  • Miller SC, Brown SJ, Tomoyasu Y. Larval RNAi in Drosophila? Dev Genes Evol 2008; 218:505-10; PMID:18663472; http://dx.doi.org/10.1007/s00427-008-0238-8
  • Roignant JY, Carre C, Mugat B, Szymczak D, Lepesant JA, Antoniewski C. Absence of transitive and systemic pathways allows cell-specific and isoform-specific RNAi in Drosophila. Rna 2003; 9:299-308; PMID:12592004; http://dx.doi.org/10.1261/rna.2154103
  • Parthasarathy R, Palli SR. Molecular analysis of juvenile hormone analog action in controlling the metamorphosis of the red flour beetle, Tribolium castaneum. Arch Insect Biochem Physiol 2009; 70:57-70; PMID:19072925; http://dx.doi.org/10.1002/arch.20288
  • Hossain M, Shimizu S, Matsuki M, Imamura M, Sakurai S, Iwami M. Expression of 20-hydroxyecdysone-induced genes in the silkworm brain and their functional analysis in post-embryonic development. Insect Biochem Mol Biol 2008; 38:1001-7; PMID:18835445; http://dx.doi.org/10.1016/j.ibmb.2008.08.006
  • Ghanim M, Kontsedalov S, Czosnek H. Tissue-specific gene silencing by RNA interference in the whitefly Bemisia tabaci. Insect BiochemMol Biol 2007; 37:732-8; PMID:17550829; http://dx.doi.org/10.1016/j.ibmb.2007.04.006
  • Rosa C, Kamita SG, Falk BW. RNA interference is induced in the glassy winged sharpshooter Homalodisca vitripennis by actin dsRNA. Pest Manag Sci 2012:995-1002; PMID:22345053; http://dx.doi.org/10.1002/ps.3253
  • Li-Byarlay H, Li Y, Stroud H, Feng S, Newman TC, Kaneda M, Hou KK, Worley KC, Elsik CG, Wickline SA, et al. RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee. Proc Natl Acad Sci U S A 2013; 110:12750-5; PMID:23852726; http://dx.doi.org/10.1073/pnas.1310735110
  • Mutti NS, Park Y, Reese JC, Reeck GR. RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum. J Insect Sci 2006; 6:1-7; PMID:20233093; http://dx.doi.org/10.1673/031.006.3801
  • Jaubert-Possamai S, Le Trionnaire G, Bonhomme J, Christophides GK, Rispe C, Tagu D. Gene knockdown by RNAi in the pea aphid Acyrthosiphon pisum. BMC Biotechnol 2007; 7:63; PMID:17903251; http://dx.doi.org/10.1186/1472-6750-7-63
  • Rong S, Li DQ, Zhang XY, Li S, Zhu KY, Guo YP, Ma EB, Zhang JZ. RNA interference to reveal roles of beta-N-acetylglucosaminidase gene during molting process in Locusta migratoria. Insect Sci 2013; 20:109-19; PMID:23955831; http://dx.doi.org/10.1111/j.1744-7917.2012.01573.x
  • Maeda I, Kohara Y, Yamamoto M, Sugimoto A. Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr Biol 2001; 11:171-6; PMID:11231151; http://dx.doi.org/10.1016/S0960-9822(01)00052-5
  • Wang Y, Zhang H, Li H, Miao X. Second-generation sequencing supply an effective way to screen RNAi targets in large scale for potential application in pest insect control. PloS One 2011; 6:e18644; PMID:21494551; http://dx.doi.org/10.1371/journal.pone.0018644
  • Karim S, Troiano E, Mather TN. Functional genomics tool: gene silencing in Ixodes scapularis eggs and nymphs by electroporated dsRNA. BMC Biotechnol 2010; 10:1; PMID:20074328; http://dx.doi.org/10.1186/1472-6750-10-1
  • El-Shesheny I, Hajeri S, El-Hawary I, Gowda S, Killiny N. Silencing abnormal wing disc gene of the Asian citrus psyllid, Diaphorina citri disrupts adult wing development and increases nymph mortality. PloS One 2013; 8:e65392; PMID:23734251; http://dx.doi.org/10.1371/journal.pone.0065392
  • Christiaens O, Swevers L, Smagghe G. DsRNA degradation in the pea aphid (Acyrthosiphon pisum) associated with lack of response in RNAi feeding and injection assay. Peptides 2014; 53:307-314; PMID:24394433
  • Turner CT, Davy MW, MacDiarmid RM, Plummer KM, Birch NP, Newcomb RD. RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol Biol 2006; 15:383-91; PMID:16756557; http://dx.doi.org/10.1111/j.1365-2583.2006.00656.x
  • Walshe DP, Lehane SM, Lehane MJ, Haines LR. Prolonged gene knockdown in the tsetse fly Glossina by feeding double stranded RNA. Insect Mol Biol 2009; 18:11-9; PMID:19016913; http://dx.doi.org/10.1111/j.1365-2583.2008.00839.x
  • Zhou X, Wheeler MM, Oi FM, Scharf ME. RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA. Insect Biochem Mol Biol 2008; 38:805-15; PMID:18625404; http://dx.doi.org/10.1016/j.ibmb.2008.05.005
  • Bautista MA, Miyata T, Miura K, Tanaka T. RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochem Mol Biol 2009; 39:38-46; PMID:18957322; http://dx.doi.org/10.1016/j.ibmb.2008.09.005
  • Zhang S, Shukle R, Mittapalli O, Zhu YC, Reese JC, Wang H, Hua BZ, Chen MS. The gut transcriptome of a gall midge, Mayetiola destructor. J Insect Physiol 2010; 56:1198-206; PMID:20346948; http://dx.doi.org/10.1016/j.jinsphys.2010.03.021
  • Hajeri S, Killiny N, El-Mohtar C, Dawson WO, Gowda S. Citrus tristeza virus-based RNAi in citrus plants induces gene silencing in Diaphorina citri, a phloem-sap sucking insect vector of citrus greening disease (Huanglongbing). J Biotechnol 2014; 76:42-49; PMID:24572372; http://dx.doi.org/10.1016/J.Jbiotec.2014.02.010
  • Mao J, Zeng F. Feeding-based RNA interference of a gap gene is lethal to the pea aphid, Acyrthosiphon pisum. PloS One 2012; 7:e48718; PMID:23144942; http://dx.doi.org/10.1371/journal.pone.0048718
  • Karatolos N, Denholm I, Williamson M, Nauen R, Gorman K. Incidence and characterisation of resistance to neonicotinoid insecticides and pymetrozine in the greenhouse whitefly, Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae). Pest Manag Sci 2010; 66:1304-7; PMID:20799247; http://dx.doi.org/10.1002/ps.2014
  • Upadhyay SK, Chandrashekar K, Thakur N, Verma PC, Borgio JF, Singh PK, Tuli R. RNA interference for the control of whiteflies (Bemisia tabaci) by oral route. J Biosci 2011; 36:153-61; PMID:21451256; http://dx.doi.org/10.1007/s12038-011-9009-1
  • Thakur N, Upadhyay SK, Verma PC, Chandrashekar K, Tuli R, Singh PK. Enhanced Whitefly Resistance in Transgenic Tobacco Plants Expressing Double Stranded RNA of v-ATPase A Gene. PloS One 2014; 9:e87235; PMID:24595215; http://dx.doi.org/10.1371/journal.pone.0087235
  • Bolognesi R, Ramaseshadri P, Anderson J, Bachman P, Clinton W, Flannagan R, Ilagan O, Lawrence C, Levine S, Moar W, et al. Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm (Diabrotica virgifera virgifera LeConte). PloS One 2012; 7:e47534; PMID:23071820; http://dx.doi.org/10.1371/journal.pone.0047534
  • Ramaseshadri P, Segers G, Flannagan R, Wiggins E, Clinton W, Ilagan O, McNulty B, Clark T, Bolognesi R. Physiological and cellular responses caused by RNAi- mediated suppression of Snf7 orthologue in western corn rootworm (Diabrotica virgifera) larvae. PloS One 2013; 8:e54270; PMID:23349844; http://dx.doi.org/10.1371/journal.pone.0054270
  • Kamath RS, Ahringer J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods 2003; 30:313-21; PMID:12828945; http://dx.doi.org/10.1016/S1046-2023(03)00050-1
  • Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 2003; 421:231-7; PMID:12529635; http://dx.doi.org/10.1038/nature01278
  • Zhu F, Xu J, Palli R, Ferguson J, Palli SR. Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata. Pest Manag Sci 2011; 67:175-82; PMID:21061270; http://dx.doi.org/10.1002/ps.2048
  • La Fauce K, Owens L. Suppression of Penaeus merguiensis densovirus following oral delivery of live bacteria expressing dsRNA in the house cricket (Acheta domesticus) model. J Invertebr Pathol 2013; 112:162-5; PMID:23201454; http://dx.doi.org/10.1016/j.jip.2012.11.006
  • Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, et al. Control of coleopteran insect pests through RNA interference. Nat Biotechnol 2007; 25:1322-6; PMID:17982443; http://dx.doi.org/10.1038/nbt1359
  • Kumar P, Pandit SS, Baldwin IT. Tobacco rattle virus vector: A rapid and transient means of silencing manduca sexta genes by plant mediated RNA interference. PloS One 2012; 7:e31347; PMID:22312445; http://dx.doi.org/10.1371/journal.pone.0031347
  • Folimonov AS, Folimonova SY, Bar-Joseph M, Dawson WO. A stable RNA virus-based vector for citrus trees. Virology 2007; 368:205-16; PMID:17651777; http://dx.doi.org/10.1016/j.virol.2007.06.038
  • Belles X. Beyond Drosophila: RNAi in vivo and functional genomics in insects. Annu Rev Entomol 2010; 55:111-28; PMID:19961326; http://dx.doi.org/10.1146/annurev-ento-112408-085301
  • Xue XY MY, Tao XY, Huang YP, Chen XY. New approaches to agricultural insect pest control based on RNA interference. In: Jockusch EL, ed. Advances in Insect Physiology. UK: Academic Press, 2012:73-117.
  • Gordon KH, Waterhouse PM. RNAi for insect-proof plants. Nat Biotechnol 2007; 25:1231-2; PMID:17989682; http://dx.doi.org/10.1038/nbt1107-1231
  • Kupferschmidt K. A lethal dose of RNA. Science 2013; 341:732-3; PMID:23950525; http://dx.doi.org/10.1126/science.341.6147.732
  • Huang G, Allen R, Davis EL, Baum TJ, Hussey RS. Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci U S A 2006; 103:14302-6; PMID:16985000; http://dx.doi.org/10.1073/pnas.0604698103
  • Steeves RM, Todd TC, Essig JS, Trick HN. Transgenic soybeans expressing siRNAs specific to a major sperm protein gene suppress Heterodera glycines reproduction. Funct Plant Biol 2006; 33:991-9; http://dx.doi.org/10.1071/FP06130
  • Escobar MA, Civerolo EL, Summerfelt KR, Dandekar AM. RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proc Natl Acad Sci U S A 2001; 98:13437-42; PMID:11687652; http://dx.doi.org/10.1073/pnas.241276898
  • Shimizu T, Yoshii M, Wei T, Hirochika H, Omura T. Silencing by RNAi of the gene for Pns12, a viroplasm matrix protein of Rice dwarf virus, results in strong resistance of transgenic rice plants to the virus. Plant Biotechnol J 2009; 7:24-32; PMID:18761654; http://dx.doi.org/10.1111/j.1467-7652.2008.00366.x
  • Simon-Mateo C, Garcia JA. Antiviral strategies in plants based on RNA silencing. Biochim Biophys Acta 2011; 1809:722-31; PMID:21652000; http://dx.doi.org/10.1016/j.bbagrm.2011.05.011
  • Fuchs M, Gonsalves D. Safety of virus-resistant transgenic plants two decades after their introduction: lessons from realistic field risk assessment studies. Ann Rev Phytopathol 2007; 45:173-202; PMID:17408355; http://dx.doi.org/10.1146/annurev.phyto.45.062806.094434
  • Gonsalves D. Transgenic papaya: development, release, impact and challenges. Adv Virus Res 2006; 67:317-54; PMID:17027684; http://dx.doi.org/10.1016/S0065-3527(06)67009-7
  • Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 2007; 25:1307-13; PMID:17982444; http://dx.doi.org/10.1038/nbt1352
  • Mao YB, Xue XY, Tao XY, Yang CQ, Wang LJ, Chen XY. Cysteine protease enhances plant-mediated bollworm RNA interference. Plant Mol Biol 2013; 83:119-29; PMID:23460027; http://dx.doi.org/10.1007/s11103-013-0030-7
  • Zhu JQ, Liu S, Ma Y, Zhang JQ, Qi HS, Wei ZJ, Yao Q, Zhang WQ, Li S. Improvement of pest resistance in transgenic tobacco plants expressing dsRNA of an insect-associated gene EcR. PloS One 2012; 7:e38572; PMID:22685585; http://dx.doi.org/10.1371/journal.pone.0038572
  • Zha W, Peng X, Chen R, Du B, Zhu L, He G. Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. PloS One 2011; 6:e20504; PMID:21655219; http://dx.doi.org/10.1371/journal.pone.0020504
  • Pitino M, Coleman AD, Maffei ME, Ridout CJ, Hogenhout SA. Silencing of aphid genes by dsRNA feeding from plants. PloS One 2011; 6:e25709; PMID:21998682; http://dx.doi.org/10.1371/journal.pone.0025709
  • Mao J, Zeng F. Plant-mediated RNAi of a gap gene-enhanced tobacco tolerance against the Myzus persicae. Transgenic Res 2014; 23:145-52; PMID:23949691; http://dx.doi.org/10.1007/s11248-013-9739-y
  • Guo H, Song X, Wang G, Yang K, Wang Y, Niu L, Chen X, Fang R. Plant-Generated Artificial Small RNAs Mediated Aphid Resistance. PloS One 2014; 9:e97410; PMID:24819752; http://dx.doi.org/10.1371/journal.pone.0097410
  • Lundgren JG, Duan, J. J. RNAi-based insecticidal crops: Potential effects on nontarget species. Bioscience 2013; 63:657-65; http://dx.doi.org/10.1525/bio.2013.63.8.8
  • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120:15-20; PMID:15652477; http://dx.doi.org/10.1016/j.cell.2004.12.035
  • Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433:769-73; PMID:15685193; http://dx.doi.org/10.1038/nature03315
  • Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003; 21:635-7; PMID:12754523; http://dx.doi.org/10.1038/nbt831
  • Jackson AL, Burchard J, Schelter J, Chau BN, Cleary M, Lim L, Linsley PS. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 2006; 12:1179-87; PMID:16682560; http://dx.doi.org/10.1261/rna.25706
  • Birmingham A, Anderson EM, Reynolds A, Ilsley-Tyree D, Leake D, Fedorov Y, Baskerville S, Maksimova E, Robinson K, Karpilow J, et al. 3’ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 2006; 3:199-204; PMID:16489337; http://dx.doi.org/10.1038/nmeth854
  • Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007; 27:91-105; PMID:17612493; http://dx.doi.org/10.1016/j.molcel.2007.06.017
  • Aleman LM, Doench J, Sharp PA. Comparison of siRNA-induced off-target RNA and protein effects. RNA 2007; 13:385-95; PMID:17237357; http://dx.doi.org/10.1261/rna.352507
  • Ishizu H, Siomi H, Siomi MC. Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Dev 2012; 26:2361-73; PMID:23124062; http://dx.doi.org/10.1101/gad.203786.112
  • Ui-Tei K. Optimal choice of functional and off-target effect-reduced siRNAs for RNAi therapeutics. Front Genet 2013; 4:107; PMID:23781232; http://dx.doi.org/10.3389/fgene.2013.00107
  • Ma Y, Creanga A, Lum L, Beachy PA. Prevalence of off-target effects in Drosophila RNA interference screens. Nature 2006; 443:359-63; PMID:16964239; http://dx.doi.org/10.1038/nature05179
  • Green EW, Fedele G, Giorgini F, Kyriacou CP. A Drosophila RNAi collection is subject to dominant phenotypic effects. Nat Methods 2014; 11:222-3; PMID:24577271; http://dx.doi.org/10.1038/nmeth.2856
  • Fellmann C, Lowe SW. Stable RNA interference rules for silencing. Nat Cell Biol 2014; 16:10-8; PMID:24366030; http://dx.doi.org/10.1038/ncb2895
  • Sato K, Siomi MC. Piwi-interacting RNAs: biological functions and biogenesis. Essays Biochem 2013; 54:39-52; PMID:23829526; http://dx.doi.org/10.1042/bse0540039
  • Weitz JS, Wilhelm SW. Ocean viruses and their effects on microbial communities and biogeochemical cycles. F1000 Biol Rep 2012; 4-17; PMCID: PMC3434959; http://dx.doi.org/10.3410/B4-17
  • Asgari S, Johnson KN. Insect Virology. Horizon Scientific Press, 2010
  • Naito Y, Ui-Tei K. siRNA Design Software for a Target Gene-Specific RNA Interference. Front Genet 2012; 3:102; PMID:22701467; http://dx.doi.org/10.3389/fgene.2012.00102

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.